

Solid Spectroscopy Data Model (SSDM-spectra) of the SSHADE database infrastructure

Document Information

Editor:	Bernard Schmitt - IPAG, UGA-CNRS/INSU
Author(s):	Bernard Schmitt, Philippe Bollard, Alexandre Garenne, Lydie Bonal, Damien Albert, Maria Gorbacheva, P. Volcke
Contributor(s):	The former SSDM Expert Working Group (2009-2012) and the SSHADE partner's consortium*
Type of document:	standards documentation
Status:	Final version of the core + options.
Distribution:	SSHADE consortium
Work packages:	2020-2024: VA2 VESPA (Europlanet2024-RI)
	2015-2019: JRA5/task3 and VA2 VESPA (Europlanet2020-RI)
	2009-2012: WP6 (VAMDC) - WP25 (JRA4 IDIS-Europlanet)
Version (date):	0.9.2 (27/05/2023)
File name:	SSDM-spectra_datamodel_v0.9.2_SSHADE
Reference:	Schmitt, B., Bollard P., Garenne A., Bonal, L., albert D., Gorbacheva, M. Volcke P. and the SSHADE partner's consortium (2023). The Solid Spectroscopy Data Model (SSDM-spectra) of the SSHADE database infrastructure. Version 0.9.2. https://wiki.sshade.eu/ media/sshade/documentation/ssdm-
	spectra datamodel v0.9.2 sshade.pdf

* The SSHADE consortium includes: B. Schmitt, P. Bollard, L. Bonal, A. Garenne, D. Albert, P. Beck, E. Quirico, Istiquomah Istiquomah (IPAG, Grenoble, F); R. Brunetto, D. Baklouti (IAS, Orsay, F), P. Pinet, K. Demyk, Y. Daydou (IRAP, Toulouse, F), P. Theulé (PIIM, Marseille, F), M. Massé, M. Giraud (LPGN, Nantes, F), O. Poch, A. Pommerol (WP-Unibe, Bern, CH), N. Fray (LISA, Créteil, F), F. Capaccioni, A. Rotundi, C. Carli, Andrea Longobardo (IAPS - INAF, Roma, I), N.J. Mason (Open University, UK), Bhala Sivaraman (PRL, Ahmedabad, IN), G. Montagnac, R. Caracas, B. Reynard (ENS-Lyon, F), N. Carrasco, Th. Gautier (LATMOS, Verrières, F), H. Mutschke, J. Weiprecht (AIU Obs., Jena, D), V. Timon, M.A.Moreno (IEM, Madrid, E), A. Kereszturi, I. Gyollai (CSFK, Budapest, HU), J. Gurgurewicz (PGL, Wroclaw, PL), A. Kuligiewicz (CML, Krakow, PL), I. Kieffer, D. Testemale (FAME, ESRF, Grenoble, F).

Abstract

The "Solid Spectroscopy Data Model" (SSDM) is a relational data model allowing a complete description of spectral data of solid materials. It includes a detailed description of the solid samples through their layers, materials, constituents and species. Natural matters have their specific description. The instruments and techniques used for the measurements are also described. The spectral data are of two types: spectra and their various higher levels products (instrument specific) and band lists (band parameters and transition attributions). Publications associated with the spectral data are also included in this data model. SSDM is the base of the SSHADE database infrastructure of spectroscopy of solids.

Version History

Version	Date	Modified By	Description of Change
v0.1	25/02/09	Bernard Schmitt	Initial draft version of Ghosst DataModel
v0.2	26/06/09	Bernard Schmitt	Initial version of SSDM DataModel
v0.3.0	16/02/10	Bernard Schmitt	Draft implementation of SSDM expert working group recommendations
v0.3.1	26/06/10	Bernard Schmitt	Many changes ... Reorganisation and renaming of keywords.
v0.3.2a	06/09/10	Bernard Schmitt	Many changes. Large reorganisation of tables and keywords.
v0.3.2b	09/09/10	Bernard Schmitt	Several fundamental changes
v0.3.2c	05/10/10	Bernard Schmitt	Many changes ... Reorganisation of tables during implementation.
v0.3.2d	17/11/10	Bernard Schmitt	Many changes ... Reorganisation of tables during implementation.
v0.3.2e	04/03/11	Bernard Schmitt	Changes in Band list, molecules, atoms.
v0.3.3	27/03/11	Bernard Schmitt	Changes in general description, molecules, atoms, sample/layers/materials/constituents: stable version for these parts
v0.3.3a	03/04/11	Bernard Schmitt	Few small changes
v0.3.3b	06/04/11	Bernard Schmitt	Few small changes in layer and spectra tables
v0.3.3c	12/04/11	Bernard Schmitt	Few small changes in sample tables
v0.3.3d	19/04/11	Bernard Schmitt	Major changes in Instruments, + some minors
v0.3.3e	25/04/11	Bernard Schmitt	Major changes in Instruments and experiment.
v0.3.3f	29/04/11	Bernard Schmitt	Splitting Instruments table in two.
v0.3.3g	01/05/11	Bernard Schmitt	DM meteorite object and extraterrestrial matter (draft)
v0.3.3h	23/05/11	Bernard Schmitt	Major changes in spectra, spectra files and spectrum bands
v0.3.3i	30/05/11	Bernard Schmitt	Minor changes in Instruments
v0.3.4	15/06/11	Bernard Schmitt	Major changes in meteorites and in general and detailed documentation
v0.3.4a	23/06/11	Bernard Schmitt	Major changes in enumeration lists
v0.3.4b	11/07/11	Bernard Schmitt	Medium addition and change of keywords and enumerations in Sample (+ a few others)
v0.3.4c	28/11/11	Bernard Schmitt	Major changes in Mineral species and mineral matters. Other minor changes everywhere
v0.3.4d	02/02/12	Bernard Schmitt	Major changes in Mineral species, mineral matters and Publications
v0.3.5b	06/03/12	Bernard Schmitt	Changes in molecules, atoms, minerals and mineral matters. Major changes in Band list. Creation of Band and States tables
v0.3.6a	26/03/12	Bernard Schmitt	Creation of 'chemical functions table' + minor changes. Finalisation of Atoms, Molecules species
v0.3.6b	26/03/12	Bernard Schmitt	Finalisation of Laboratory and

			Instruments
v0.3.6c	04/04/12	Bernard Schmitt	Various improvements and homogenizations
$\begin{aligned} & \hline \mathbf{v 0 . 4 . 0} \\ & (=0.3 .6 \mathrm{~d}) \end{aligned}$	11/04/12	Bernard Schmitt	Various documentation - version of the 3rd SSDM meeting
v0.4.1	23/04/12	Bernard Schmitt	Various small changes from 3rd SSDM meeting
v0.4.2	03/05/12	Bernard Schmitt	New Experimentalist table. Various small changes.
v0.4.3	12/05/12	Bernard Schmitt	Fusion spectra and advanced spectra + small changes in spectra, experiment
v0.4.4	20/05/12	Bernard Schmitt	Various changes in instrument parameters, spectra and experiment => stable version Start of sample reorganization
v0.4.5	05/06/12	Bernard Schmitt	Major changes in Sample (units, processing, adsorption, matter call). Add "solution" species, "Matter_fluid". Few changes in molecule, experiment,
v0.4.5a	11/06/12	Bernard Schmitt	Major changes in Sample (errors, adsorption, ...). Stable version!
v0.4.6	18/06/12	Bernard Schmitt	Small changes in instrument parameters
v0.4.6a	01/07/12	Bernard Schmitt	Small additions in instrument, minerals, solution, and expanded enumerations.
v0.4.6b	05/07/12	Bernard Schmitt	Various small adding/corrections
v0.4.6c	13/07/12	Bernard Schmitt	Various small adding/corrections: import mode, ...
v0.4.6d	16/07/12	Bernard Schmitt	Changes in mineral species (add hydration KW) and in Sample (irradiation) + various Enum
v0.4.6e	??/07/12	Bernard Schmitt	Major changes in Enum of material constituent / species, some changes in matters. Fixing Enum/OpenEnum
v0.4.6f	30/07/12	Bernard Schmitt	Enum of mineral species, adding KW to mineral matters, moving unit KW from parameters to experiment.
v0.4.6g	03/08/12	Bernard Schmitt	Storage units of float values, completion/correction of some Enum, some changes in mineral and molecule
v0.4.6h	01/10/12	Bernard Schmitt	Some addition \& changes in species and other minor addition in various parts
v0.5.0a	07/10/12	Bernard Schmitt	Important changes and adding to Band list and bands. Few name changes in spectrum
$\begin{aligned} & \text { v0.5.1 } \\ & (=0.5 .0 \mathrm{~b}) \end{aligned}$	23/10/12	Bernard Schmitt	Final changes to Band list, bands, states. Develoment of molecular modes parameters. Small changes to spectrum and mineral species.
v0.5.1a	05/11/12	Bernard Schmitt	Few addition and changes in Mineral, spectrum, bandlist, band, ...
v0.5.1b	05/12/12	Bernard Schmitt	Few addition and changes in ???
v0.5.1c	15/03/13	Bernard Schmitt	Addition of enum attributes in sample. Few additions in chemical function and changes in spectrum.
$\begin{aligned} & \text { v0.5.2 } \\ & (=0.5 .1 \mathrm{c}) \end{aligned}$	15/03/13	Bernard Schmitt	Cleaned version. Some additional or revised general description
v0.5.2a	30/03/13	Bernard Schmitt	Addition of extraterrestrial matters and organic matters + small additions in

			atoms, molecule, mineral matter, fluid matter and instrument parameters
v0.5.2b	10/04/13	Bernard Schmitt	Major changes in layer/materials and in all matters: precursors materials and processings
v0.5.2c	11/04/13	Bernard Schmitt	Small change in material, atoms, ... Major changes in object_meteorite, small change in matter_meteorite.
v0.5.3a	17/05/13	Bernard Schmitt	Changed structure of processings in sample. Some changes in processings for all matters
v0.5.3b	23/05/13	Bernard Schmitt	Many changes in meteorite_object, minor ones in all matters.
v0.5.4a	05/06/13	Bernard Schmitt	Changes in matter_organic
v0.5.4b	25/06/13	Bernard Schmitt	Changes in all matters (homogeneisation KW)
v0.5.4c	11/07/13	Bernard Schmitt	Small Enum change in Layer and Mineral
v0.5.4d	23/07/13	Bernard Schmitt	Some changes in all matters (2 KW)
v0.5.5a	09/08/13	Bernard Schmitt	Some changes in sample/matter processings, molecule and all matters
v0.5.5b	10/10/13	Bernard Schmitt	One keyword added in publications and mineral species. 2 changed Enum in Matters and sample
v0.5.5c	26/11/13	Bernard Schmitt	Added KW in chemical functions + changed a few enum in mineral, matters, object, instrument, experiment, bandlist
v0.5.5d	12/12/13	Bernard Schmitt	Added a few enum +1 KW in Sample, changed KW + Enum in organic matter
v0.5.6a	06/04/14	Bernard Schmitt	Reorganization of Mandatory. Definition of some calculated KW. Some Kw changes in minerals. Some changes in Enum. Added Enum and KW for X spectroscopy extension.
v0.5.6b	29/08/14	Bernard Schmitt	Two KW added in fluid_matter \& experiment. Several arguments added in various Enums.
v0.5.6c	29/07/15	Bernard Schmitt	Small modification of absolute mandatory KW
v0.5.7a	29/03/16	Bernard Schmitt	Changes in "Experimentalists" (copyrights), "Instruments", Exp-spectra" (copyrights), "Minerals" (crystal_sites)
v0.5.7b	11/05/16	Bernard Schmitt	Added table 'database' and links DB_uid, changes Enum Minerals, laboratory_date
v0.6.0a	17/06/16	Bernard Schmitt	Numerous and major changes in KW and conditions, especially in Sample, Mineral species, Instrument, Experimentalist, Spectra and bandlists. Fewer in other tables
v0.6.0b	04/07/16	Bernard Schmitt	Major changes in "processings". Add and changes KW in "atom" and "molecule" (+ add 'variables'). Remove KW in "solution" and "mineral". Small add in all "matters". Small changes in "instrument parameters" and "spectrum".
v0.6.0c	09/07/16	Bernard Schmitt	Change of conditions in Sample + few Enum. Changes in matter meteorite=>extraterrestrial), spectrum

$\left.\begin{array}{|l|l|l|l|}\hline & & & \text { and database. + little in experimentalists } \\ \hline \text { v0.6.0d } & 25 / 07 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Changes in Enum in Sample, change in } \\ \text { KW/Enumin all species, few Enum/KW } \\ \text { changes in all matters. Add Object } \\ \text { micrometeorites table. Several changes } \\ \text { in Spectrum + few in other tables. }\end{array} \\ \hline \text { v0.6.0e } & 26 / 07 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Various Enum and Conditions changes } \\ \text { everywhere. Split of the "Chemical } \\ \text { function" table => "chemical bonds". } \\ \text { Finalization of Object micrometeorites } \\ \text { table. Minor changes in Publications. }\end{array} \\ \hline \begin{array}{l}\text { v0.7.0 } \\ (=0.6 .0 \mathrm{e})\end{array} & 26 / 07 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Same as v0.6.0e but with all v0.6.0 } \\ \text { changes marks cleaned + minor changes }\end{array} \\ \hline \text { v0.7.0a } & 25 / 08 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Adding a table 'Journal' + link from } \\ \text { "Publi". Sample+Matters: Modification of } \\ \text { Matter-material choice. Changes in } \\ \text { isotopic species. Add bonds in minerals. } \\ \text { Various small KW, attribute and } \\ \text { conditions changes }\end{array} \\ \hline \text { v0.7.0b } & 02 / 09 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Small changes in KW in sample, } \\ \text { chemical bonds, molecules and } \\ \text { minerals. A few other minor changes }\end{array} \\ \hline \text { v0.7.0c } & 08 / 09 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Several sddition in Experiment. A few } \\ \text { small changes in Laboratory, spectrum, } \\ \text { Bandlist and Publication }\end{array} \\ \hline \text { v0.7.1 } & 08 / 09 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Same as v0.7.0c but with all v0.7.0 } \\ \text { changes marks cleaned + minor changes }\end{array} \\ \hline \text { v0.7.0c) } & 18 / 09 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Few addition of KW in Chemical bonds } \\ \text { and molecules, and change of Enum } \\ \text { (mostly in vibration_mode) }\end{array} \\ \hline \text { v0.7.2a } & 03 / 12 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Added DB management, data validation } \\ \text { and access right, user rights. Add table } \\ \text { "access_group". Change KW in } \\ \text { Publications. Changed conditions in } \\ \text { sample (mass, errors, ...) and in } \\ \text { variables (mineral, solutions) }\end{array} \\ \hline \text { v0.7.1b } & 03 / 11 / 16 & \text { Bernard Schmitt } & \begin{array}{l}\text { Addition in Spectrum. Small changes in } \\ \text { Experiment, Structure, Experimentalist, } \\ \text { Database, Publication and User }\end{array} \\ \hline \text { Same as v0.7.2d but with all v0.7.2 } \\ \text { changes marks cleaned + minor changes }\end{array}\right\}$

v0.8.0a	12/12/16	Bernard Schmitt	Large reorganization of "Sample parameters". XAS option added in Instrument parameters and Atom. Small changes in spectra, experiment, structure, ...
v0.8.0b	21/12/16	Bernard Schmitt	Small changes in enums of Sample, Instruments, and Spectra. Added conditions in Parameters_instrument (variables) and Publication. Small name changes in Spectra and Journal.
v0.8.1	09/01/17	Bernard Schmitt	Same as v0.8.0b but with all v0.8.0 changes marks cleaned
v0.8.1a	18/01/17	Bernard Schmitt	Add Basic constituent table. Modif/add KW Constituents and Species. Small changes in Atom, Chemical bonds, and Molecules. Changes in Mineral. Add Molecular solids constituent table.
v0.8.1b	14/02/17	Bernard Schmitt	Extend Molecular solids to all Solids. Large Large addition to Minerals. Add Basic constituents option in Sample. Homogeneize Constituent KW and attributes between Constituents, Solids and Minerals. Small changes in chemical bonds and functions.
v0.8.1c	16/02/17	Bernard Schmitt	Small KW addition in Sample and Spectra + small attribute changes in spectra
v0.8.1d	22/03/17	Bernard Schmitt	Large KW changes in Basic constituent table. Several Enum changes in Constituents, Solids and Mineral. Small change in Spectra.
v0.8.1e	24/04/17	Bernard Schmitt	Change of Fundamental constituent to Basic constituent \& Fundamental phases + small change. Changes in Material and Constituents, Small change in Minerals, Solids and Matters. Large change in Liquid.
v0.8.1f	05/05/17	Bernard Schmitt	Add bloc "stereo-isomers'in Molecule. Add BRDF data in Experiment/ Spectrum/ Parameters spectrum. Add ROI in imaging in Spectrum. Add preview control in Exp/spectra
v0.8.1g	03/06/17	Bernard Schmitt	Changes in KW names in Parameters intruments. Changes in KW name, Enum and conditions in Experiment and Spectrum. Modification conditions in molecule. Small changes in Liquid.
v0.8.2	03/06/17	Bernard Schmitt	Same as v0.8.1g but with all v0.8.1 changes marks cleaned
v0.8.2a	11/06/17	Bernard Schmitt	Small changes in conditions in Experimentalist, Molecules, Liquids, Matters, Instrument parameters, Experiment, spectra. Few change of KW/Enum in Liquid. Calcul in Solid.
v0.8.2b	02/07/17	Bernard Schmitt	Changes in condition in Species. Small changes in condition and Enum in Mineral and Solids and Matters. Changes in Enum in Object_idp and

			sample, fluid. Various small changes in instrument, experiment, spectra.		
v0.8.3	$03 / 07 / 17$	Bernard Schmitt	Same as v0.8.2b but with all v0.8.2 changes marks and draft parts cleaned		
v0.8.3a	$29 / 09 / 17$	Bernard Schmitt	Changes of KW/enum/conditions in Mineral ans Solid (+some in Liquid). Small changes in Object. Major changes and additions in Constituent. Small changes and additions in sample, experiment and spectra.		
v0.8.4	$29 / 09 / 17$	Bernard Schmitt	Same as v0.8.3a but with all v0.8.3 changes marks and draft parts cleaned		
v0.8.4a	$13 / 01 / 18$	Bernard Schmitt	Few additions in Users, some condition changes in Publications. Small Enum change in Liquid, solid, Mineral.		
v0.8.5	$13 / 01 / 18$	Bernard Schmitt	Same as v0.8.4a but with all v0.8.4 changes marks and draft parts cleaned		
v0.8.5a	$11 / 02 / 19$	Bernard Schmitt	Major SSDM upgrade: Addition of a Body table. Synchronisation of Users and Groups. Sel changes/additions in Database, Publication, Molecule, Solid, all Matters, Object meteorite, Object micromet, Sample, Material, Constituent, Instrument parameters, Experiment, Spectrum. Small changes/additions in journal, Liquid, Mineral, Object IDP, Layer, Instrument. Various changes of Enum, mandatory, conditions... in many tables.		
V0.8.5b	$11 / 04 / 19$ to				
$20 / 05 / 20$				\quad Bernard Schmitt	Modification of a few Mandatory
:---					
conditions					

Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies.

All rights reserved

The document is proprietary of the Europlanet and VAMDC consortium members. No copying or distributing, in any form or by any means, is allowed without the prior written agreement of the owner of the property rights.

This document reflects only the authors' view. The European Community is not liable for any use that may be made of the information contained herein.

Acknowledgements

Europlanet 2020 RI (2015-2019) is funded by the European Union's "Horizon 2020" research and innovation Programme. Grant Agreement number: 654208.

VAMDC (2009-2012) was funded under the "Combination of Collaborative Projects and Coordination and Support Actions" Funding Scheme of The Seventh Framework Programme. Call topic: INFRA-2008-1.2.2 Scientific Data Infrastructure. Grant Agreement number: 239108.

Europlanet RI (2009-2012) was funded under the "Combination of Collaborative Projects and Coordination and Support Actions" Funding Scheme of The Seventh Framework Programme. Grant Agreement number: 228319.

OSUG and CNRS-INSU for their recursive supports for the early and current developments of SSDM (and the GhoSST database) since 2006 and 2013 respectively.

CNES "Solar SystemStudies" is also acknowledged for support through various space mission programs

The SSDM expert working group was supported by funds from Europlanet-RI/IDIS and the French "Action Spécifique Observatoires Virtuels" (ASOV). This group met 3 times in IPAG (Grenoble, France) in 2010-2012 to discuss and review the initial SSDM datamodel. This group evolved in 2015 as the "SSHADE European consortium" to extend SSDM for the SSHADE database infrastructure.

TABLE OF CONTENT

1. Introduction 11
2. General Description 12
2.1 Data Model Structure 12
2.2 Data Model Content 14
2.3 Tables Content Description 14
3. Databases - Laboratories 18
3.1 Description 19
3.2 Database Table 20
3.3 Laboratory Table 30
4. Experimentalists - Users 35
4.1 Description 41
4.2 Experimentalist Table 35
4.3 User Table 42
5. Access groups 41
5.1 Description Erreur! Signet non défini.
5.2 Access group Table (TBC) 52
6. Journals - Publications 53
6.1 Description 53
6.2 Journal Table 54
6.3 Publication Table 57
7. Fundamental Species (molecular, atomic, chemical bonds \& functions) 74
7.1 Definition 74
7.2 Description 75
7.3 Atoms and Ions Table 77
7.4 Chemical bonds Table 84
7.5 Chemical functions Table 97
7.6 Molecules, Molecular Ions and Radicals Table 106
8. Fundamental Phases 140
8.1 Definition 140
8.2 Classification of the fundamental phases 143
8.3 Liquid phase Table 143
8.4 Mineral phase Table 163
8.5 Solid Phase Table 213
9. Matters (minerals, rocks, meteorites, natural organics, ...) 269
9.1 Definition 269
9.2 Fluid Matters Table 278
9.3 Solid Matters Table 293
9.4 Carbonaceous Matters (Natural and synthetic) Table 320
9.5 Extraterrestrial matter Table 346
10. Natural Objects (meteorites, ...) Erreur ! Signet non défini.
10.1 Definition 367
10.2 Meteorite objects Table 368
10.3 Micrometeorite objects Table 404
10.4 IDPs objects Table 41610.5 Planetary objects Table
4169
11. Sample 426
11.1 Introduction 443
11.2 Description. 444
11.3 Sample Table 450
11.4 Layer Table. 494
11.5 Matter Table 506
11.6 Material Table 511
11.7 Basic constituent Table 526
11.8 Constituent Table 535
11.9 Precursor Materials 572
11.10 Processing Table 573
12. Instruments - Instrument parameters 583
12.1 Description 583
12.2 Instrument Table 584
12.3 Instrument parametersTable 595
13. Experiments 634
13.1 Definition 634
13.2 Different cases of experiments 634
13.2.1 Experiments with changes in physical conditions of the sample 634
13.2.2 Experiments with changes in measurements parameters 635
13.2.3 Case of heterogeneous matters at the microscopic level 636
13.3 Limitation of "experiments" 636
13.4 Experiment Table 637
13.5 Experiment structure Table 494
14. Spectroscopic Data 673
14.1 Spectral data 673
14.2 Description 674
14.3 Microscopic measurements on heterogeneous matters 676
14.4 Spectrum Table 677
15. Spectrum Files. 747
15.1 Spectrum files 747
15.2 Intensity Spectrum file 749
15.3 Optical Constants Spectrum file 752
15.5 Multi-Angle Spectra file 755
References 758

1. Introduction

This project of "Solid Spectroscopy Data Model" (SSDM) started to be developed at LPG in the frame of the Observatoire des Sciences de l'Univers de Grenoble (OSUG) in 2006 for a first prototype database called STSP, then get large developments for the GhoSST database in the frame of the contribution of IPAG to the VAMDC FP7 European program and Europlanet RI FP7 European programs (2009-2012). Its development continued at low pace until the start of the current Europlanet2020-RI program (2015-2019) in which SSDM is strongly evolving to meet the SSHADE database infrastructure requirements.

Since the first basic version developed for the GhoSST database, the SSDM has been subjected to large extensions and modifications as partly defined at a series of meetings of the "Expert Working Group on Solid Spectroscopy Data Model" and then of the "SSHADE consortium partners team" who gathered representatives of the different European solid spectroscopy data producers and a few laboratory data users of the astrophysical-planetary sciences communities. Improvements and extensions of the core of SSDM (fundamental species, samples, instruments, experiments, spectra) have been done in several steps. One major addition, band list, occurred in 2011 and is described in a separate document in SSDMbandlist. Several important extensions (various types of fundamental phases, matters, and objects, publications) have been developed since 2011.

The current version of SSDM has evolved in the frame of the Europlanet2020-RI program to be now the common data model of all the Solid Spectroscopy Data Bases that are, or will be, included in the SSHADE database infrastructure, including the first one, the GhoSST database of IPAG.

The structure of SSDM-spectra is presented in some details in this document and all its keywords are organized and listed in tables below with full description, notes and exemples as well as units, data type and conditions and constraints information.
The global graphical relational structure of SSDM used to build the relational database is presented in Fig. 1. It shows schematically how the main parts of SSDM are interconnected.

SSDM General Structure

Figure 1: graphical relational structure of SSDM

2. General Description

2.1 Data Model Structure

The current SSDM-spectra data model is split in 13 main parts which contain the relevant keywords to describe them and that are linked with relevant relations. Figure 2 presents the global SSDM structure in more details including the sub-tables and some of the main types they contain. Figure 3 provide the detailed map of the links between tables.

- The "Sample" table which describes the sample, its "layers" of "materials", and then the "constituents" (minerals, synthetic solids, liquids, ...) of each material down to their basic constitutive "fundamental species" (molecules, atoms, ...).
- The "Matters", made of "materials" (or mixtures of materials), are used to describe the natural or synthetic matters (minerals/rocks \& synthetic solids, carbonaceous, extraterrestrial, fluid, ...) collected on the field or synthesized, from which some samples are made.
- The "Fundamental Phases", which can be the "constituents" of the samples and matters, are either the different families of synthetic solids or liquids or the natural mineral phases.
- The "Fundamental Species" (atoms, molecules, ions, ...), which are the building blocs of the "contituents" of the samples and of the "fundamental phases". We added the "Chemical functions and bonds" that describe the bonds and functional groups of the "molecules" in molecular solids or liquids and of the "anionic radicals" in minerals.
- The Objects are the geologic objects from which some "natural matters" (terrestrials or extraterrestrials) come from (e.g. meteorites, micrometeorites, IDPs, ...).
- The "Instrument" table describes the laboratory instruments and techniques used and their measurement parameters (instrument specific).
- The "Experiment" table describes the structure of the set of "spectroscopic data" and provide the common instrument parameters.
- The "Spectroscopic data" (called "Spectra") table which describes the spectral data or products recorded on a "sample" with an "instrument" and their specific sample environment and measurement parameters.
- There is also a set of "Provider" tables that store the information on each partner "Database" of SSHADE, "Laboratory" and "Experimentalist"
- The "User" table store the information necessary for the management of the user accounts.
- The "Publication" table (and its associated "Journal" table) which provides all information on publications linked with the spectral data ("spectra" and "band list"), but also with "sample", "instrument", "matters", "objects", but also on any related subject.

SSDM General Structure

Figure 2: SSDM general structure with list of sub-tables (bold) or main types (italic)

Figure 3: SSDM detailled structure (except user) with almost all existing links between tables

2.2 Data Model Content

Each table contain a set of key-words that allow to describe their object (sample, spectra, ...)
As seen from their use side there are typically four types of key-words:

1) those who will be mostly used by "users" to Search spectral data (tagged ' S '). They constitute the main information. They are generally absolute mandatory or mandatory.
2) those who contain additional information useful for the "user" (also searchable by expert user, and to be delivered) (U). They are generally optional.
3) those who contain additional information useful for the "data provider" (import mode, data history, ...) and not intended to be delivered to the "user" (P)
4) those who are generated automatically by the database software during data ingestion (mainly "xxx_index") and that sometimes may be also useful to expert users or data providers to access directly to some information (unique identification number of sample, spectrum, molecule, matter, ...) (B)

The following chapters list the key-words of each table after a definition and a general description of their content and structure. For each key-word a definition and its properties (data type, links, mandatory type, units, keyword level, conditions, constraints, ...) are given. Notes, exemples and possibly web links complement this information.

2.3 Tables Content Description

- The "Key-Word" column gives its effective name starting with its common table root, in italic. They are always noted within double quotes: "key_word".
- A value or an attribute (for Enum) of a KW will be noted within simple quotes: 'value', 'attribute'.
- A list of multiple values or attributes of a KW may be also listed between parentheses: \{'value_1', 'value_2', ...\}, \{'attribute_1', 'attribute_2', ...\}
Special key-words (KWs):
- KWs ending with "_index" refer to automatically attributed (randomly but uniquely) internal database indexes.
- KWs ending with "_uid" refer to manually CREATED database "unique identifiers", or to LINKS to an "unique identifier" key-word (in another table or in the same table). Some of them are virtuals but are noted for completeness to provide the logical links which are directly implemented in the database schema.
Note: there is here a possible small confusion (same ending '_uid') between the created UID of a table and a KW providing a link to an existing UID. In the xml they are differenciated by the comments:
- ${ }^{* * * A B S ~ M A N D A T O R Y ~ t o ~ C R E A T E * * ~ U n i q u e ~ i d e n t i f i e r ~ c o d e ~ g i v e n ~ t o ~ . . . ’ ~}$ for the first (generally following an "_import_mode" KW)
- 'LINK to the existing UID of ...' for the second.
- In a few cases either types can occur in the same KW (but when "import_mode" = 'use existing' => LINK, and => CREATE in all other cases)
- UID names should strictly use the very basic ascii characters: only alphanumeric and '_,
- For a list of keywords (called a 'bloc') that can have multiple instances, the generic root of this list is given in italic in this column. The limit of the bloc is materialized

Signs after KW:

- [**]: KW of type ID (ending with ‘_index') or UID (ending with ‘_uid') which define the table (to be created)
- [*]: KW of type UID (ending with '_uid') creating a link with another table through an existing UID (ending with ‘ _uid') (link to the previous)
- [*§]: means direct internal link to another table (KW did not really exist).
- [-xml]: the KW did not appear in the corresponding xml file. i.e. not to be filled because it is determined automatically, calculated from others KW, virtual, or defined through an interface (SSHADE manager, ...), ... (see 'Level')
- [-xml except in variables]: the KW appears in some other xml files only in its variable blocs (associated with V^{*} : VM, VS, VL, ...in the 'Exp' column)
- [ui]: keyword only accessed through the 'user management interface'
- [pi]: keyword only accessed through the 'provider management interface'
- [si]: keyword only accessed through the 'sshade management interface'
- [+]: this KW defines info related to the next table (mostly in "Sample")

Key-word equivalance:

- [key-word names] in fushia in second line are generic key-word names allowing to identify equivalent keywords in several parallel tables (species, phases, matters, objects, ...).
- [key-word names] in violet are equivalent XSAMS keywords for SSDM-XSAMS mapping.
- The "Type" column describes the data format type:
- Numerical $(\operatorname{int}(\mathrm{n})$, float, ...): need to define the unit, if any. For 'float' 2 formats are possible: decimal (123.456) or scientific (1.234e-56)
- Text (varchar255(text), blob): free text (character string). This text can contain LaTeX expressions (they should be written as $\$$ xxx $\$$).
- 'blob' has no size limit.
- 'varchar255' is limited to 256 characters.
- 'CS-varchar255': limited to simple ASCII (mostly for Enum of symbols)
- Enumeration (enum[type]): exhaustive list of fixed values \{xxx, yyy\}, called 'attributes', useful for search efficiency (list of choices) but directly implemented inside the database software and data ingestion parser and thus difficult to extend.
- Enumeration (CS-enum(text)): limited to simple ASCII; used for the list of symbols
- Open enumeration (openum[type]): open list of homogeneous set of fixed attribute values $\{\mathrm{xxx}\}$, useful for data ingestion and search efficiency (values). Implemented only in the database. Easy to extend.
- Boolean: same as Enum but only with attributes \{yes, no\} or $\{$ true, false $\}$

Also when

- List [Ln]: list of potentially multiple values of a single keyword. They may group several keywords which are linked in a same list. They are marked with 'Ln' in the "Table" column.

Special values in xml

- Any mandatory value may be set to 'void' by putting the 'NULL' value, whatever is the format of the data.
- In 'variable parameters' any original value can be set back to 'void' by using 'NULL'. A new value will replace the original one; and a void field will keep the original value.
- The "Level" column gives the level of keywords in term of use and its "mandatory" level and mode of filling (for database filling):

User-Provider level

- S = main Searchable by user (will be mostly 'absolute mandatory' or 'mandatory')
- $\mathrm{U}=$ Useful info for User
- $\mathrm{P}=$ only for data Provider (will not ppear on user interface)
- $\mathrm{M}=$ only for SSHADE manager (will not ppear on provider interface)
- $\mathrm{B}=$ automatically created by data Base.

Note: the Search level ' S ' is postfixed with a integer (0 to 5) depending on the level of priority attributed to this KW in the search algorithm.

Filing mode and mandatory level

- The first signs define the mandatory keywords ([!!] and [!]: need to be filled at data ingestion, and will be checked by import parser), or the compulsory ones [£] or the recommendend ones [$\$$] (last 2 cannot be checked by import parser).
- ' d ' and ' o ' modulate these mandatory options.
- The second sign after ' , ([m], [g], [c] and [v]) tell the way they are filled.
- When a second set of signs appear after a [V:] it indicates that the mandatory level that follows is defined for the keyword when used as a variable parameter.
[!!_]: absolute mandatory (needed to make working the database). No way to avoid to fill them. Will be checked by the import parser.
[!!1_]: absolute mandatory, at least one
[!!o_]: absolute mandatory in option (needed to make working the database in some specific cases): only if a specific condition is satisfied (precised in 'Condition: '). This KW has generally no meaning when the condition is not satisfied. Will be checked by the import parser.
[!]]: mandatory (needed for search or major information). 'NULL' is used to ignore this mandatory keyword. Will be checked by the import parser.
[£_]: compulsory: as 'mandatory' but it cannot be checked by the import parser.
[\$_]: strongly recommended when exist: non-mandatory but strongly recommended to fill because used in some search or other important info (link, ...).
[!d_]: mandatory but with a default value (needed for search or major info). It will be automatically filled with a default value if not filled manually.
[!o_]: mandatory in option (needed for search or major info): either under a specific condition (given in 'Condition:') or inside an optional block (marqued [o] with option described in 'Condition:'), i.e. mandatory only if the block need to be filled.
[_m]: to be filled manually in the import xml file
[_g]: internally generated value of KW (ex: _index). Automatically generated during import (did not appear in xml)
[_c]: calculated during import from other(s) keywords (calculation given in 'description' column) or pre-determined Enum attribute. Did not appear in xml if not associated with ' m ': [mc]. In this case it is calculated if not filled.
[_v]: virtual keyword representing an implicit internal link. Did not have to be filled (and did not appear in xml).
- The "Table" column refers to the name (abbreviation) of the current table. When there is a logical link with another table(s), this table name(s) is added below.
- Ln (with ' n ' an integer, such as 'L3'), sometimes noted below in a series of KW, allows us to indicate the bloc of keywords belonging to a common 'list Ln'.
- The "Exp" column defines if the value of this KW (limited to "sample" ("_parameters_environment"), "parameters_instrument" and "Liquid", "Solid", "Minerals"
tables) is allowed to vary within an "experiment":
- $\mathrm{F}=$ 'fixed'
- $\mathrm{V}=$ = variable'
- $\mathrm{V}+=$ 'main variable' (quite subjectif)
- $\mathrm{Vc}=$ 'variable by consequence' (such as "errors" of a 'variable')
- $(\mathrm{V})=$ 'variable' to be used only when it implies no significant change in "sample" Other cases are the KW in the "mineral phase", "solid phase" and "liquid phase" tables that can have modified values when used in a "sample" or a "matter"
- $\mathrm{VM}=$ 'variable mineral'
- $\mathrm{VS}=$ 'variable solid'
- $\mathrm{VL}=$ 'variable liquid'

For multiple versions of "Spectra" and "Bandlist" the KW for which the values are kept in memory for the old versions are also taged in this column.

- [Ver] tell that the value of this KW is permanently stored with each older version of the spectrum or bandlist. Only the major KWs of the previous version are archived when a new version is uploaded. The values of the other KWs are kept only for the current version.
- The "Unit" column gives the unit of the value of the KW when it is a numerical. But:
- 'no' means "number without unit" (e.g. mass fraction, ...).
- '--' means "not relevant" (text, conditional, ...)
- 'var' when several alternative units are listed in another keyword that defines the unit to be used. Or it can be free unit to be specified with the value (in varchar)
- The "Description" column gives first a detailed definition and/or physical description of the Keyword.
- Enumerations: If the KW is an enumeration or an open enumeration the description will list all possible values of the attribute (Enum: $\{x x x, y y y, z z z\}$, or OpenEnum: $\{$ aaa, bbb, ccc, ...\}).
- Note: For some OpenEnum a few attributes needs to be fixed (not allowed to change them) because they are used in some 'Conditions': they are underlined
- FreeList: Not an enumeration but only a list of exemples in order to keep some homogeneity of style and description.
- Definition(s): provide the detailed definition(s) either of the KW itself, or of the different attribute values of its enumeration.
- " \rightarrow calculated ...": the values of these KWs are calculated (only if not filled directly) from other(s) specified $\mathrm{KW}(\mathrm{s})$ if all these keywords have valid values.
- Condition(s): Condtion(s) on the mandatory level of these keywords ([!!o_] or [!o_] in 'level' column) are defined here in terms of value of (an)other keyword(s).
- Constraint(s): Constraint(s) on the value of a KW. Its can be a numerical constraint, or a constraint to have no value in some specific cases (because not relevant). It will be verified by the import parser.
- Note: various types of notes may be added under "Note" to give more precise information.
- Note xml: specific note for the representation of this KW or the filling of the KW in the corresponding xml file.
- Ex: various examples of keyword values may be given here. Useful when a specific format needs to be followed.
- Variable: this part, present only for variable parameters (V), provides the same type of specific information when the keyword is used as a variable.
- In this column keywords names are always noted as: "table_keyword_name" (ex: "molecule_index", "sample_mass_error", ...)
- And values of keywords are always noted: 'keyword-value' (ex: ‘amorphous', 'true', ' $\mathrm{MgF2}^{\prime}, \ldots$.

Key-word types common to all tables

Almost all tables have a few generic but specific KW that are described below and not repeated in the general description of each table.

At the beginning of (almost) all tables:

- "root_import_mode": Mode of import of the "root" data
- "root_xml_filename" [-xml]: Name of the storage copy of the xml import file of the "root" metadata
- "root_index"[**][-xml]: Automatic random but unique number (internal ID) given to new "root" table.
- "root_uid" [**]: Unique identifier code (UID) given to the "root" table (to be created). It should follow a specific nomenclature given in the 'Description' column

In several tables:

- "root_manager_database_uid" or "root_owner_database_uid": Link to the database which manages (and for 'matters', 'sample' and 'experiment' also owns) the data of this table.

At the end of (almost) all tables:

- "root_comments": Additional information on the "root" data Note: other more specific "root_xxx_comments" (ex: root_composition_comments") may occur at the end of some specific bloc or group of KW. They should be used only for their specific use and all other comments should go into "root_comments".

3. Provider (Database, Laboratory, Experimentalist)

3.1 Description

* The "Database" table defines the information related to each database of SSHADE.

Each research group of the SSHADE consortium has its own "database" that need to be defined. A few other specific databses will be set to deserve some specific needs (such as a 'SSHADE database", a database to store the data recorded during the Trans-National Access visits (TNA), ...).

- The database is first defined by its "name and acronym" and a description of its content as well as information about when it was created and who are its creators. Then the organizations to which belong the database and the laboratory(ies) which host and is responsible of this database are listed, followed by the institution(s) that provide regular financial support to the database (the 'funders') and the organizations that provide ponctual financial support to the database content. The direct link to the front page of the database in the laboratory/institution web site is then given.
Most of this information are required for the creation of a DOI for the database and for DOIs of the experiments.
The "laboratory", "experimentalist", "group", "matters", "sample", "instrument" and "experiment" tables refer to this laboratory table in order to set the rights of management of these data.
* The "Laboratory" table gives basic information on the laboratory in which an experiment is performed, or in which an experimentalist works.
- The laboratory is first defined by its name \& acronym, followed by a description, and by the organizations to which it belongs. Then the address and web site are given, plus some possible creation/end dates.
The "experimentalist", "instrument" and "experiment" tables refer to this laboratory table.
* The "Experimentalist" table gives the information on the experimentalist which perform an experiment or analyse its data.
- An experimentalist is a person that prepare sample or matters and/or perform experiments or which analyse data (will be called "validator" in such case). He belongs to one or more laboratories and may have been previously in one or more other laboratories.
- The experimentalist table record its name, identifiers, phone number, email, web site, and current satus (laboratory(ies), status, date of presence, ...) as well those of his/her previous laboratory(ies).
The "matters", "sample", "experiment", "spectra", "bandlist" and "user" tables refer to this experimentalist table.

3.2 Database Table

Root of the table: database
Data type: 'Database'
Key-word Type Level Table Exp Unit Description

Database import mode and indexes

database_import_mode	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	DatBas	F	--	Mode of import of the "database" data (global for the template) Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
database_xml_filename [-xml]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	DatBas	(V)	--	Name of the storage copy of the xml import file of the database metadata \rightarrow determined automatically during import (from "database_uid"?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction
database_index [**][-xml]	$\operatorname{int}(10)$	$\begin{gathered} \text { B } \\ {\left[!!_g\right]} \end{gathered}$	DatBas	F	--	Automatic random but unique number (internal ID) given to new database.
database_uid [**]	$\operatorname{varchar(255)~}$	S0	DatBas	F	--	Unique identifier code (UID) given to the database table (to be created)
		[!_m]				Nomenclature: Create this code name with 'DB_' in order to be be unique. It should be of the style 'DB_DatabaseAcronym' where 'DatabaseAcronym' is the acronym of the database.
						Note: use only UPPERCASE
						$E x$: 'DB_GHOSST', 'DB_FAME', 'DB_REFL_SLAB', ..
database_sshade_doi [-xml]	$\operatorname{varchar(255)}$	$\begin{gathered} \text { S0 } \\ {\left[!!_ \text {c }\right]} \end{gathered}$	DatBas	F	--	DOI code of the database

Definition: http://en.wikipedia.org/wiki/Digital_object_identifier

Notes:

- the DOI is determined with "database_acronym"
- the prefix '10. 26302 ' has been attributed by INIST to SSHADE who will manage the doi creations.
- the DOI is not case sensitive.
- the url of the doi is obtained by adding 'https://doi.org/' (note: the former standard whas 'http://dx.doi.org/')
- the DOI will redirect to the SSHADE page displaying the database metadata (through a landing page)
Ex: 10. 26302/SSHADE.GHOSST

Database name and description

database_acronym	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	DatBas	F	--	Acronym of the database Constaint: use alpha-numeric characters possibly with '_' or '-‘ but without space Ex: 'GhoSST', 'REFL_SLAB', ... Note DOI: requested: - Absolute mandatory for buiding the "Identifier" (for 'database', and 'experiment'), - Absolute mandatory as "Title" (3) for 'Database' and for 'SSHADE' o Convention: 'SSHADE / "database_acronym": "database_name" - Absolute mandatory as "Publisher" (4) for 'Experiment' o Convention: 'SSHADE / "database_acronym" (OSUG-DC)’
database_name	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	DatBas	F	--	Full Name of the database Ex: ‘Grenoble Astrophysics and Planetology Solid Spectroscopy and Thermodynamics service'... Note DOI: - Absolute mandatory as "Title" (3) for 'Database' and for 'SSHADE'

database_description	blob	$\begin{gathered} \mathrm{U} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	DatBas	F	--	Description of the database and its scientific content Note: describe the type(s) of data present in the database: wavelength range(s), type(s) of materials, types of data and products, ... Note DOI: - Recommended option as "Description / descriptionType=Abstract" (17)
database_keywords	List [L0]	[!]				£: List of keywords describing the scientific content of the database
database_keyword	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!\mathrm{m}]} \\ \mathrm{L} 0 \end{gathered}$	DatBas	F	--	Keyword describing the scientific content of the database Note: describe the type(s) of data present in the database: typical wavelength range(s), type(s) of materials, types of data and products, plus some general keywords such as 'database', 'spectroscopy'... Ex: - 'database', - 'spectroscopy', 'Raman' - 'visible', 'near-infrared', - 'molecular solids ', 'ices', 'snow', 'minerals', 'rocks', - 'meteorites', ... - 'low temperature' - 'planetary sciences', 'astrophysics' Note DOI: - Recommended option as "Subject" (0-n) (6)
database_logo_filename	varchar(255)	$\begin{gathered} \mathrm{P} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	DatBas	F	--	File name (with extension) of the logo of the database Image formats: .png Note: should follow the following rules for the format: - Larger size $\mathrm{L}=600$ pix - $\mathrm{L} / \mathrm{h}=1.2$ to 3 maxi

- Format: .png, transparent background (alpha canal of png)
- cropped (i.e. no margin around the logo)

Note: this file will be imported in the database and displayed in the front page of the SSHADE web site as well as in the database page.

Database creators and managers

database_creators	List [L1a]	[!!]				£: Creator(s) of the database
database_creator_first_name	varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {[!!\mathrm{m}]} \end{gathered}$	DatBas L1a	F	--	First name (given name) of the creator(s) of the database Note DOI: - Absolute mandatory as "Creator / creatorName / givenName" (2.1.2) for 'Database'
database_creator_family_name	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[!!\mathrm{m}]} \end{gathered}$	DatBas L1a	F	--	Family name (last name) of the creator(s) of the database Note DOI: - Absolute mandatory as "Creator / creatorName / familyName" (2.1.1) for 'Database'
database_creator_orcid_identifier	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!\mathrm{m}]} \end{gathered}$	DatBas L1a	F	--	ORCID identifier code that uniquely identify the database creator Definition: see "experimentalist_orcid_identifier" Ex: ‘0000-0002-7285-027X’ (ORCID-ID) Note DOI: requested in: - "Creator/nameIdentifier" (2.2) for 'database'
database_creator_affiliation	varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{m}]} \end{gathered}$	DatBas L1a	F	--	Affiliation (Laboratory acronym / Organization acronym) of the creator(s) of the database Ex: ‘IPAG / CNRS', 'IPAG / UGA', ... Note DOI: - Recommended as "Creator / creatorName / affiliation" (2.5) for

'Database'

Database organizations and laboratories

database_organization_region varchar(255)		$\begin{gathered} \mathrm{S} 2 \\ {[\mathrm{~m}]} \end{gathered}$	DatBas L1b	F	--	Region, state, province, or county of the organization to which belong the database	
		Ex: 'Hampshire', 'Rhône-Alpes', 'Arizona', ...					
```database_organization_country_c enum(text) ode```			$\begin{gathered} \mathrm{S} 1 \\ {[!!\mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { DatBas } \\ \text { L1b } \end{gathered}$	F	--	2-digit country code of the organization to which belong the database Enum: $\{\mathrm{CH}, \mathrm{DE}, \mathrm{DZ}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IN}, \mathrm{IT}, \mathrm{PL}, \mathrm{TW} . .$.
		Label (code): see "laboratory_address_country_code"					
		Definitions: see "laboratory_address_country_code"					
database_organization_logo_filen ame	varchar(255)	$\begin{gathered} \mathrm{P} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	DatBas L1b	F	--	File name (with extension) of the logo of the organization Image formats: .png	
						Note: should follow the following rules for the format:   - Larger size L > 300 pix   - Format: .png, transparent background (alpha canal of png)   - cropped (i.e. no margin around the logo)	
						Note: this file will be imported in the database and displayed in the database page of the SSHADE web site.	
database_laboratories	List [L2]	[!]				£: Laboratories which host and are responsible of this database	
						Note: most of the time, but not necessarily, the laboratory(ies) of the database manager and/or scientific manager of the database	
database_laboratory_acronym	$\operatorname{varchar}(255)$	$\begin{gathered} \text { S1 } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	DatBas L2	F	--	Acronym of the laboratory which host and is responsible of this database	
						Note DOI:   - recommended option as "Contributor / contributorType=	


database_laboratory_name	$\operatorname{varchar(255)~}$	$\begin{gathered} \text { S2 } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	$\begin{gathered} \text { DatBas } \\ \text { L2 } \end{gathered}$	F		Name of the laboratory which host and is responsible of this database   Note DOI:   - see above
database_laboratory_logo_filena me	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{P} \\ {[!\mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { DatBas } \\ \text { L2 } \end{gathered}$	F	--	File name (with extension) of the logo of the laboratory   Image formats: .png, .jpg, (.gif)   Note: should follow the following rules for the format:   - Larger size L > 300 pix   - Format: .png, transparent background (alpha canal of png)   - cropped (i.e. no margin around the logo)   Note: this file will be imported in the database and displayed in the database page of the SSHADE web site.
database_funders	List [L3]	[!]				£: List of institution(s) that provide regular financial support for the development of the database infrastructure and:or content   Note: Includes organizations that provide funding via regular budget allocations, through grants or awards   Note DOI:   o recommended option as "FundingReference" (19) for "Database"   o taken into account the DOI v4.0 properties "funderName" (19.1), "awardNumber" (19.3), "awardTitle" (19.4)   o not taken into account the DOI v4.0 properties "funderIdentifier" (19.2), funderIdentifierType" (19.2.1), "awardURI" (19.3.1)
database_funder_acronym	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 2 \\ {[\mathrm{~m}]} \end{gathered}$	DatBas   L3	F	--	Acronym of the institution that provide regular financial support to the database infrastructure and/or content   Ex: ‘CNRS/INSU', 'OSUG', ‘CNES', ...


database_sponsors
database_sponsor_acronym
database_sponsor_name

## List [L4]

 varchar(255)[O]

S2	DatBas	F
$[\mathrm{O}!$ m $]$	L4	

## Format: 'ACRONYM: Title'

Ex: 'SPRING: SPectroscopie InfraRouGe des matériaux planétaires hydratés' Note DOI:

- recommended option as "FundingReference / awardTitle" (19.4) for "Database" and "Experiment" (from "experiment_owner_database")
£: List of organizations that provide ponctual financial support for the development of part of the database content.


## Note DOI:

- recommended option as "ContributorType=Sponsor" (7.1)

Acronym of the organization that provide ponctual financial support for the development of part of the database content.

Condition: mandatory when " database_sponsor_name" or
"database_logo_filename" $\neq \varnothing$
Notes:

- Includes organizations that issued a contract or under the auspices of which a work has been written, printed, published, developed, etc.
- Includes organizations that provide in-kind support, through donation, provision of people or a facility or instrumentation necessary for the development of the database content, etc.
Note DOI: requested in recommended option as "Contributor / contributorType=Sponsor / ContributorName" (7.2) for "Database" and "Bandlist". It will be combined with "database_sponsor_name": ‘Institution full name (acronym)'
Ex: ‘ANR’, ‘Labex’, ...
Name of the organization that provide ponctual financial support for the development of part of the database content (+ grant \#)
Notes: see "database_sponsor_acronym"
- a award/grant \# can be added



## Database web sites

database_links	List [L3]	[!]				£: web pages of the database
database_link_name [xxx_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	DatBas L3	F		Name of the web site of the database at its laboratory/organization $E x$ : 'GhoSST database web page', ......
database_link_url [xxx_link_url]	CS-   varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{m}]} \end{gathered}$	DatBas L3	F	--	URL address of the entry web page of the database at its laboratory/organization   Ex: 'http://ghosst.osug.fr/‘,   Note: this front web page of the database will redirect to the SSHADE infrastructure front \& search page. It is requested but not absolute mandatory as the access can be also done directly through the SSHADE web page.

database_comments blob | U |
| :---: |
| $[\mathrm{m}]$ |$\quad$ DatBas $\quad \mathrm{F} \quad$-- Additional information on the database.

### 3.3 Laboratory Table

Root of the table: laboratory
Data type: 'Laboratory'
Key-word Type Level Table Exp Unit Description

## Laboratory import mode and indexes

laboratory_import_mode	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Labo	F	--	Mode of import of the "laboratories" data (global for the template)   Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
laboratory_xml_filename [-xml]	varchar(255)   [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { vc] }} \end{gathered}$	Labo	(V)	--	Name of the storage copy of the xml import file of the laboratory metadata   $\rightarrow$ determined automatically during import (from "laboratory_uid"?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction
laboratory_index [**][-xml]	$\operatorname{int}(10)$	$\begin{gathered} \text { B } \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	Labo	F	--	Automatic random but unique number (internal ID) given to new laboratory.
laboratory_uid [**]	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Labo	F	--	Unique identifier code (UID) given to the laboratory table (to be created)   Nomenclature: Create this code name with 'LAB_' in order to be unique. It should be of the style 'LAB_LabAcronym
						A laboratory UID should be of the style 'LAB_LabAcronym(_InstAcronym) where 'LabAcronym' is the acronym of the laboratory, possibly followed by the institute laboratory 'InstAcronym'.
						Note: use only UPPERCASES
						Ex: 'LAB_IPAG', 'LAB_WP_UNIBE', 'LAB_CML_IGSPAS'


laboratory_manager_databases	List [L1]	[!!]				£: databases which manage this laboratory
laboratory_manager_database_uid varchar(255) [*] --		$\begin{gathered} \text { S1 } \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Labo   DatBas   L1	F	--	Link to the existing UID of the database which manages this laboratory information   Condition: at least one database   Note: For external laboratories, not managed by a database, it should be 'DB_SSHADE'
Laboratory name and address						
laboratory_acronym	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Labo	F	--	Acronym of the laboratory   Ex: 'LPG', 'IPAG', 'ENS-Lyon', 'LGGE',
laboratory_name	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	Labo	F	--	Full Name of the laboratory   Ex: ‘Laboratoire de Planétologie de Grenoble', 'Institut de Planétologie et d'Astrophysique de Grenoble', 'Laboratoire de Géologie - Ecole Normale Supérieure de Lyon', 'Laboratoire de Glaciologie et Géophysique de Grenoble'...
laboratory_description	blob	$\begin{gathered} \mathrm{S} 3 \\ {[\mathrm{~m}]} \end{gathered}$	Labo	F	--	General description of the scientific/technical activity of the laboratory   Note: you can give some details about the different geographic sites, if any
laboratory_organizations	List [L2]	[!]				£: Parent organizations to which belong the laboratory   Note: the laboratory can have multiple parent organization
laboratory_organization_acronym	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[!\mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { Labo } \\ \text { L2 } \end{gathered}$	F	--	Acronym of the parent organization to which belong the laboratory   Ex: ‘CNRS', ‘UGA, ‘UCBL, ...
laboratory_organization_name	varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{m}]} \end{gathered}$	Labo   L2	F	--	Name of the parent organization to which belong the laboratory   Ex: ‘Centre National de la Recherche Scientifique', 'Université Grenoble




## Laboratory history

laboratory_date_begin	date	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Labo	F	YYYY-MMDD	Beginning date of the laboratory   Ex: '1995-10-01'
laboratory_date_end	date	$\begin{gathered} \mathrm{U} \\ {[£ \mathrm{o} \text { _m] }} \end{gathered}$	Labo	F	YYYY-MMDD	Ending date of the laboratory   Condition: Compulsory when the laboratory stop its activity (under this name) Note: for currently active laboratory, keep it void.   Ex: '1999-10-05', ‘’
Laboratory web sites						
laboratory_links	List [L3]	[!]				£: web pages of the laboratory and organization(s)
laboratory_link_name [xxx_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	Labo L3	F		Name of the web site of the laboratory   Ex: 'IPAG web site', ...
laboratory_link_url [xxx_link_url]	CS-   $\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{U} \\ {[!\mathrm{m}]} \end{gathered}$	Labo L3	F		URL address of the web pages of the laboratory or organization Ex: http://ipag.osug.fr/', ...
laboratory_comments	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Labo	F	--	Additional information on the laboratory ( $\mathrm{Tel}, \ldots$ ).

### 3.4 Experimentalist Table

## Root of the table: experimentalist

Data type: 'Experimentalist'

Key-word	Type	Level	Table	Exp	Unit	Description
User + Experimentalist import mode and indexes						
experimentalist_import_mode	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Exper	F	--	Mode of import of the "experimentalists" data (global for the template)   Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
experimentalist_xml_filename [xml ]	varchar(255)   [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	Exper	(V)	--	Name of the storage copy of the xml import file of the experimentalist metadata
						$\rightarrow$ determined automatically during import (from "experimentalist_uid"?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction
experimentalist_index [**][-xml]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{B} \\ {[!!\mathrm{g}]} \end{gathered}$	Exper	F	--	Automatic random but unique number (internal) given to new experimentalist
experimentalist_uid [**]	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Exper	F	--	Unique identifier code given to the experimentalist table (to be created)
						Nomenclature: Create this code name with 'EXPER_' in order to be unique. It should be of the style 'EXPER_FirstName_FamilyName(_n) where ' $n$ ' is an optional integer when there are 2 or more homonyms.
						Note: use UPPERCASES for the first letters of FirstName and FamilyName and lowercase for the other
						Ex: 'EXPER_Bernard_Schmitt'


experimentalist_manager_databas List [L0] es	[!!]				£: databases which manage this experimentalist
experimentalist_manager_databas varchar(255) e_uid [*]	$\begin{gathered} \text { S1 } \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Exper   DatBas	F	--	Link to the existing UID of the database which manages this experimentalist information
		L0			Condition: at least one database
					Note: For external experimentalists, not managed by a database, it should be 'DB_SSHADE'

## Experimentalist name and identifiers

experimentalist_first_name	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[!!\mathrm{m}]} \end{gathered}$	Exper	F	--	First Name (given name) of the user/experimentalist   Note DOI: requested in:   - "creatorName" and "givenName" for 'experiment' (via "experiment_experimentalist_uid")
						Ex: 'Bernard'
experimentalist_family_name	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[!!\mathrm{m}]} \end{gathered}$	Exper	F	--	Family Name (last name) of the user/experimentalist   Note DOI: requested in:   - "creatorName" and "familyName" for 'experiment' (via "experiment_experimentalist_uid")
						Ex: 'Schmitt'
experimentalist_acronym	CS-varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!\mathrm{m}]} \end{gathered}$	Exper	F	--	Acronym of the experimentalist: initials of first and last names $E x: \text { 'BS', ‘EQ', ‘FROD' }$
experimentalist_orcid_identifier	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!\mathrm{m}]} \end{gathered}$	Exper	F	--	ORCID identifier code that uniquely identify the experimentalist   Definition:   - ORCID': http://orcid.org.   ORCID (Open Researcher and Contributor ID) is a nonproprietary alphanumeric code to uniquely identify scientific and other academic


experimentalist_alternate_identifi List [L0] ers	[O]	
experimentalist_alternate_identifie openum(text) r_scheme	$\begin{gathered} \mathrm{U} \\ {[\mathrm{O}!!\mathrm{m}} \\ \text { ] } \end{gathered}$	Exper   L0

authors and contributors. These identifiers consist of a reserved block of ISNI identifiers for scholarly researchers and administered by a separate organization (https://en.wikipedia.org/wiki/ORCID)
Note: by default, the identifier scheme is 'ORCID'
Ex: ‘0000-0002-7285-027X' (ORCID-ID)
Note DOI: requested in:

- "Creator/nameIdentifier" (2.2) for 'experiment' (via "experiment_experimentalist_uid")
$£:$ other alternate unique identifiers(s) of the experimentalist

Scheme(s) that provideds the unique identifiers(s) of the experimentalist
Enum: \{ISNI, ResearcherID, ScopusAuthorID\}

## Definitions:

- 'ISNI': http://www.isni.org

The International Standard Name Identifier (ISNI) is an identifier for uniquely identifying the public identities of contributors to media content such as books, TV programmes, and newspaper articles. Such an identifier consists of 16 digits. It can optionally be displayed as divided into four blocks
(https://en.wikipedia.org/wiki/International Standard Name Identifier)

- 'ResearcherID’: http://www.researcherid.com/rid.

ResearcherID is an identifying system for scientific authors. The system was introduced in January 2008 by Thomson Reuters (https://en.wikipedia.org/wiki/ResearcherID)

- 'ScopusAuthorID': https://www.scopus.com Scopus IDs for individual authors can be integrated with the open source digital identifier ORCID

Note DOI: requested in:

- "Creator/nameIdentifierScheme" (2.2.1) for 'experiment' (via "experiment_experimentalist_uid")


Experimentalist laboratories		[!!]			£: laboratory(ies) of the experimentalist
experimentalist_laboratories	List [L1]				
					Condition: absolute mandatory at least one
experimentalist_laboratory_state	flag (text)	$\begin{gathered} \text { S1 } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Exper	F	Flag telling if this laboratory is the previous or current one of the experimentalist.




## 4. UsER GROUPS

### 4.1 Description

* The "User" table is intended to record some information on the users and some of its activity in order to propose them acces to several services (data download, storage of search preferences, search history, alerts on type of data, ...)
- An 'user' is a person that search for data in the SSHADE database
- The 'user' table record its type, status and login info, together with his name, contact info, and current laboratory. It also contains its various access rights and the possible groups (with validity dates) to which s-he belongs. A future extension should define a few types of histories to be stored and of preferences to be set by the user.

No table refers to this user table.
The users are defined through the SSHADE interface.

### 4.2 User Table

## Root of the table: user [-xml]

Data type: ‘User'
Note: This table will be set and managed through a dedicated password protected interface (not from a xml file). The information of the "Experimentalists" will be taken from the "Experimentalist table" (imported through an xml file)

Key-word	Type	Level	Table	Exp	Unit	Description
User indexes						
user_index [**]	$\operatorname{int}(10)$	$\begin{gathered} \text { B } \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	User	--	--	Automatic random but unique number (internal) given to new user
user_uid [**]	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{P} / \mathrm{U} \\ {[!!\mathrm{g}]} \end{gathered}$	User	--	--	Unique identifier code given to the user table (to be created)   Nomenclature: Create this code name with 'USER_' very accurately formatted in order to be simple and unique. It should be of the style   'USER_FirstName_FamilyName(_n)' where 'firstname' and 'lastname' are the first and last names of the user, and ' $n$ ' an optional integer for duplicate names   Note: use UPPERCASES for the first letters of FirstName and FamilyName and lowercase for the other   Ex: 'USER_Bernard_Schmitt'
user_experimentalist_uid [*][pi]	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 0 \\ {[!\mathrm{m}]} \end{gathered}$	User   Exper	--	--	Link to the existing UID of the experimentalist   Note: for experimentalists it is used to upload the duplicate information already in the "Experimentalist" table.

## User login and status

user_account_status [si] enum(text) S1 User -- -- Account status of the user/experimentalist


## User laboratory information

user_laboratory_name [ui]	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	User	--	--	Name or acronym of the Laboratory or Division of the user   Note: for experimentalists it is taken from "laboratory_name" ("laboratory_acronym") from "experimentalist_laboratory_uid" with "experimentalist_laboratory_state" $=$ \{current $\}$
user_organization_name [ui]	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	User	--	--	Name of the institution (University or Company) of the user   Note: for experimentalists it is taken from "laboratory_organization_name" + "laboratory_organization_acronym" from "experimentalist_laboratory_uid" with "experimentalist_laboratory_state" = \{current\}
user_laboratory_address_label [ui]	$\operatorname{varchar(255)}$	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	User	--	--	Label of the address or name of the geographic site of the laboratory   Note: see "experimentalist_laboratory_address_label"   Note: only for experimentalists and taken from "laboratory_address_label"   from "experimentalist_laboratory_uid" with "experimentalist_laboratory_state" $=\{$ current $\}$
user_laboratory_address_street [ui]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	User	--	--	Address of the Laboratory or Division of the user   Note: see "experimentalist_laboratory_address_street"   Note: for experimentalists it is taken from "laboratory_address_street" from "experimentalist_laboratory_uid" with "experimentalist_laboratory_state" = \{current \}
user_laboratory_address_postal_c ode [ui]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	User	--	--	Postal code of the Laboratory or Division of the user   Note: for experimentalists it is taken from "laboratory_apostal_code" from "experimentalist_laboratory_uid" with "experimentalist_laboratory_state" = \{current \}
user_laboratory_address_city [ui]	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{m}]} \end{gathered}$	User	--	--	City of the Laboratory or Division of the user   Note: for experimentalists it is taken from "laboratory_city" from



## User: SSHADE and databases rights



- browse the public data of all databases
- visualize the public spectra, bandlists and metadata of all databases
- open an user account that give him the status of 'logged user': If the user has an account ("user_account_status" = 'validated') s.he can also:
- export public data of all databases
- acces to several services (storage of preferences, search history,
alerts on type of data, ...)
- can be part of one (or more) 'access group' (role defined by "user_group_role" for each group)
- can be a special user, a provider or manager of one (or more) of the SSHADE database(s) (role defined by "user_database_role" for each database)
- 'sshade manager': able to
- search and view the details details of all fundamental data stored in SSHADE
- import and correct provider data in all SSHADE partner databases
- import fundamental data into the SSHADE database
- can delete/change 'UIDs'
- manage the type of user of the databases (modify 'user_database_role')
- manage the users with login account
- manage the list of 'database manager(s)' for all partner database(s) and their rights
- can manage the list of 'database member(s)' and 'database provider(s)' for all partner database(s)
- create 'access group(s)'
- manage the list of users with account for each of their 'access group(s)'
- can manage the list of users with account for all the 'access groups' created by all partner databases
- get access to the 'history' log of all imports in all partner databases and SSHADE database.
- manage the 'attributes' of the OpenEnum list
- get acces to the complete 'stats' $\log$
- 'sshade admin': administrator of SSHADE
- same rights as 'sshade manager'
- plus acces to the software code

Constraint: only the SSHADE manager(s) and administrator(s) can change

user_sshade_custom_permissions user_sshade_custom_permission [pi, si]	List [L1]   enum(text)	[O]				£: Types of custom permissions for SSHADE
user_sshade_custom_permission [pi, si]	enum(text)	$\begin{gathered} \mathrm{P} \\ {[\mathrm{~m}]} \end{gathered}$	User   L1		-- --	Type of custom permissions for SSHADE
						Enum: \{correction, first import\}
						Constraints:
						- "user_database_role" should be set to 'scientific manager' or 'manager' to get a custom permission
						Definitions:
						- 'correction': give the right to correct already imported fundamental data in SSHADE   - 'first import': give the right to first import/correct/validate new fundamental data in SSHADE
						Notes:
user_databases	List [L2]	[O]				£: databases which the user is a member, a provider or a manager
user_database_uid [*][pi, si]	varchar(255)	$\begin{gathered} \text { S1 } \\ {[\mathrm{o!}!\mathrm{m}]} \end{gathered}$	User   DatBas	F	--	Link to the existing UID of the database(s) which the user is a member, a provider or a manager
			L2			Note:
user_database_status [si]	enum(text)		$\begin{gathered} \text { User } \\ \text { L2 } \end{gathered}$	--	--	Access status of the user to this database
						Enum: \{disabled, pending, validated \}
						Default $=$ 'pending'
						Definitions:
						- 'disabled': user has disabled access to database   - 'pending': user has access waiting confirmation
						- 'validated': user has valid access to database
						Note: in the interface: "Access status" will be \{Unauthorized, Pending


| user_database_roles | List $[$ L2a] | $[!!]$ |  |
| :--- | :---: | :---: | :---: | :---: |
| user_database_role [pi, si] | enum(text) | S0 | User |
|  |  | $\left[!!\mathrm{o} _\mathrm{m}\right]$ | L2 |
|  |  |  | L2a |

## Authorized

Constraint: only the database manager(s) can change this status
£: Types of role for the database

- -- Type of role for the database

Enum: \{member, provider, manager, scientific manager\}
Conditions: absolute mandatory when "user_database_uid" $\neq \varnothing$
Definitions:

- 'database member' (only for user with account):
- can have access to the 'restricted' data of this database
- 'database provider': provider of this database. He can:
- search and view the details of all fundamental data stored in SSHADE
- get access to provider area of SSHADE Wiki
- can see the list of managers-providers-members of the database
- test import of provider data into this database
- test import of fundamental data into SSHADE database
- optionally can get rights to import, correct, validate data in this database.
- get access to the 'history' log of all his imports in this database
- 'database manager' \& 'scientific manager': managers of this database. He can:
- search and view the details of all fundamental data stored in SSHADE
- get access to provider area of SSHADE Wiki
- can see the list of managers-providers-members of the database
- import, correct and validate data into this database
- test import of fundamental data into SSHADE database
- get access to the 'history' $\log$ of all the imports in this database
- manage the list of 'database members' for this database
- manage the list of 'database providers' and their data import
rights ("user_database_right") into this database
- create 'access group(s)'


## Constraints:

- "user_account_status" should be 'validated' to connect to a database
- only a 'sshade manager' or 'sshade admin' can attribute an
"user_database_role" = 'manager'
- only a manager of this database can attribute and change a 'member' or 'provider' role for this database
Notes:
- users without database role for a given database can have only access to the 'public' data of this database
- the 'managers' are the '(Database) manager' and the 'Scientific manager' of the database

user_database_right [pi, si]	enum(text)	S1	User
		[c!]	

Access/import/management rights of the users/providers for this database Enum: \{access public, access restricted, simulate import, manage database\}
$\rightarrow$ Calculated from "user_database_role":

- 'access public' for "user_database_role" = Ø
- 'access restricted' for "user_database_role" = \{ member $\}$
- 'simulate import' for "user_database_role" = \{provider $\}$ but it can also get "user_database_custom_permission" = \{correction, first import \}
- 'manage database' for "user_database_role" = \{manager, scientific manager\}
Constraints:
- only a 'sshade manager' or 'sshade admin' can provide 'manage' right to the database.
- a 'database manager' can only attribute "user_database_right" = 'access restricted', 'simulate import', and only on the database he manage
- the 'sshade manager' and 'sshade admin' have 'manage' rights on SSHADE and on any database (only for teaching purposes and in case
of technical problem).


## Definitions:

- 'access public': Give only access to the public data of this database. Default value for all users on all partner databases and SSHADE database (bandlist, ...). Mostly used to set back the rights of the user to 'access public'
- 'access restricted': give access to the 'restricted' data ("spectrum_access_right" = 'restricted') of this database
- 'simulate import': only for 'database provider' of this database. Give the right to simulate import of data in this database in addition to access the 'restricted' data of this database.
- 'manage database': only for 'database manager' of this database. Give the right to import/correct/validate data and rename/delete UID in this database. Can see all the data of the database with "spectrum_access_right" = 'unreleased'. Manage the "user_database_role" \& "user_database_right" of this database.
Notes:
£: Types of custom permissions for the database

P User -- -- Type of custom permissions for the database
Enum: \{correction, first import\}
Constraints:

- a 'database manager' can attribute a custom permission to an user but only on the database he manage
- "user database role" should be set to 'provider'for this database to get a custom permission ('manager' and 'scientific manager' have already them).


## Definitions:

- 'correction': give the right to correct already imported data in this database
- 'first import': give the right to first import/correct/validate new data in this database
Notes:

user_database_date_begin [pi, si] date	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	User   L2	F	YYYY Beginning date of validity of the role and rights of the -MM- member/provider/manager for this database DD   Note: for immediate validity, don't fill
user_database_date_end [pi, si] date	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	User L2	F	YYYY Ending date of validity of the role and rights of the member/provider/manager   DD for this database   Note: for unlimited validity, don't fill

### 4.3 Access group Table (TBD)

Root of the table: group
Data type: 'Access group'
Note: This table will be set and managed through a dedicated password protected interface.
Key-word Type Level Table Exp Unit Description

## 5. Journals - Publications

### 5.1 Description

* The "Journal" table is intended to provide various equivalent names and acronyms to the official journal name.
- The 'journal' table record the official name of the journal together with lists of alternate or abbreviated names and acronyms.

The 'publication' table refers to this 'journal' table.

* The "Publication" table provide complete information and links on all types of official or internal publications (papers, books, proceedings, PhD, reports, ...)
- The 'publication' table contain its types, publication state and rights as well as the complete reference (authors, year, title, journal, volume, issue, pages) and its abstract, or equivalent/supplementary information for conference procceedings (conference name, location, date), book (editor, publisher, ...) or external database (name, url). It is completed with relevant content and keyword lists and a set of codes (doi, bibcode, ...) and links (publication url, ads, local storage, ...) are provided. Additional links to spectra, bandlists and other publications allow to connect the publication with the data they use.
Most of the keywords and some enumerations are similar to BibTeX format (http://en.wikipedia.org/wiki/BibTeX) for better interoperability with the online tool (SSHADE providers interface) designed to facilitate the preparation and ingestion of publication data.
The "publication", "molecule", all "phases", "objects" and "matters", "sample", "material", "instrument", "experiment", "spectrum", "bandlist", and "band" as well as the future "band parameters" and "mode parameters" tables refer to this 'publication' table.


### 5.2 Journal Table

Root of the table: journal
Data type: 'Journal'
Key-word Type Level Table Exp Unit Description

## Journal import mode

journal_import_mode	enum(text)	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{m}]} \end{gathered}$	Journ	F	--	Mode of import of the "journals" data (global for the template) Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
journal_xml_filename [-xml]	varchar(255)   [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	Journ	(V)	--	Name of the storage copy of the xml import file of the journal metadata   $\rightarrow$ determined automatically during import (from "journal_uid"?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

## Journal indexes and type



## Journal names and acronyms

journal_name [tag WoS: SO !]	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	Journ	--	--	Full official name of the journal   Ex: Advances in Space Research, Applied Optics, Astronomical Journal, Astronomy and Astrophysics, Astronomy and Astrophysics Supplement Series, The Astrophysical Journal, Astrophysical Journal Letters, Atmospheric Chemistry and Physics, Chemical Engineering Journal, Chemical Physics, Clays and Clay Minerals, Earth and Planetary Science Letters, Eos Transactions American Geophysical Union, Faraday Discussions, Geochimica et Cosmochimica Acta, Geophysical Research Letters, Icarus, Journal of the American Chemical Society, Journal of Chemical Engineering Data, Journal of Chemical Physics, Journal of Geophysical Research - Planets, Journal of Molecular Spectroscopy, Journal of Physical and Chemical Reference Data, Journal of Physical Chemistry, Journal of Physical Chemistry A, Journal of Physical Chemistry B, Journal of Quantitative Spectroscopy and Radiative Transfer, Meteoritics, Meteoritics and Planetary Science, Meteoritics and Planetary Science Letters, National Bureau of Standards, Nature, Physical Chemistry Chemical Physics, Planetary and Space Science, Remote Sensing Review, Science, Spectrochimica Acta A, Vibrational Spectroscopy, ...\}
						Note: this list should follow the official name of the journal
journal_abbreviated_name	varchar(255)	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	Journ	--	--	Official abbreviated name of the journal   Ex:_Adv. Space Res., Astron. Astrophys., Astron. Astrophys. Suppl. Ser., Astron. J., Astrophys. J., Astrophys. J. Lett., Appl. Opt., Atm. Chem. Phys., Chem. Eng. J., Chem. Phys., Clays Min., Faraday Disc., Icarus, J. Am. Chem. Soc., J. Chem. Eng. Data, J. Chem. Phys., J. Mol. Spectrosc., Data, J. Phys. Chem., Meteor., Nature, Rem. Sens. Rev., Science, Spectrochim. Acta A, Vib. Spec., ...
						Note:   - this list should follow the ISO 4 norm (Rules for the abbreviation of title words and titles of publications).   - see List of Title Word Abbreviations (LTWA): http://www.issn.org/services/online-services/access-to-the-ltwa/

- see search tool at: http://cassi.cas.org/search.jsp
- or: http://www.journalabbr.com/ (Journal Abbreviation database)

journal_alternative_names	List [L1]	[m]				$£$ : List of the alternative names of the journal
journal_alternative_name	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	Journ L1	--	--	Alternative name of the journal   Note: provides all the variants of the full and abbreviated names of the journal   Ex: Astrophysical Journal
journal_acronyms	List [L2]	[m]				$£$ : List of the acronyms of the journal
journal_acronym	varchar(255)	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	Journ L2	--	--	Acronym of the journal   Note: provides all the acronyms of the journal and their variants   Ex: AA, A\&A, AASS, ApJ, EOS, EPSL, GCA, GRL, Icarus, JGR E, JPCA, JPCB, JQSRT, MAPS, MAPSL, NBS, PCCP, PSS, ...
journal_url	varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	Journ	--	--	URL of the main page of the journal   Note: For the case of no paper DOI, nor identifier, nor direct url to allow to send to the journal main page
journal_comments	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Journ	--	--	Any comment about the journal

### 5.3 Publication Table

## Root of the table: publication

Data type: 'Publication'
Note: $[\mathrm{w}]$ in the 'Level' column means that the value will be taken from a BibTeX bibliographic file when available.

Key-word	Type	Level	Table	Exp Unit	Description
Publication import mode					
publication_import_mode	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Publi	F	Mode of import of the "publications" data (global for the template)
					Enum: \{first import, ignore, draft, no change, correction\}
					Definitions: see "sample_import_mode"
publicaion_xml_filename [-xml]	varchar(255)   [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	Publi	(V)	Name of the storage copy of the xml import file of the publication metadata
					$\rightarrow$ determined automatically during import (from "publication_uid" ?)
					Note: this file is stored in order to be able to retrieve it when it is necessary to

## Publication indexes and type

publication_index [**][-xml]	$\operatorname{int}(10)$	$\begin{gathered} \text { B } \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	Publi	--	--	Automatic random but unique number (internal) given to new publication
publication_uid [**]	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 0 \\ {[!!\mathrm{m}]} \end{gathered}$	Publi	-	--	Unique identifier code given to the publication table (to be created)
						Nomenclature: Create this code name with 'PUBLI_' followed by the name of the first author and the publication year, plus possibly a letter
						Note: It should be of the style 'PUBLI_FirstAuthorName_Year(Letter)' where 'FirstAuthorName' is the last name of the first author (with capital first letter), 'Year' the year of the publication and 'Letter' an optional small case letter (' $a$ ', ' b ', $\ldots$ ) in case of two or more publications with same first author and same

year.
Ex: PUBLI_Schmitt_2002', 'PUBLI_Quirico_1997b'

## Publication

publication_type
[tag WoS: PT !]
publication_document_type [tag WoS: DT (rare)]

enum(text) S1 Publi<br>[!!_mw]<br>\section*{enum(text) S1 Publi<br><br>[!!_mw]}

-- -- Type of publication
Enum: \{journal, book, conference proceeding, abstract booklet, thesis, report, manual, catalog, database, other \}

## Definitions:

- 'journal': standard journal publishing individual papers, generally reviewed
- 'book': book either commonly written by single/multiple authors or with several chapters independently written by different authors.
- 'conference proceeding': proceedings of a conference (reviewed or not)
- 'abstract booklet': booklet containing the abstracts (short or extended) of a conference
- 'thesis': PhD and Master's thesis manuscript
- 'report': scientific or technical internal or external report, generally without any review
- 'manual': manual containing technical documentation
- 'catalog': catalog describing a set of materials, such as cosmic grains, lunar sample, ...
- 'database': database containing documents or web pages
- 'other': any other type of publication
-- -- Type of document
Enum: \{article, review article, discussion paper, discussion, correction, book, book chapter, conference paper, conference abstract, phd thesis, master thesis, scientific report, technical report, technical documentation, catalog of data, catalog of objects, database, numerical data set, other \}


## Definitions:

- 'article': an article from a journal or magazine, also include 'letters'
- 'review article': an article whose aim is to review a sujct, and published as such.
- 'discussion': discussion of a paper published in a journal
- 'correction': correction on a paper published in a journal
- 'book': whole book with an explicit publisher
- 'book chapter': book chapter or section
- 'conference paper': a conference paper published either in a printed conference proceeding or on-line. Conference papers published in special issues of journals are 'article'
- 'conference abstract': a conference abstract published either in an abstract booklet or on-line
- 'phd thesis': a PhD thesis
- 'master thesis': a master's thesis
- 'catalog of data': catalog describing a set of data, such as various types of observations or properties: orbits, spectra, observation from instrument or spacecraft, ...
- 'catalog of objects': catalog describing a set of objects, such as astronomical objects: comets, cosmic dust grains, lunar samples, ...
- 'scientific report': printed and bound scientific report but witout named publisher
- 'technical report': printed and bound technical report but witout named publisher
- 'technical documentation': technical manual
- 'database’:
- 'other': if none of the above document types fit

Note: see 'entry type' in http://en.wikipedia.org/wiki/BibTeX
[!!_m]
Publication state of the document
Enum: \{published, in press, submitted, internal, unpublished \}

## Definitions:

- 'published': published (widely enough) by an official publisher
- 'in press': in press by an official publisher
- 'submitted': submitted to an official publisher
- 'internal': printed document with very limited distribution (sometimes

					restricted)   'unpublished': unpublished document
publication_access_right	enum(text)	$\begin{gathered} \text { S1 } \\ {[!!\mathrm{m}]} \end{gathered}$	Publi	--	Publisher right on the document   Enum: \{publisher copyright, publisher free, free, restricted \}
					Definitions:   - 'publisher copyright': copyrighted publication with access through publisher   - 'publisher free': copyrighted publication but put in free access at publisher web site   - 'free': publication in free access   - 'restricted': document in restricted access
publication_access_free_date	date	$\begin{gathered} \mathrm{S} 2 \\ {[\mathrm{~m}]} \end{gathered}$	Publi	-- YYY	Date at which the document will be freely acessible, in case of publisher copyrights
					Note: This date will allow a routine to change "publication_access_right" to \{publisher free\} after this date. It will be used to inform the users.
publication_authors	List [L1]	[!!]			£: Ordered list (as in the publication) of the authors of the publication
					Note $x \mathrm{ml}$ : the authors should be entered in the xml file in the same order as in the publication
					Note: the first authors and rank of the other authors will be calculated with this ordered list.
					Note: it can be the authors of a dataset in an external database when "publication_document_type" = \{database, numerical data set $\}$
publication_author_first_name [tag WoS: AU !]	varchar(255)	$\begin{gathered} \text { S2 } \\ {\left[!!_\mathrm{mw}\right]} \end{gathered}$	$\begin{gathered} \text { Publi } \\ \text { L1 } \end{gathered}$	--	Initial(s) of the first name (given name) of all authors of the publication. Plus possible type of group/team of authors
					Note: a 'dot' and a 'space' should be put between multiple initials: (ex: 'J. F. K.'), except for linked composed names (e.g. Jean-Jacques: 'J.-J.')
					Ex: 'B.', 'E.', 'F.-R.', 'J. F. K.', ‘Team' for ''OMEGA Team'’



publication_number   [tag WoS: IS! sauf Conf]	varchar(20)	$\begin{gathered} \mathrm{S} 2 \\ {[\mathrm{mw}]} \end{gathered}$	Publi	--		Issue number of the journal of the publication   Note: for JGR issue number is of the type 'E12'
püblication_first_page   [tag WoS: BP !]   [tag WoS: AR]	varchar(20)	$\begin{gathered} \mathrm{S} 2 \\ {[!!\mathrm{o} \text { _mw] }} \end{gathered}$	Publi	--	--	First page of the publication or publication code   Note: with the new web reference system there is now a "publication code" (ascii) and no more first-last pages. This "publication code" will be also stored in "publication_first_page".   Condition: absolute mandatory only when "publication_state" = 'published' Ex: '143' ou 'E12008’
publication_last_page [tag WoS: EP !]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{U} \\ {[\mathrm{mw}]} \end{gathered}$	Publi	--	--	Last page of the publication   Note: with the new web reference system ("publication code") this "publication_last_page" should be empty
publication_pages_number [tag WoS: PG]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{U} \\ {[\mathrm{mw}]} \end{gathered}$	Publi	--	--	Number of pages of the publication   Note: with the new web reference system ("publication code") the number of pages of the publication replace the last page information.

## Publication abstract and Keywords


publication_keywords List [L2] [!] £: Keywords describing the publication

publication_keyword	varchar(255)	S0	Publi
$[$ tag WoS: ID x]		$\left[!_\mathrm{m}\right]$	L2

-- Keyword(s) describing the publication subject and content.
Note: These keywords should be quite general and focused on the subject of the database (solids, spectra, ...) + some other general keywords.
A complete list is available in a separate file:
'publications_keywords_content.xml'
List (short): cf. file
Instruments and spectra:

- 'General $K W$ ': 'spectroscopy', 'thermodynamics', 'optics', 'photometry', 'polarization', 'instrument', 'sample cell', 'numerical model', ...
- 'Microscopy - imaging': any argument of the "instrument_microscopy_imaging" Enum
- 'Instrument type': any argument of the "instrument_type" Enum
- 'Spectroscopic technique': any argument of the "instrument_technique" Enum.
- 'Spectra': any argument of the 'spectrum_type' and 'bandlist_spectrum_type' Enum followed by 'spectra'.
- Ex: 'Raman spectra'
- 'Band list': 'band position', 'band width', 'band intensity', 'band integrated intensity', 'band vibration mode'
- 'Spectral range': any argument of the 'parameters_instrument_spectral_range_type' Enum.
- Ex: 'NIR', ...
- Samples, matters and species:
- 'Processes': any argument of the 'sample_processing_type' Enum followed by 'process'. Ex: 'irradiation process'
- 'Matters': any matter family ("matter_xxx_family") but without ending by 'matter') and simple matter name ("matter_name").
- Ex: ex: 'snow', 'meteorite', 'Smectite Swy-2',
- 'Atoms': any atom symbol ("atom_symbol") preceded by isotope "atom_mass_number_a" if not natural
- 'Chemical function': any chemical function formula (~ "chemical_function formula")
- 'Molecules': any molecule formula ( $\sim$ "molecule_formula")
- 'Minerals': any mineral name ("mineral_ima_name")
- 'adsorption': 'absorption', 'interlayer'
- Note: the isotope number and the ion charge will be written in parenthesis before the atom and after the species, respectively
ex: ‘C3H4(+)', '(13)CO2(2-)'
Applications:
- 'Planetary sciences': any category or name (except numeric codes) of solar system objects. Ex: Triton, Pluto, Mars, Comets, meteorite...
- 'Other sciences': any generic word characterizing the application
- Type of application: 'radiative transfer simulation', ‘...’
- Type of application object: ‘surface', 'aerosols', 'grains'...,
- 'Observations (mission/observatory - instrument)': Ex: ‘Mars Express - OMEGA', ‘UKIRT - CGS4', ...



## Books



publication_publisher_city $\quad \operatorname{varchar(255)}$   [tag WoS: PI]	$\begin{gathered} \mathrm{U} \\ \text { [o_mw] } \end{gathered}$	Publi		Name of the city and country of the publisher of the publication   Note: only for "publication_type" = \{book, conference proceeding, thesis $\}$
Databases and numerical data sets				Note: a 'numerical data set' can be fully defined with "publication_title", "publication_doi" and "publication_url"
publication_dataset_database_na varchar(255) me	$\begin{gathered} \mathrm{S} 0 \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Publi	--	Name of the external database containing the data set   Condition: only and mandatory for "publication_document_type" $=\{$ database, numerical data set $\}$
publication_dataset_database_url varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{o} \text { _m] }} \end{gathered}$	Publi	--	Uniform Resource Identifier of the external database containing the data set Condition: only and mandatory for "publication_document_type" = \{database, numerical data set $\}$

## Publication identifiers and links


$\rightarrow$ Calculated from "publication_doi":

$$
\Rightarrow \text { 'https://doi.org/'"publication_doi" }
$$

Note:
the recommended address root changed from 'http://dx.doi.org/' to 'https://doi.org/' (2017)

- it can be the url of a dataset in an external database when "publication_document_type" = \{database, numerical data set $\}$

publication_identifiers	List $[$ L3a]	[O]	
publication_identifier_type	varchar(255)	S1	Publi
		$[!!\mathrm{o}$ m]	L3a

£: Other official identifiers of the publication (except DOI)
Acronym of the type of official identifier of the publication
Enum: \{ARK, arXiv, bibcode, EISSN, HAL, Handle, ISBN, ISSN, ISTC, PMID, TEL, URL, no \}
Condition: absolute mandatory when "publication_identifier_code" $\neq \varnothing$
Definitions:

- 'ARK': (Archival Resource Key) is an identification system that can identify any type of digital object but also physical: books, publications and scientific articles. The BnF (Bibliothèque natioanle de France) is one of the Name Assigning Authority: http://gallica.bnf.fr/ark:/
- 'arXiv': repository of electronic preprints
$\Rightarrow$ https://arxiv.org/abs
cf. https://arxiv.org/
- 'bibcode': compact identifier used by several astronomical data systems (ADS, ...)
$\Rightarrow$ http://cdsads.u-strasbg.fr/abs/ (ADS, CDAS, Strasbourg, France) or http://adsabs.harvard.edu/abs (ADS, HarvardSmithsonian, Cambridge, USA)
$c f$. http://adsabs.harvard.edu/abs_doc/bibcodes help.html
http://en.wikipedia.org/wiki/Bibcode
Note: useful for "publication type" = 'book' and 'conference' for which ADS may have a scanned version and that may have no direct publisher link
- 'EISSN': (or e-ISSN) standard label for "Electronic ISSN", the ISSN
for the electronic media (online) version of a serial.
$\Rightarrow$ Simple identifier?
- ' $H A L$ ': French open archive where authors can deposit scholarly documents from all academic fields (https://hal.archives-ouvertes.fr/)
$\Rightarrow$ https://hal.archives-ouvertes.fr
- 'Handle': assign persistent identifiers, or handles, to information resources
$\Rightarrow$ https://en.wikipedia.org/wiki/Handle_System
- 'ISBN': The International Standard Book Number (ISBN) is a unique numeric commercial book identifier. It is assigned to each edition and variation (except reprintings) of a book
$\Rightarrow$ Simple identifier, findable with a search engine such as http://www.bookfinder.com/isbn_search/
- 'ISSN’: International Standard Serial Number (ISSN) is an eight-digit serial number used to uniquely identify a serial publication (magazines, ...).
$\Rightarrow$ Simple identifier, findable with a search engine such as the ISSN register (fee): https://www.issn.org/understanding-the-issn/the-issn-international-register/
- 'ISTC': unique identifier for text-based works
$\Rightarrow$ Simple identifier
- 'PMID': PubMed Identifier
$\Rightarrow$ https://www.ncbi.nlm.nih.gov/pubmed
- 'URN': Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that uses the urn scheme.
- 'TEL': 'Thèses En Ligne', the repository of the French PhD thesis
$\Rightarrow$ https://tel.archives-ouvertes.fr cf. https://tel.archives-ouvertes.fr/
- 'URL': for publications that have no official identifier code but have a stable URL at an alternative repository or web site
- ' $n o$ ': for publications that have neither an identifier, nor a stable URL.

Notes:

- some of these identifiers also play the role of official repository for all types of publications (ARK, arXiv, HAL, ...) or part of the publications (bibcode, ...) or some types only (TEL, ...)


with "publication_access_right" = 'publisher copyright', but with access limited to data managers (to verify that all publication infos are correctly entered).
- preprints, internal reports, ... can also be uploaded.
- this file will be imported in the database


## SSHADE data in the publication



Condition: only for papers which have data in the database
Note: equivalent to reference list of the paper but limited to the experimental publications in the database

publication_used_experiments	List [L6]	[O]				£: SSHADE spectral data used or cited in 'data user' paper
publication_used_experiment_uid [*]	varchar(255)	$\begin{gathered} \mathrm{S} 2 \\ {\left[\$ \mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Publi   Spectr   L6	F	--	Link to the UID of the experiment in the database that is used or cited in the paper
						Recommendation: Strongly recommended when already exist in the database.
						Restriction: only for experiment-spectra in the database that are used in a 'data user' paper or in a 'data provider' paper reefering to another experiment than the one described in the paper
						Note: if only one or a few spectra are used: link to their experiments
						Note: the experiments-spectra published in an experimental paper and entered in the database will be directly linked to their publication with "experiment_/spectrum_publication_uid" (their publications should be entered in the database before the spectrum, or corrected after).
publication_used_bandlists	List [L7]	[O]				£: SSHADE bandlist data used or cited in 'data user' paper
publication_used_bandlist_uid [*]	varchar(255)	$\begin{aligned} & \text { US2 } \\ & \text { [\$o_m] } \end{aligned}$	Publi   BandLi	F	--	Link to the UID of a bandlist in the SSHADE database that is used or cited in the paper
			L7			Recommendation: Strongly recommended when already exist in the database.
						Restriction: only for band lists in the database that are used in an 'data user' paper or in a 'data provider' paper reefering to another experiment than the one described in the paper.
						Note: the bandlist published in an experimental paper and entered in the database will be directly linked to their publication with "bandlist_publication_uid" (their publications should be entered in the database before the bandlist, or corrected after).

publication_comments blob U Publi $--\quad$-- $\quad$ Any comment about the publication

## 6. Fundamental Species (molecular, atomic, chemical bonds \& functions)

### 6.1 Definition

The "Fundamental Species" are the basic building pieces of the constituents of the samples and matters. They are grouped in 3 main families because they share most of their properties: 'atomic' and 'molecular' species. An additional virtual species called 'chemical functions' (including 'bond', 'functional groups', 'anionic radicals' in minerals, as well as some part of molecules) is added in order to allow to describe them, and their vibration, in molecules and in some minerals. Each of these families includes several types of species:

- Atoms and Ions
- Atoms (neutral)
- Atomic ions
- Chemical functions
- Chemical bonds
- Functional groups
- Molecule parts
- mineral anionic radicals (minerals)
- Molecular species
- Molecules
- Molecular ions
- Radicals

Molecules, and chemical functions refer to atoms for their elemental and isotopic compositions.
Molecules refer also to chemical functions to describe their chemical bonds and functional groups.
The "Extraterrestrial matters" also refer to "atoms" for their elemental analysis and to "chemical functions" for their chemical analysis.

### 6.2 Description

The Fundamental species are either atomic, molecular, or mineral. The two last families of species are composed of the first one, i.e., atoms and/or ions.

* Atomic species includes atoms and ions.

As for molecules we also consider, for convenience, virtual atoms consisting of the "natural isotopic mix" of the isotopes of the atom.

- Each atomic species is defined by "name and identifiers", "atomic numbers", "natural isotopic composition" and some "physical properties".
* Chemical functions (or Functional groups) allow us to partly describe the molecular content of complex organic solids, in addition to elemental composition. They can also provide useful information for the other molecular species. For minerals they describe the chemical functions of anionic radicals. They allow to search molecules or minerals by one or more of their chemical functions.

Each chemical function is defined by "names and identifiers", "chemical structure and atomic composition".

* Molecular species includes molecules, molecular ions and radicals.

Isotopic molecular species: Molecular species are mostly defined as pure isotopic species, but we also consider here, for convenience, virtual molecules consisting of the "natural isotopic mix" of the isotopomers (and of the spin isomers) of the molecule, although formally this mix should be classified as a "constituent" made of a homogeneous molecular mixture of isotopic and isomer species in natural abundances. Partially isotopically substituted molecules
(i.e. only part of the atoms are pure isotopic species, the others being in their natural abundances) can also be defined as virtual molecules. Any other isotopic or spin isomer mixture has to be described at the constituent level as a mixture of pure molecular species.

- Molecules, molecular ions, radicals have common key-words to describe them. Each molecular species is defined by "names and identifiers", "chemical structure, atomic and spin isomer compositions" and "physical properties". Natural isotopic mixtures are defined by their "isotopic composition". The "symmetries and normal vibration modes" of the free molecular species are also described.


### 6.3 Atoms and Ions Table

## Root of the table: atom

Data type: 'Species’
For "specie_family" = \{atom, element $\}$
Key-word Type Level Table Exp Unit Description

Atom import					
atom_import_mode [species_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{m}]} \end{gathered}$	Atom (V)	--	Mode of import of the atom data
					Enum: \{first import, (use existing), ignore, draft, no change, correction\}
					Definitions: see "sample_import_mode"
atom_xml_filename [-xml]	varchar(255)	P	Atom (V)	--	Name of the storage copy of the xml import file of the atom metadata
[species_xml_filename]	[virtual KW]	[!!_vc]			$\rightarrow$ determined automatically during import (from "atom_uid»?)
					Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction


Atom indexes and type						
atom_index [ ${ }^{[* *][-x m l]}$ [species_index]	$\operatorname{int}(10)$	$\begin{gathered} \text { B } \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	Atom	F	--	Automatic random but unique number (ID) given to new atom
atom_uid [ ${ }^{* *}$ ]   [species_uid]	CS-varchar(255)	$\begin{gathered} \text { S0 } \\ \text { BL: U } \\ \text { [!!_m] } \end{gathered}$	Atom	F	--	Unique identifier code (UID) given to the atom table (to be created)
						Note: It should be of the style 'ATOM_(Z)Symbol' or 'ATION_(Z)SymbolCharge' where ' $Z$ ' is the atomic number $Z$ (for pure isotopic atoms, none for natural mixtures), 'Symbol' is the atom symbol and 'Charge' is the ion charge (charge sign '-' or ' + ' after the charge number).
						Ex: 'ATOM_Kr', 'ATOM_13C' or 'ATION_Fe2+'


atom_type   [species_type]	enum(text)	$\begin{gathered} \text { S1 } \\ \text { BL: S2 } \\ \text { [!!_m] } \end{gathered}$	Atom	F	--	Type of atomic species.   Enum: \{atom, atomic ion\}
Atom names and identifiers						
atom_name [species_name]	varchar(256)	$\begin{gathered} \text { S0 } \\ \text { BL: S0 } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Atom	F	--	Generic name of the atom or ion (independent of isotope)   Notes:   - for ions: ending with explicit type and level of ion: cation, dication, trication, quadrication, ..., anion, dianion, trianion, quadrianion, pentaanion, ...   - there are specific official names for the isotopic species of Hydrogen: 'Deuterium' and 'Tritium' and of hydrogen ion: ‘Proton', ‘Deuteron' and 'Triton'   - It is used as the title of the mineral page on the SSHADE interface   - ion names: http://www.geocities.ws/profmokeur/chimie/tableions.htm
atom_iupac_name [species_official_name]	$\operatorname{varchar}(255)$	$\begin{gathered} \text { S0 } \\ \text { BL: S0 } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Atom	F	--	IUPAC unique name of the atom or ion (different for each isotopic species) Note: extention of this nomenclature to ions (+ same ending as for 'name') Ex: carbon-13, hydrogen-2, iron dication...
atom_inchi [species_inchi]	CS-varchar(255)	S1   BL:   S1b   [m]	Atom	F	--	Standard InChI sequence: IUPAC international chemical identifier, unique, of the atom (natural), ion (natural) or isotopic species.   Notes:   for simplicity the InChI code must be entered without 'InChI='. This part will be added automatically during import. $\begin{equation*} E x: \text { 'InChI=1S/H' } \tag{H} \end{equation*}$
atom_inchikey   [species_inchikey]	CS-varchar(255)	S1   BL:   S1b   [m]	Atom	F	--	Standard InChI Key number, unique, of the atom or ion   Note: can be found at http://cactus.nci.nih.gov/chemical/structure (http://www.chemspider.com/) (search for ex 'Carbon-12' for isotopes)



## Atom symbol and fundamental properties





## Atom natural isotopic composition

atom_isotope_mixture_type   [species_isotope_mixture_type]	enum(text)	S1 Atom	F
	BL: U		
$\left[!!_m\right]$			

- Type of isotopic mixture of the atom or ion

Enum: \{pure isotope, terrestrial abundance\}

## Definitions:

- 'pure isotope': only a single isotopic species of the atom
- 'terrestrial abundance': mixture of all its isotopic species of the atom in 'standard' natural terrestrial abundance. Its natural isotopic composition is given by default in the natural 'generic mixture' (i.e. the 'non-isotopic species') entered in the SSHADE database with "atom_isotope_uid" and "atom_isotope_mole_fraction" of each isotopic species as by IUPAC (2009).

Notes:

- The fundamental atom species stored in the database will be either with natural terrestrial abundance or as pure isotopes.
- Atoms with 'specific isotopic abundance' in sample or matters will be described using the main pure atomic isotopologues

atom_isotope_atoms	List [L4]	[!o]				$£$ : isotopic species contributing to the isotopic mixture of atoms
						Condition: mandatory bloc when "atom_isotope_mixture_type" = \{terrestrial abundance\}
						Constraint only when "atom_isotope_mixture_type" = \{terrestrial abundance\}
atom_isotope_atom_uid [*]   [species_isotope_specie_uid]	varchar(255)	$\begin{gathered} \text { S1i } \\ \text { BL: U } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Atom   Atom	F	--	Link to the existing UID of a pure isotopic atomic species contributing to the isotopic atomic mixture
			L4			Condition: mandatory when "atom_isotope_mixture_type" = \{terrestrial abundance\}
atom_isotope_atom_mole_fractio n [+]   [species_isotope_specie_mole_fra ction]	float	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Atom L4	F	--	Mole fraction of the isotopic atomic species
						Condition: mandatory when the bloc is used
						Notes:
						$-\quad$ value between 0 and 1 , the sum should be $=$ ' 1 '   - for "atom_isotope_mixture_type " = 'terrestrial abundance' the mole fractions is given by IUPAC (2009) (https://www.ciaaw.org/isotopicabundances.htm)
Atom properties + references						
atom_molar_mass [species_molar_mass]	float	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	Atom	F	$\mathrm{g} / \mathrm{mol}$	Atomic molar mass.
						- stored in the database and provided to user in ' $\mathrm{g} / \mathrm{mol}^{\prime}$ (= amu) unit
						Note:
						- For isotopes this "atomic molar mass" is equivalent (in number) to the "atomic mass" in unified atomic mass units ( u ). This "atomic mass" is not defined for natural mixtures.
						- For a mixture it is determined by the sum of "atom_molar_mass" weighted by their "atom_isotope_atom_mole_fraction" for all isotopic atomic species composing the natural mixture.   - For the standard terrextrial mixture values to be taken from IUPAC


atom_state_stp	enum(text)	$\begin{gathered} \text { S1 } \\ \text { BL: U } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	Atom	F		State of the atomic species in standard (STP) conditions   Enum: \{gas, liquid, solid\}   Note:   - STP conditions (IUPAC): $273.15 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right), 100 \mathrm{kPa}(1 \mathrm{bar})$   - It is the state (homonuclear gas, liquid or solid) of the atom when it is put as a pure species in STP conditions
atom_links	List [L2]	[O]				£: Web pages describing the atom or ion and its properties.
atom_link_name [species_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Atom L2	F	--	Name of the web page describing the atom or ion and its properties.
atom_link_url [species_link_url]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Atom   L2	F	--	URL address of web page describing the atom or ion and its properties. Reference: https://en.wikipedia.org/wiki/Periodic_table   Notes:   you can link to a publication by giving its url address, preferably through its DOI.   Ex: https://doi.org/10.1002/ejic. 200700067
atom_comments [species_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Atom		--	Additional information on the atom or ion (major isotopic atom, radioactive stability, ...)

### 6.4 Chemical bonds Table

## Root of the table: chemical_bond

Data type: 'Species'
For "specie_family" = 'chemical bond'
Notes:

- here we describe specific isotopic species or isotopic mixtures for chemical bonds and molecule parts Chemical bonds are mostly used to describe vibrations.
- a specific point is that we describe a chemical bond as two atoms linked with a bond type (single, double, triple), but also considering the type of bonds (no, one or more) connecting these two atoms to the rest of the molecular species.

Key-word	Type	Level	Table	Exp	Unit Description
Chemical bond import					

## Chemical bond indexes and type

| chemical_bond_index [**][-xml] int(10) B <br> $[$ [species_index] ChemB F | -- | Automatic random but unique number (ID) given to new chemical bond |
| :--- | :--- | :--- | :--- | :--- | :--- |

Nomenclature: Create this UID with 'BOND_' (for single bond) or 'MOLECPART_' (for part of a molecule) followed with the atomic numbers Z (for isotopic variants), the atom symbols separed by the Bond symbol ('d' or ' $t$ ', or nothing for single bond) and the ion charge (charge sign '-' or ' + ' after the charge number), if not null:
'BOND_ZAtom1(BondSymbol)ZAtom2(Charge)'
Note: It should be unique. Each prefix corresponds to one specific "chemical_bond_type".

Ex: 'MOLECPART_CH2CH2CH3', 'BOND_CdO' , 'BOND_13Cd18O'
Notes:

- The vibrational 'bonds' (BOND_) and 'molecule parts'
(MOLECPART_) are either natural (used for terrestrial isotopic mix of a molecule) or made only of single isotopic atomic species (for isotopic molecules, and for band list) so it is necessary to describe them for all possible isotopes (or at least the mains).
Ex: 'BOND CdO' , 'BOND_13Cd18O', Ex: 'MOLECPART_CH3', 'MOLECPART_13C1HD2', ...
- 'MOLECPART_' is only used to describe vibrations involving more than 2 atoms of the molecule (not used to describe bonds in a molecule)


## Notations.

- For vibrational bonds (BOND_, and MOLECPART):
o a single bond: nothing
o a double bond: will be noted with ' d ',
0 a triple bond: with ' $t$ ' (because $x m l$ did not like ' $=$ ' and ' $\#$ ' !)
o a hydrogen bond: ' $h$ '
o a ionic bond: ' i '
o a ring: 'ring' at the end
o a cation: '+'
o an anion: ‘-‘
o a radical'r' (after the atom)
- Bond will have also their 'surrounding' bonds noted for better



## Chemical bond names

chemical_bond_name
[species_name]
:---:
BL: U


-- Explicit developed name of the chemical bonds
Notes:

- different for each isotopic species
- includes ionic information
- with same ending as in 'chemical_bond_name' except the type and level of ion is explicit: cation, dication, trication, quadrication, ..., anion, dianion, trianion, quadrianion, pentaanion, ...
- it is some sort of extension to chemical bonds of the official IUPAC naming convention of molecules


## Nomenclature:

- 'bonds': describe both atoms preceded with their isotopic variant (if any) with their internal and surrounding bonds (nothing for simple, ' $=$ ' for double, ' $=,=$ ' for 2 double, ' $\#$ ' for triple, '...' for hydrogen bond, '.' for ionic bond) and end with 'bond', 'double bond', 'triple bond', 'hydrogen bond' or 'ionic bond' Ex:
=C-O: 'CO bond',
$>\mathrm{C}=\mathrm{O}$ : ‘ $\mathrm{C}=\mathrm{O}$ double bond', $\ldots$
$=\mathrm{C}=\mathrm{O}$ : ' $=\mathrm{C}=\mathrm{O}$ double bond', $\ldots$
-C\#O: 'C\#O triple bond'
-16OD: '( $2 \mathrm{H}, 16 \mathrm{O}$ )OH bond'
$=12 \mathrm{C}=16 \mathrm{O}$ : ' $(12 \mathrm{C}, 16 \mathrm{O})=\mathrm{C}=\mathrm{O}$ bond'
-O-H: ‘O...H hydrogen bond'
$\mathrm{Na}+\mathrm{Cl}-: ~ ‘ \mathrm{Na}+$. $\mathrm{Cl}-$ ionic bond'
- 'molecule part': describe the atoms of the molecule part with their internal and surrounding bonds (nothing for simple, $=$ for double, $==$ for 2 double, \# for triple) and end with 'simple-simple bonds', 'doublesimple bonds', 'double-double bonds' or 'triple-simple bonds'.


## Ex:

\#C-CH2-C-: ‘\#CCH2C simple-simple bonds’
$=\mathrm{C}=\mathrm{C}=\mathrm{C}<: \quad$ ' $=\mathrm{C}=\mathrm{C}=\mathrm{C}$ double-double bonds'
-C\#C-C<-: 'C\#CC triple-simple bonds'

```
Chemical bond structure and atomic composition
chemical_bond_formula varchar(255) U ChemB F -- Semi-developed (linear) chemical formula of the chemical bond
[species_formula]
```

$\operatorname{varchar}(255) \quad \mathrm{U}$ ChemB F [!!_m]
chemical_bond_chemical_formula CS-varchar(255) [species_chemical_formula]
-- Semi-developed (linear) chemical formula of the chemical bond Syntax: LaTeX format
Notes:

- contain isotopic, radical and ionic information
- D and T can be used for deuterium and tritium isotopes
- isotopes only for bonds and molecule parts
- cf. http://en.wikipedia.org/wiki/Functional_group

Latex writing of bonds:

- radical ' $\cdot$ ': \$lbullet\$
- hydrogen bond '...': \$\dots\$
- ionic bond '.’: \$lcdot\$
- 1 simple bond '-‘' $\$$-\$
- 2 simples bonds ' $>$ ' or ' $<$ ': $\$>\$$ or $\$<\$$
- 3 simples bonds ' $\geq^{\prime}$ or ' $\leq$ ': $\$$ geq $\$$ or $\$$ lleq $\$$
- 4 simples bonds ' $>\mid$ ' or ' $\mid<$ ': $\$>$ Imid $\$$ or $\$ \backslash m i d<\$$
- 5 simples bonds ' $\geq$ ' or ' $\mid \leq$ ': $\$ \backslash$ geq $\backslash$ mid $\$$ or $\$ 1$ leq $\backslash$ mid $\$$
- 1 simple +1 double bonds ' $-=$ ': \$leqslantgtr\$ or \$leqslantless\$
- 2 simples +1 double bonds ' $>=$ 'or ${ }^{\prime}=<$ ': $\$ \backslash \mathrm{geqq} \$$ or $\$ 1$ leqq $\$$
- 1 double bond ' $=$ ': $\$=\$$
- 2 double bond '>> ' or '<<<': \$ $\$ \mathrm{gg} \$$ or $\$ 111 \$$
- 3 double bond ' $=\gg$ ' or '<<=': $\$=\operatorname{lgg} \$$ or $\$ 111=\$$
- 1 simple +2 double bond ' ${ }^{-} \gg$ ' or '<<-': $\$$ - $\operatorname{lgg} \$$ or $\$ 111-\$$
- triple bond ' $\equiv$ ’ or '\#': \$lequiv \$
- quadruple bond ' $\$$ ': $\$$ lsupset $\$$ or $\$$ ssubset $\$$
- LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf
$E x$ : bond $' \$>\wedge\{13\} \mathrm{C}=\wedge\{18\} \mathrm{O}^{\wedge}\{2-\} \$^{\prime}$ for $>^{13} \mathrm{C}={ }^{18} \mathrm{O}^{2-}$ bond

	[!!_m]				Ex: $\mathrm{CO}, \mathrm{SO}, \mathrm{CO}-, \mathrm{O} 2, \mathrm{Na+Cl}-\ldots$
					Note: do not contain isotopic and radical information but contains ionic information.
chemical_bond_isotopic_formula CS-varchar(255) [species_chemical_formula]		ChemB	F	--	Simple isotopic chemical formula of the chemical bond   Condition: absolute mandatory when "chemical_bond_isotope_mixture_type" $=\{$ pure isotope, partly substituted $\}$
					Nomenclature:   - write the atomic mass of the pure isotopic atoms between square brackets preceding the atom symbol. 'D' can be used for $[2] \mathrm{H}, \mathrm{T}$ for $[3] \mathrm{H}$
					Ex: [13]C1[6]O, [32]SO, [12]C[18]O-, [18]O2, $\mathrm{Na}[37] \mathrm{Cl},[13] \mathrm{CD}, \ldots$
					Note: do not contain radical information but contains ionic information.
chemical_bond_chemical_structur CS-varchar(255) e_filename	$\begin{gathered} \mathrm{P} / \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	ChemB	F	--	File name (with extension) of the plot with 2D or 3D representation of the chemical and isotopic structure of the bond
					Image formats: .png, .jpg, (.gif)
					Notes:   - contain isotopic, radical and ionic information   - this file will be imported in the database
chemical_bond_stoichiometric_fo CS-varchar(255) rmula [-xml]   [species_atomic_formula]	$\begin{gathered} \text { S0 } \\ \text { BL: S2 } \\ {\left[!_c\right]} \end{gathered}$	ChemB	F	--	Stoichiometric chemical formula of the bond   $\rightarrow$ calculated from "chemical_bond_atom_uid" and "chemical_bond_atom_number"
					Note: Suite of the atomic elements followed by the total number of their occurrence. The isotope mass number can be added before each atom, the charge can be added at the end with ' + ' or '-' sign followed by the charge number. This atom information is separated by a 'space'
					$\begin{aligned} E x: & \\ & -\quad \mathrm{C} \mathrm{H} 3 ' \text { for }-\mathrm{C}-\mathrm{H}_{3} \\ & -‘ 13 \mathrm{C} \mathrm{H} 2 \text { for }={ }^{13} \mathrm{C}-\mathrm{H}_{2} \end{aligned}$

chemical_bond_structural_formul CS-varchar(255) a
[species_structural_formula]

## 'SO4-2' for $\cdot \mathrm{SO}_{4}{ }^{2}$

Note: Bonds contain only 2 types of atoms but one atom can have multiple occurrences ( $E x:$ A Hn). Molecule parts can have multiple atoms.
Notes:

- do not contain any radical or conformational information.
- when there is only one occurrence (atom or charge) the ' 1 ' can be omitted
- when the chemical bond is natural there is no isotopic information

Note: For easier search this stoichiometric chemical formula is also stored in tables listing:

- the atom => "chemical_bond_atom uid"
- the total number of each atom $=>$ "chemical_bond_atom_number"
- the charge is stored in 'chemical_bond_charge'
-- Semi-developed SMILES structural chemical formula of the bond
Note: This formula includes the description of the isotopic atoms (but use [2H] for $\mathrm{D},[3 \mathrm{H}]$ for T$)$, the charge and radical(s) of the chemical function.

Note: We use the explicit SMILES formula with grouped H with heavier atoms and all in bracket (but no explicit simple bond except for multiple ones above 2).

Note: Extension of semi-developped SMILES (see
"molecule_structural_formula") to define the chemical functions and bonds.

- We express also the 'external bonds':

$$
E x: \mathrm{R}=\mathrm{C}=\mathrm{O} \Rightarrow=[\mathrm{C}]=[\mathrm{O}]
$$

- For radical: use '.'

$$
E x: \cdot \mathrm{SO}_{4}{ }^{2-}=>\quad .[\mathrm{O}-][\mathrm{S}]([\mathrm{O}])([\mathrm{O}])[\mathrm{O}-]
$$

- For hydrogen bond: '...'
- For ionic bond: '.'

$$
E x: \mathrm{Na}^{+{ }^{\circ} \mathrm{Cl}^{-}:[\mathrm{Na}+] .[\mathrm{Cl}-], ~}
$$

- For multiple external single bonds, $\mathrm{n}-1$ of these bonds are expressed as branched ' $(-)^{\prime}$. If there is a single and a double bond then only $(=)$ is


	[!!_m]	Atom   L2			Notes:   - for chemical bonds of natural molecular mixtures (and most minerals) the "atom_uid" should refer to the one of the "atom in natural terrestrial abundance"   - Generally, no ions as charge is frequently not localized on one atom   Note $x m l$ : practically the "atom_uid" can also be unambiguously found using "atom_symbol", "atomic_number_z" and "mass_number_a"
chemical_bond_atom_number [+] int(11) [species_atom_number]	$\begin{gathered} \text { S0b } \\ \text { BL: U } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	ChemB L2	F	--	Number of atoms of each type (isotopic atomic species) composing the chemical bond   For chemical bonds of natural molecular mixtures (and most minerals) this number is the total number of this chemical element (no specific isotope).
chemical_bond_charge $\quad \operatorname{int}(2)$ [species_charge]	$\begin{aligned} & \text { S2/S0b } \\ & \text { BL: U } \\ & {[!!\text { _m] }} \end{aligned}$	ChemB	F	no	Charge (positive or negative) of the chemical bond   Notes:   the charge of a chemical bond is frequently global (not on a specific atom)   - charge $=0$ for neutral chemical bond, $>0$ or $<0$ for ionic chemical bond   Ex.: ‘+1', ‘-1’
```chemical_bond_unpaired_electron int(2) s [species_unpaired_electrons]```	$\begin{gathered} \mathrm{S} 3 \\ \text { BL: } \mathrm{U} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	ChemB	F	no	Number (positive) of unpaired electrons of the chemical bond Notes:   - $=0$ for molecule or ion chemical bond,   - >0 for radicals and ionic radical chemical bond

Chemical bond natural isotopic composition

| chemical_bond_isotope_mixture_t enum(text)
 ype
 [species_isotope_mixture_type] | S1 ChemB
 BL: U | F |
| :--- | :--- | :--- | | Type of isotopic mixture of the chemical bond |
| :--- |

Notes:

- The fundamental bonds stored in the database will be either with natural terrestrial abundance or as pure isotopes.
- Some of the partly isotopically substituted bonds (the most important ones) may be also entered as fundamental species in the database.
- Bonds with 'specific isotopic abundance' in sample or matters species (mostly to describe complex organics) will be described using the main pure isotopologue bonds ("(constituent_)species_uid" =
‘BOND_xxx’).
$£:$ isotopic bond contributing to the isotopic mixture of chemical bonds
Condition: mandatory only when "chemical_bond_isotope_mixture_type" = \{partly substituted, terrestrial abundance\}
chemical_bond_isotope_chemical varchar(255) _bond_uid [*]
[species_isotope_specie_uid]
chemical_bond_isotope_chemical List [L4] [!o] _bonds

ChemB
L4

Link to the existing UID of a pure isotopic bond contributing to the isotopic mixture of bonds

Condition: mandatory only when "chemical_bond_isotope_mixture_type" = \{partly substituted, terrestrial abundance\}

Notes:

- The list of all the isotopic species composing an isotopic mixture (with 'terrestrial abundance' or 'partly substituted') should be determined "by hand" as it depends on some symmetry elements of the chemical bond.
- For big molecule parts composed of atoms having large numbers of isotopic species the list can be limited to the main isotopic species (above some threshold value in abundance).

the mole fractions should be determined using the standard terrestrial atom mole fractions given by IUPAC (2009)
(www.chem.qmul.ac.uk/iupac)
- These abundances should be determined "by hand" as they depend on some symmetry elements of the molecule part. The sum should be = ' 1 '
- For simple bonds (2 atoms) it is simply the product of the é isotopic abundances of the aroms
- For big molecule parts composed of atoms having large numbers of isotopic species, if not all species are listed the sum will be < '1.0' (but close to 1). Not a major problem.

Chemical bond properties

```
chemical_bond_electronegativity float
[species_electronegativity]
```

chemical_bond_polarity enum(text

S2/S0b ChemB F Paulin Electronegativity difference of the bond (Pauling scale)

BL: U
[m]
g
Definition: it is the electronegativity difference between the 2 atoms
Note: did not depend on isotopes
Note: values for atoms from http://en.wikipedia.org/wiki/Electronegativity

S1 ChemB F
-- Polarity of the chemical bond
Enum: \{nonpolar, polar, ionic $\}$
Definitions:
Bond polarity is typically divided into three groups that are loosely based on the difference in electronegativity between the two bonded atoms.
According to the Pauling scale:

- 'nonpolar': generally occur when the difference in electronegativity between the two atoms is less than 0.4
- 'polar': generally occur when the difference in electronegativity between the two atoms is roughly between 0.4 and 1.7 if a metal is involved, and between 0.4 and 2.0 if only nonmetals are involved
- 'ionic': generally occur when the difference in electronegativity
between the two atoms is greater than 1.7 if a metal is involved, and greater than 2.0 if only nonmetals are involved
From: https://en.wikipedia.org/wiki/Chemical_polarity
https://en.wikipedia.org/wiki/Electronegativity
https://chem.libretexts.org/Bookshelves/General_Chemistry/Electr onegativity

chemical_bond_dipole float	S3 3 BL: U $[\mathrm{m}]$		DhemB	F

Chemical bond references + comments

chemical_bond_links	List [L3]	[O]				£: Web pages describing the chemical bond and its properties.
chemical_bond_link_name [species_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	ChemB L3	F	--	Name of the web page describing the chemical bond and its properties.
chemical_bond_link_url [species_link_url]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	ChemB L3	F	--	URL address of web page describing the chemical bond and its properties. Reference: https://en.wikipedia.org/wiki/Chemical_bond Notes: - you can link to a publication by giving its url address, preferably through its DOI. Ex: https://doi.org/10.1002/ejic. 200700067
chemical_bond_comments [species_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	ChemB	F	--	Additional information on the chemical bond

6.5 Chemical functions Table

Root of the table: chemical_function

Data type: ‘Species’
For "specie_family" = 'chemical function'
Notes:

- all 'chemical functions' are with natural terrestrial isotopic abundances, or without specification.
- they are also called 'functional groups'
Key-word Type Level Table Exp Unit Description

Chemical function import

chemical_function_import_mode [species_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	ChemF (V)	--	Mode of import of the chemical function data Enum: \{first import, ignore, draft, no change, correction\}
					Definitions: see "sample_import_mode"
chemical_function_xml_filename [-xml]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { vc] }} \end{gathered}$	ChemF (V)	--	Name of the storage copy of the xml import file of the chemical function metadata
[species_xml_filename]					\rightarrow determined automatically during import (from "chemical_function_uid»?) Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

Chemical function indexes and type

‘GROUPRAD_', ‘MINION_', followed by ‘R’ (except for MINION_). Each prefix corresponds to one specific "chemical_function_type".

It should be of the style 'GROUPMOLEC_RChemicalFormula',
'GROUPION RChemicalFormulaCharge',
'GROUPRAD_RChemicalFormula(Charge)'.
'MINION_ChemicalFormula_Charge' (did not include ' R ') where
'ChemicalFormula' is the chemical formula of the chemical function, and 'Charge' is the ion charge (charge sign '-' or ' + ' after the charge number), if not null.

Ex: ‘GROUPMOLEC_RCH3', ‘GROUPION_RCOO-’, 'GROUPRAD_RCO', 'MINNION_MoO4_2-'

Notes:

- The 'anionic radicals' (MINION) are specific to minerals, and defined as the molecular ions included in the mineral structures. They UID are all of the form 'MINION_AOn_x-'
- The chemical 'functional groups' ('GROUPMOLEC', 'GROUPION_' and 'GROUPRAD_') and 'mineral anionic radicals' (MINION_) are independent of isotopes
Notations.
- The descriptor of the UID of the chemical 'functional groups' (‘GROUPMOLEC Rxx’, ‘GROUPION Rxx, ‘GROUPRAD Rxx’) allways start with ' R ' and can also end with ' R '. R is not only an alkyl but is extended to be any part of a molecule, but connected to the group by a C atom, or it can be simply H .

Ex: for CH3OH-nat:

- 'functional groups' = 'GROUPMOLEC_RCH3' and 'GROUPMOLEC ROH’
Notes:
- In complex matters when a complex functional group is known, such as 'R-CH2-CH2-CH3' it can be described here. It will be itself described in term of simple groups (e.g. R-CH2-R, R-CH3)
- for list of functions see: http://en.wikipedia.org/wiki/Functional_group
- https://en.wikibooks.org/wiki/Organic_Chemistry/Overview_of_Functi onal_Groups

Chemical function names

chemical_function_explicit_name varchar(255)	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	ChemF	F		Explicit developed name of the functional groups Notes: no isotopic species - with same ending as in 'chemical_function_name' except the type and level of ion is explicit: cation, dication, trication, quadrication, ..., anion, dianion, trianion, quadrianion, pentaanion, ... - it is some sort of extension to chemical functions of the official IUPAC naming convention of molecules Ex: ‘Carboxylate anion group', ‘Hydroxide anion group', ... Note: cf. http://en.wikipedia.org/wiki/Functional_group http://www.chemistry-drills.com/functional-groups.php?q=simple
Chemical function structure and atomic composition					
chemical_function_formula varchar(255) [species_formula]	$\begin{gathered} \mathrm{U} \\ {[!!\mathrm{m}]} \end{gathered}$	ChemF	F	--	Semi-developed (linear) chemical formula of the chemical function (functional group, ...) Syntax: LaTeX format Notes: - contain radical and ionic information - cf. http://en.wikipedia.org/wiki/Functional_group Ex: '\$lbullet SO_4^\{2-\}\$' for $\cdot \mathrm{SO}_{4}{ }^{2-}$ mineral anionic radical Latex writing of bonds: see "chemical_bond_formula"
chemical_function_chemical_form CS-varchar(255) ula [species_chemical_formula]	$\begin{gathered} \text { S0 } \\ \text { BL: S2 } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	ChemF	F	--	Simple chemical formula of the chemical function (functional group, ...) Ex: CH3O, SO4, COO-, O2, OO, ... Note: do not contain isotopic, radical, and conformational information but contains ionic information.

chemical_function_chemical_struc CS-varchar(255) ture_filename	$\begin{gathered} \mathrm{P} / \mathrm{U} \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	ChemF	F		File name (with extension) of the plot with 2D or 3D representation of the chemical structure of the functional group.
					Image formats: .png, .jpg, (.gif)
					Note: contain radical and ionic information Note: this file will be imported in the database
chemical_function_stoichiometric CS-varchar(255) _formula [-xml] [species_atomic_formula]	$\begin{gathered} \text { S0 } \\ \text { BL: S2 } \\ {[!\text { c] }} \end{gathered}$	ChemF	F	--	Stoichiometric chemical formula of the functional group. \rightarrow calculated from $=>$ "chemical_function_atom_uid" and "chemical_function_atom_number"
					Note: Suite of the atomic elements followed by the total number of their occurrence. The charge can be added with ' + ' or '-‘' sign followed by the charge number. This atom information are separated by a 'space'
					$\begin{aligned} \text { Ex: } & \\ & =\text { 'C H3' for }-\mathrm{C}-\mathrm{H}_{3}, \\ & -\mathrm{S} \mathrm{O} 4-2 \text { ' for } \cdot \mathrm{SO}_{4}{ }^{2-} \end{aligned}$
					Notes: - do not contain any radical or conformational information. - when there is only one occurrence (atom or charge) the ' 1 ' can be omitted - the chemical function is only described using the atoms with their natural terrestrial isotopic composition
					Note: For easier search this stoichiometric chemical formula is also stored in tables listing: - the atom => "chemical_function_atom_uid" - the total number of each atom $=>$ "chemical_function_atom_number" - the charge is stored in 'chemical_function_charge'
chemical_function_structural_for CS-varchar(255) mula [species_structural_formula]	$\begin{aligned} & \text { S2 } \\ & \text { BL: U } \\ & {\left[!_\mathrm{m}\right]} \end{aligned}$	ChemF	F	--	Semi-developed SMILES structural chemical formula of the functional group. Note: This formula includes the description of the atoms (no specific isotope), the charge and radical(s) of the chemical function.
					Note: We use the explicit SMILES formula with grouped H with heavier

```
chemical_function_chemical_func List [L1]
tions
chemical_function_chemical_func varchar(255)
tion_uid [*]
chemical_function_chemical_func varchar(255)
tion number
[species_chemical_function_numb
er]
```

[species_chemical_function_numb
er]

U ChemF F
[m] ChemF
L1
atoms and all in bracket (but no explicit simple bond except for multiple ones above 2).

Note: Extension of semi-developped SMILES (see
"molecule_structural_formula") to define the chemical functions and bonds.
We express also the 'external bonds':

$$
E x: \mathrm{R}=\mathrm{C}=\mathrm{O} \Rightarrow=[\mathrm{C}]=[\mathrm{O}]
$$

For radical: use '.'

$$
E x: \cdot \mathrm{SO}_{4}{ }^{2-}=>\quad .[\mathrm{O}-][\mathrm{S}]([\mathrm{O}])([\mathrm{O}])[\mathrm{O}-]
$$

For multiple external single bonds, $\mathrm{n}-1$ of these bonds are expressed as branched ' $(-)$ '. If there is a single and a double bond then only $(=)$ is expressed and no single bonds ($\mathrm{n}-1=0$).
£: Description of the functional groups of complex chemical functions

Link to the existing UID of the functional groups of complex chemical function

Note:

- permits to describe a complex chemical function in terms of simpler chemical functions (or moieties).
Ex: 'R-CH(NH2)-COOH' (amino acid): simple groups 'R-COOH', 'R-NH2'
'R-CH2-CH2-CH3' (propyl): simple groups 'R-CH2-R', 'R-CH3'
U ChemF F
[m] L1
-- Number of functional groups of each type composing the complex chemical function

[species_chemical_bond_uid] [!_m] L2 Note:
- These "chemical_bond_uid" should only refer to the generic bonds (with natural terrestrial abundance)
Ex: for RCH2OH:
'bonds' $=2 \mathrm{x}$ 'BOND_CH', 'BOND_CO', 'BOND_OH'
chemical_function_chemical_bon varchar(255)
d_number $[+]$
d_number [+]
[species_chemical_bond_number]

S3
BL: U
[!_m]

ChemF F
L2
-- Number of bonds of each type composing the chemical function Note:

- for all functional groups this number is the total number of this bond (no specific isotope).
 to allow calculation constituent and phase bond numbers with it.

chemical_function_atoms	List [LL $]$
chemical_function_atom_uid [*]	
[species_atom_uid]	varchar
chemical_function_atom_number int(11)	
[+]	
[species_atom_number]	

[!!]

S0b	ChemF	F
BL: U	Atom	
$\left[!!_m\right]$	L2	

£: Description of the atomic composition of the chemical function.

- Link to the existing UID of the atom (natural species only) composing the chemical function

Note: These "atom_uid" should only refer to the generic atoms (with natural terrestrial abundance)

Note:

- ' R ' is not included (not an atom!)
- no ions, as charge is frequently not localized on one atom

Note xml: practically the "atom_uid" can also be unambiguously found using "atom_symbol", "atomic_number_z" and "mass_number_a"

chemical_function_charge $[$ species_charge]	$\operatorname{int}(2)$	S2/S0b BL: U	ChemF	F

Ex: https://doi.org/10.1002/ejic. 200700067

| chemical_function_comments
 [species_comments] | blob | U |
| :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{m}]$ | | | $\mathrm{ChemF} \quad \mathrm{F} \quad--\quad$ Additional information on the chemical function

6.6 Molecules, Molecular Ions and Radicals Table

Root of the table: molecule
Data type: 'Species'
For "specie_family" = 'molecule'
Note: Only all the pure isotopic species, some substituted isotopic mixtures and the natural terrestrial isotopic mixture (with natural terrestrial composition) will be entered in the database as fundamental species. All other isotopic mixtures will need to be generated by data providers using a mixtuee of the pure isotopic species.

Key-word	Type	Level	Table	Exp	Unit	Description
Molecular species import						
molecule_import_mode [species_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{m}]} \end{gathered}$	Molec	(V)	--	Mode of import of the molecule data
						Enum: \{first import, (use existing), ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
molecule_xml_filename [-xml] [species_xml_filename]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{vc}]} \end{gathered}$	Molec	(V)	--	Name of the storage copy of the xml import file of the atom metadata
						$\boldsymbol{\rightarrow}$ determined automatically during import (from "molecule_uid»?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

Molecular species indexes and type

molecule_index [**][-xml] [species_index]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{B} \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	Molec	F	--	Automatic random but unique number (ID) given to new molecular species
molecule_uid [**] [species_uid]	CS- varchar(255)	$\begin{gathered} \text { S0 } \\ \text { BL: U } \end{gathered}$	Molec	F	--	Unique identifier code given (UID) to the molecular species table (to be created)
		[!! m]				Nomenclature: Create this UID with 'MOLEC_', 'MOLION_', 'MOLRAD_' 'MOLRADION_' depending on the molecular species type, followed by the molecule formula (or by the name for complex molecules) and then the ion

charge, if any. It should be unique. If a possible confusion exists between 2 species then add a small letter after (first letter of name, ...). For stereoisomers add its cap letter type ('R-', 'S-', ...) before.
Note: It should be of the style

- 'MOLEC_(Isotopic)ChemicalFormula(Letter)'
- 'MOLRAD_(Isotopic)ChemicalFormula(Letter)',
- 'MOLION_(Isotopic)ChemicalFormulaCharge(Letter)'
- 'MOLRADION_(Isotopic)ChemicalFormulaCharge(Letter)'
where '(Isotopic)ChemicalFormula' is the chemical formula of the molecular species, including the isotope mass number (preceding atom) for pure isotopic atoms and 'Charge' is the charge of the ion or ionic radical (charge sign '-' or ' + ' after the charge number), if not null.
Ex: 'MOLEC_CO2', 'MOLEC_13C16O18O', 'MOLEC_C3H4a', 'MOLEC_C3H4p', 'MOLEC_D-malic_acid', 'MOLION_CO2+', 'MOLRAD_OH'

Note:

- All the pure isotopic species and one 'natural isotopic mixture' (defined to have natural terrestrial composition) will be entered in the fundamental SSHADE database.
- Some substituted isotopic mixtures (the most important/commercially available ones) may be entered as fundamental species in the SSHADE database.
- All other natural, synthetic, labeled or substituted isotopic mixtures will be directly built in their "Sample" with
"constituent_specie_molecule" using the fundamental pure isotopic species (at least the - most abundant) to provide their effective isotopic atomic and molecular composition.
$E x$: fundamental species: 'MOLEC_CO’ ('generic isotopic mixture'), 'MOLEC_12C16O', 'MOLEC_12C17O', 'MOLEC_12C18O', 'MOLEC_13C16O', 'MOLEC_13C17O', 'MOLEC_13C18O'. $E x:{ }^{13} \mathrm{CO}$ (with O as an isotopic mixture) will refer to 'MOLEC_CO'

Molecule names and identifiers

molecule_name	varchar(255)	S0
$[$ species_name $]$		BL: S0
	$\left[!!_\mathrm{m}\right]$	

F
-- Generic name of the molecule, molecular ion, radical or ionic radical (the same for all isotopic species)

Notes:

- start with a capital letter
- it is used as the title of the molecule page on the SSHADE interface
- it has no isotopic information
- for amino acid and sugar enantiomers, add 'D-' or 'L-' before the name
- for the other enantiomers, add 'R-' or 'S-' before the name
- for some specific diastereomers the 'cis-', 'trans-' or 'alpha-', 'beta-' (anomers) prefixes are used.
- for the other diastereomers, add 'Z-‘, ‘E-‘, ‘P-‘, or 'M-‘ before the name
- for conformers the following prefixes are used: 'syn-', 'anti-‘, 'clinal-‘,'periplanar-‘, 'synperiplanar-‘', 'synclinal-‘,' 'anticlinal-‘, or their corresponding symbols: ‘s-‘, 'a-‘, 'c-', 'p-‘, 'sp-', 'sc-‘, 'ac', 'ap-' (cf. 'molecule_stereoisomer_conformer_synanti')
- a molecule name with 'racem-' prefix is a racemate (racemic mixture) of the 2 types of isomers. It will be only used in constituents as a $1: 1$ mixture of the 2 species.
- for spin isomers, add 'para-', 'ortho-', 'meta-', 'para-ortho-'...,

| | | | | |
| :--- | :--- | :--- | :---: | :---: | :---: |
| molecule_secondary_names | List $[\mathbf{L 0}]$ | $[\mathrm{O}]$ | | |
| molecule_secondary_name | varchar(255) | S0 | Molec | F |
| [species_secondary_name] | | BL: S0 | L0 | Aj |

Ex.: 'Water', 'Dioxygen', 'Dinitrogen', 'Methanol', 'Ethanol', ...
Ex: 'L-Malic acid', 'D-Malic acid', 'para-Water'
Note: ion names: http://www.geocities.ws/profmokeur/chimie/tableions.htm
For searching molecules:

- Wikipedia : https://en.wikipedia.org/wiki/Portal:Chemistry
- PubChem : https://pubchem.ncbi.nlm.nih.gov/compound/
- Guidechem: https://www.guidechem.com/encyclopedia
£: Alternative used names of the molecular species.
- Alternative used name of the molecular species (same or different for isotopic species)
Notes:
- start with a capital letter
- For isotopes add the mass number before the substituted atom(s)
- For enantiomers alternative names use '(+)-‘, ‘($(-)^{`}$ or add them after 'L-‘, 'D-‘

Ex: 'L-(+)-tartaric acid' for dextrotartaric acid

- A molecule name without isotopic mass number or stereoisomer prefix has the 'standard atomic composition' (IUPAC 2009) and is a racemic mixture of all possible types of isomers

Ex.: ‘Oxygen', 'Nitrogen', ‘Water', 'Methanol', 'Good gnole’ ... Ex: '13CO2', ‘Carbon-13C dioxide' for ${ }^{13} \mathrm{CO}_{2}$

molecule_iupac_name	$\operatorname{varchar}(255)$	S0	Molec	F
[species_official_name]		BL: S0 [!!_m]		

-- IUPAC unique name of the molecule, molecular ion, radical or ionic radical Notes:

- it is different for each isotopic species and each stereoisomer
- no IUPAC nomenclature currently exists for nuclear spin isomers but is under study by IUPAC.
Ex: '($1 \mathrm{H} 2,18 \mathrm{O})$ Water' for ${ }^{1} \mathrm{H}_{2}{ }^{18} \mathrm{O}$

molecule_inchi [species_inchi]	blob	$\begin{gathered} \text { S1 } \\ \text { BL: S1b } \\ {[!\mathrm{om} \mathrm{~m}]} \end{gathered}$	Molec	F	--	Standard InChI sequence: Condition: Mandatory only when "molecule_type"='molecule' Definition: IUPAC international chemical identifier, unique, of the molecule, ion, radical or ionic radical, natural or any type of isotopic composition. Notes: - Currently InChI did not take into account conformational isomers and nuclear spin isomers - for simplicity the InChI code must be entered without 'InChI='. This part will be added automatically during import. - when the molecule is a mixture of all isotopic species in natural or any other abundances there is no isotopic information, except if one atom is fully substituted.
						Ex: - (InChI=)' $1 \mathrm{~S} / \mathrm{CO} 2 / \mathrm{c} 2-1-3$ ' for CO_{2} 。 (InChI=)' $1 \mathrm{~S} / \mathrm{CO} 2 / \mathrm{c} 2-1-3 / \mathrm{i} 1+1$ ' for ${ }^{13} \mathrm{CO}_{2}$ - (InChI=)' $1 \mathrm{~S} / \mathrm{H} 2 \mathrm{O} / \mathrm{h} 1 \mathrm{H} 2 / \mathrm{i} 1+2 / \mathrm{hH} 2$ ' for $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ - ($\mathrm{InChI}=$)' $1 \mathrm{~S} / \mathrm{HO} / \mathrm{h} 1 \mathrm{H}$ ' or $\mathrm{InChI}=$ ' $1 \mathrm{~S} / \mathrm{H} 2 \mathrm{O} / \mathrm{h} 1 \mathrm{H} 2 / \mathrm{p}-1$ ' for hydroxyl radical $\cdot \mathrm{OH}$ o (InChI=)' $1 \mathrm{~S} / \mathrm{H} 2 \mathrm{O} / \mathrm{h} 1 \mathrm{H} 2 / \mathrm{p}-1$ ' for hydroxide ion $\mathrm{H}_{2} \mathrm{O}^{-}$ o (InChI=)' $1 \mathrm{~S} / \mathrm{C} 3 \mathrm{H} 6 \mathrm{O} 3 / \mathrm{c} 1-2(4) 3(5) 6 / \mathrm{h} 2,4 \mathrm{H}, 1 \mathrm{H} 3,(\mathrm{H}, 5,6) / \mathrm{t} 2-/ \mathrm{m} 0 / \mathrm{s} 1$ ' for (S)-(+)-lactic acid enantiomer
						Notes: - cf. http://www.vamdc.eu/documents/standards/inchi/index.html\#theinchikey - a software that can generate the InChI sequence and the InChIKey: "ACD/ChemSketch Freeware" (http://www.acdlabs.com/resources/freeware/chemsketch/)
molecule_inchikey [species_inchikey]	CS-	$\begin{gathered} \text { S1 } \\ \text { BL: S1b } \end{gathered}$	Molec	F	--	Standard InChI Key: InChI sequence coded over 25 characters (hash)

molecule_chemical_formula [species_chemical_formula]

- $\quad \mathrm{D}$ and T can be used for deuterium and tritium isotopes
- when the molecule is a mixture of all isotopic species in natural or any other abundances there is no isotopic information, except if one (or more) atom is fully substituted
- dot • (lbullet) for radicals
- dot • (lcdot) between ions
- 'molecule mers' should be put between bracket with radicals at both ends

Ex: \$1bullet[CH(C_4H_6NO)CH_2]lbullet\$ for Vinylpyrrolidone mer

- For stereo-isomers use either the CIP notation by adding 'X-' in front of the formula, where ' X ' can be $\{R, S, E, Z, P, M)$
- For enantiomers alternative writing use 'D-‘, 'L-', or '($(+)^{-}$, '(()$-$' and sometimes both

Ex: D-\$(COOH)CH_2CHOH $(\mathrm{COOH}) \$$ for D-Malic acid

- For some specific diastereomers the 'cis-', 'trans-' or 'alpha-', 'beta-' (anomers) notations are used. Old notations are: 'threo' and 'erythro'.
- For conformers the following prefixes are used: 'syn-‘, 'anti-‘, 'clinal', 'periplanar-', 'synperiplanar-', 'synclinal-', 'anticlinal-', or their corresponding symbols: ‘s-‘, 'a-‘, 'c-', 'p-‘, 'sp-‘, 'sc-‘, 'ac-‘, 'ap-’ (cf. 'molecule_stereoisomer_conformer_synanti')
- for spin isomers, add 'para-', 'ortho-', 'meta-'... before the name
- a molecule formula without isotopic mass number or stereoisomer prefix has the 'standard atomic composition' (IUPAC 2009) and is a racemic mixture of all possible types of isomers

$E x: \$\left(\wedge\{13\} C O _2\right) \$$: C is only (mostly) ${ }^{13} \mathrm{C}, \mathrm{O}$ is a mixture of the

 isotopic species_ LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf

CS-varchar(255) $\underset{ }{\text { SL: S0 }}$ Molec F
-- Simple chemical formula of the molecule, molecular ion, radical or ionic radical

Ex: CH3OH, C3H8, COOH, OCN-, or (CH3CH3O)2- (pour: trans$\left.\left({ }^{13} \mathrm{CDH}_{2}\right)_{2}^{18} \mathrm{O}^{2-}\right)$

Note:
molecule_isotopic_formula [species_chemical_formula]

CS-varchar(255) S0 Molec F BL: S2 [!!o_m]
molecule_chemical_structure_file CS-varchar(255) P/U Molec F name [!_m]

- only written with simple ascii characters
- do not contain isotopic, radical, spin isomer, stereoisomeric and conformational information but contains global ionic information.
- do not display the types of bonds
- only display internal ionic bonds with \cdot, without the charges
$E x: \mathrm{Na} \cdot \mathrm{Cl}\left(\operatorname{not} \mathrm{Na}^{+} \cdot \mathrm{Cl}^{-}\right)$
- display hydration with • (ascii \#149)

Ex: $\mathrm{Na} \cdot \mathrm{CO} 3 \cdot 2 \mathrm{H} 2 \mathrm{O}$

- this formula can be sometimes ambiguous for ions

Ex: $(\mathrm{CH} 3 \mathrm{CH} 3 \mathrm{O}) 2$ - can be $\left(\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{O}\right)^{2-}$ or $\left(\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{O}\right)_{2}{ }^{-}$

- Simple isotopic chemical formula of the molecule, molecular ion, radical or ionic radical

Condition: absolute mandatory when "molecule_isotope_mixture_type" = \{pure isotope, partly substituted\}

Nomenclature:

- write the atomic mass of the pure isotopic atoms between square brackets preceding the atom symbol. 'D' can be used for [2]H, T for [3]H
Ex: [13]C[16]O, [32]SO2, [12]C[18]O-, [18]O2, Na2[37]Cl, HDO, CH3[16]OD,
Note: do not contain radical, spin isomer, stereoisomeric and conformational information
-- Image file name (with extension) with 2D or 3D representation of the chemical and isotopic structure of the molecule, molecular ion, radical or ionic radical Image formats: .png, .jpg, (.gif)
Notes:
- contain isotopic, radical, conformational and ionic information.
- different for each enantiomer (mirroring)
- isotopic mixtures will refer to the 'non-isotopic' structure even with one (or more, but not all) atom(s) fully substituted [note: too complex to generate all structures for all substitution cases!]

molecule_stoichiometric_formula	CS-varchar(255)
[-xml $]$	SL
$[$ species_S2	
atomic_formula $]$	$\left[!_c\right]$

[species_atomic_formula]

Molec F BL:S2 [!_c]

- when the molecule is an equilibrium between two configuration: draw both configurations

$$
E x: \mathrm{N} 2 \mathrm{O}: \mathrm{N} \# \mathrm{~N}^{+}-\mathrm{O}^{-} \ll \mathrm{N}^{-}=\mathrm{N}^{+}=\mathrm{O}
$$

- isotopic species and mixtures will refer to the 'non-isotopic' structure Notes:
- this file will be imported in the database
- 3D active representation of the chemical structure of the molecule, molecular ion, radical or ionic radical will be obtained using InChI. $=>$ URL giving the 3D jmol http://chemapps.stolaf.edu/jmol/jmol.php or http://cactus.nci.nih.gov/chemical/structure choice: TwirlyMol(3D)
- Stoichiometric chemical formula of the molecule, molecular ion, radical or ionic radical.
\rightarrow calculated from $=>$ "molecule_atom_uid" and "_atom_number"
Definition: suite of the atomic elements followed by the total number of their occurrence. The isotopic number is added before each atom. The global charge of an ion can be added at the end (after a 'space') with ' + ' or '-' sign followed by the charge number. This atom information is separated by a 'space'

Ex.: ‘O2', 'N2', ‘13C H4 18O', ‘C2 H6 O', 'N2+', ‘C O2-2', ...
Notes:

- do not contain any radical or conformational information.
- when there is only one occurrence (atom or charge) the ' 1 ' should be omitted
- when the molecule is a mixture of all isotopic species in natural or any other abundances there is no isotopic information, except if one (or more) atom is fully substituted (ex: 13C O2: C is only (mostly) 13C, O is a mixture of the isotopic species)
Note: For easier search this stoichiometric chemical formula is also stored in tables listing:
- the atom => "molecule_atom_uid"
- the total number of each $\overline{-}$ atom $=>$ "molecule_atom_number"

molecule_charge [species_charge]	$\operatorname{int}(2)$	S2/S0b BL: U [!!_m]	Molec	F	no	Charge (positive or negative) of the molecular species
						Note: $=0$ for neutral molecules and molecular radicals, >0 or < 0 for molecular ions and ionic radicals
						Ex.: '+1', '-1'
molecule_unpaired_electrons [species_unpaired_electrons]	$\operatorname{int}(2)$	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Molec	F	no	Number (positive) of unpaired electrons of radical species Condition: mandatory only when "molecule_type" = \{molecular radical, molecular ionic radical\}
						Note: $=0$ for molecule or ions, >0 for radicals and ionic radicals

Molecule: Stereoisomers

Nomenclature:

- The letters R and S are conventionally printed in italic type, within parentheses, and separated from the rest of the name with a hyphen.
- R for «Rectus, right-handed stereoisomer» and S for « Sinister, lefthanded stereoisomer»
- For organic molecules with multiple asymmetric carbons, it is necessary to indicate the carbon location for each R or S symbol
Notes:
- Also known as 'optical isomers'
- the (S) and (R) designators are used to indicate the absolute stereochemistry.
* cis-trans diastereomer:

Definition: 'cis' indicates that the functional groups are on the same side of the carbon chain. 'trans' conveys that functional groups are on opposing sides of the carbon chain.

Notes:

- Also known as 'geometric isomerism' or 'configurational isomerism'
- cis/trans notation only describes relative stereochemistry and thus can be used to describe double bonds having only two substituents.
- cis/trans isomerism mostly exists with alkenes ($\mathrm{C}=\mathrm{C}$ bonds) but also with Diazenes and related diphosphenes ($\mathrm{N}=\mathrm{N}$ bonds) and inorganic coordination complexes with octahedral or square planar geometries.
Reference: https://en.wikipedia.org/wiki/Cis\�\�\�trans_isomerism
* E/Z stereo-isomers:

Definition: E-Z isomerism (IUPAC), which is an absolute stereochemical description based on the Cahn-Ingold-Prelog priority rules (CIP rules), is an extension of cis/trans notation to describe the absolute stereochemistry of double bonds having two, three or four substituents.

Nomenclature:

- The letters E and Z are conventionally printed in italic type, within parentheses, and separated from the rest of the name with a hyphen.
- For organic molecules with multiple double bonds, it is sometimes necessary to indicate the alkene location for each E or Z symbol.

Reference: https://en.wikipedia.org/wiki/E-Z_notation

* Anomers:

Definition: 'alpha' (α) or 'axial': when the anomeric hydroxyl group (-OH) and the terminal CH 2 OH group are on opposite sides of the cycle. 'beta' (β) or 'equatorial': when they are on the same side.
Reference: https://en.wikipedia.org/wiki/Anomer

* P/M atropisomers:

Definition: P/M atropisomers, which is an absolute stereochemical description based on the Cahn-Ingold-Prelog priority rules (CIP rules), are stereoisomers arising because of hindered rotation about a single bond, where energy differences due to steric strain or other contributors create a barrier to rotation high enough to allow for isolation of individual conformers.

- Conformers are stereoisomers that can be interconverted exclusively by rotations about formally single bonds).

Nomenclature:

- The letters P and M are conventionally printed in italic type, within parentheses, and separated from the rest of the name with a hyphen.
- P for clockwise and M for counterclockwise

Notes:

- atropisomers is a subclass of conformers which can be isolated as separate chemical species and which arise from restricted rotation about a single bond.
References:
- https://en.wikipedia.org/wiki/Atropisomer
* Conformational isomers:

Definition: conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted exclusively by rotations about formally sp^{3} hybridised (single) bonds.

- 'syn' (s): a torsion angle between 0° and $\pm 90^{\circ}$
- 'anti' (a): a torsion angle between $\pm 90^{\circ}$ and 180°
- 'clinal' (c): a torsion angle between 30° and 150° or between -30° and -150°
- 'periplanar' (p) : a torsion angle between 0° and $\pm 30^{\circ}$ or $\pm 150^{\circ}$ and 180°
- 'synperiplanar' (sp): a torsion angle between 0° and $\pm 30^{\circ}$
- 'synclinal' (sc): a torsion angle between 30° to 90° and -30° to -90°
- 'anticlinal' (ac): a torsion angle between 90° and 150° or -90° and 150°
- 'antiperiplanar' (ap): a torsion angle between $\pm 150^{\circ}$ and 180°

Notes:

- also referred to as conformational isomers or conformers and, specifically, as rotamers.
- these stereo-isomers cannot be isolated and always exist as a mixture in dynamical equilibrium
References:
- https://en.wikipedia.org/wiki/Conformational_isomerism
£: Relations of stereo-isomery existing between the molecular species and other molecular species
-- Relation of stereo-isomery existing with the molecular species
Enum: \{enantiomer, diastereomer, anomer, atropisomer, conformer, other, no \} Definitions:
- 'enantiomer': when two stereoisomers are related to each other by a reflection: They are mirror images of each other that are nonsuperimposable. Also known as 'optical isomers'
- 'diastereomer': when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other (for ex: when it has one or more double bonds with 2 to 4 substituents).
- 'anomer': when it has a single bonded ring structure
- 'conformer': when the single bond between the two centres is free to rotate
- 'atropisomer': when it has a hindered rotation around single bond
- 'other': for other types of stereo-isomers not listed above. Give the information in "molecule comments"
- ' $n o$ ': when the molecule has no stereoisomer

Notes:

- When two diastereoisomers differ from each other at only one stereocenter they are called 'epimers'.

Reference:

- https://en.wikipedia.org/wiki/Stereoisomerism

Molecule: Natural isotopic composition

molecule_isotope_mixture_type	enum(text)	S1
$[$ species_isotope_mixture_type]		BL: U
	$\left[!!_\mathrm{m}\right]$	

- Type of isotopic mixture of the molecule, molecular ion, radical or ionic radical
Enum: \{pure isotope, partly substituted, terrestrial abundance\}

Definitions:

- 'pure isotope': only a single isotopic species of the molecule, i.e. a completely substituted molecule.
- 'partly substituted': molecule with some atoms in natural isotopic abundance and one or more others that are fully substituted by pure isotopic species
- 'terrestrial abundance': mixture of all its isotopic species of the molecule in 'standard' natural terrestrial abundance. Its natural isotopic composition is given by default in the natural 'generic mixture' (i.e. the 'non-isotopic species') entered in the SSHADE database by "molecule_isotope_uid" and "molecule_isotope_mole_fraction" of each isotopic species as calculated using the standard terrestrial atom mole fractions given by IUPAC (2009).

molecule_isotope_molecule_uid [*] [species_isotope_specie_uid]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$				$£$: isotopic species contributing to the isotopic mixture of molecular species Condition: mandatory only when "molecule_isotope_mixture_type" = \{partly substituted, terrestrial abundance \}
			Molec Molec	F	--	Link to the existing UID of a pure isotopic species contributing to the isotopic molecular mixture
			L4b			Condition: mandatory only when "molecule_isotope_mixture_type" = \{partly substituted, terrestrial abundance\}
						Notes: - The list of all the isotopic species composing an isotopic mixture (with 'terrestrial abundance' or 'partly substituted') should be determined "by hand" as it depends on some symmetry elements of the molecule. - For big molecules composed of atoms having large numbers of isotopic species the list can be limited to the main isotopic molecular species (above some threshold value in abundance).
molecule_isotope_molecule_mole _fraction [+] [species_isotope_specie_mole_fra		$\underset{\left[!\mathrm{o} _\mathrm{m}\right]}{\mathrm{U}}$	Molec L4b	F	--	Mole fraction of the isotopic molecular species Condition: mandatory when the bloc is used

- value between 0 and 1
- For "isotope_mixture_type" = 'terrestrial abundance' the mole fractions should be determined using the standard terrestrial atom mole fractions given by IUPAC (2009)
- These abundances should be determined "by hand" as they depend on some symmetry elements of the molecule. The sum should be = ' 1 '
- For big molecules composed of atoms having large numbers of isotopic species, if not all species are listed the sum will be < '1.0' (but close to 1). Not a major problem.

Molecule nuclear spin isomer composition

molecule_nuclear_spin_type [species_nuclear_spin_type]	enum(text)	$\begin{gathered} \mathrm{S} 2 \\ \text { BL: S2 } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Molec	F		Nuclear spin isomer of the molecule, molecular ion, radical or ionic radical. Enum: \{equilibrated, para, ortho, meta, para-para, para-ortho, ortho-para, ortho-ortho, other, unique, unknown\} Condition: mandatory for "molecule_isotope_mixture_type" = 'pure isotope' Constraint: only for "molecule_isotope_mixture_type" = \{pure isotope, partly substituted $\}$ Definitions: - 'equilibrated': for equilibrated mixtures of at least 2 spin isomers (with value corresponding to the high temperature limit) - 'para': with total nuclear spin $\mathrm{I}=$ ' 0 ' or ' $1 / 2$ ' (singlet) - 'ortho': with total nuclear spin $\mathrm{I}=$ ' 1 ' or ' $3 / 2$ ' (triplet) - 'meta': with total nuclear spin $\mathrm{I}=2$ or $5 / 2$ (?) (quintuplet) - 'para-para': for cases where the molecule has 2 two different spin symmetries, such as for $\mathrm{CH}_{2} \mathrm{D}_{2}$. The first spin type refers to the first pair of symmetric atoms in the molecule formula, and the second type to the second pair. "molecule_nuclear_spin_qn_i" provides the detailed description Ex: ortho-para- $\mathrm{CH}_{2} \mathrm{D}_{2}$ - 'para-ortho': same as 'para-para' - 'ortho-para': same as 'para-para'

- 'ortho-ortho: same as 'para-para'
- 'other': for any other spin type or combination of two or more spin types within a molecular species. "molecule_nuclear_spin_qn_i" provides the detailed description
- 'unique': for the other molecules without spin isomers (with unique atoms, or not symmetric atoms, or with integer atom spin).
- 'unknown': unknown spin type

Notes:

- Spin isomers exist only for molecules having at least 2 identical atoms with non-nul spin, indiscernible with a symmetry operation of the molecule ($\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{CO}, \mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \ldots$), radical $\left(\cdot \mathrm{NH}_{2}, \ldots\right)$ or ion $\left(\mathrm{H}_{3}{ }^{+}, \mathrm{H}_{2} \mathrm{O}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}, \ldots\right)$
- Spin isomers can only be defined for a pure isotopic species, or for some partly substituded species where at least the atoms leading to the isomery are fully substituted.
- Combinaisons of spin isomers can occurs in some isotopologues with multiple symmetric pairs of atoms, for ex $\mathrm{CH}_{2} \mathrm{D}_{2}$ with ortho-para for both H_{2} and D_{2}

Condition: Mandatory when "molecule nuclear spin type" $=\{$ para, ortho, meta, para-para, para-ortho, ortho-para, ortho-ortho, other\}
Constraint: only when "molecule_nuclear_spin_type" = \{equilibrated, para, ortho, meta, para-para, para-ortho, ortho-para, ortho-ortho, other \}
Notes:
The rotational angular momentum (J) has different allowed values for merent spin isomers that forbid their interconversion. Each spin isomer has its own rotational levels
I should be positive and a multiple of $1 / 2$

- ' $0,1,2$ ’ for equilibrated mixture of spin isomers
- '0 (para-H2), 1 (ortho-D2)', '1/2 (para-H2), $3 / 2$ (ortho-D2)' for para-

molecule_nuclear_spin_equilibriu varchar(255) m_opr [species_nuclear_spin_equilibriu m_opr]

```
[species_nuclear_spin_isomer_spe
cie]
```

molecule_nuclear_spin_isomer_m CS-varchar(255) olecule_uid [*]	U	Molec
[!species_nuclear_spin_isomer_spe	Molec	
cie_uid]		L4c

molecule_nuclear_spin_isomer_m varchar(255)
olecule_mole_fraction
[species_nuclear_spin_isomer_spe cie_mole_fraction]

Condition: mandatory only when "molecule_nuclear_spin_type" = \{equilibrated\}
-- Link to the existing UID of a nuclar spin isomer contributing to the equilibrated mixture of spin isomers

Notes:

- The list of all the spin isomers (pure isotopic species) composing the equilibrated nuclear spin mixture should be determined "by hand" as it depends on some symmetry elements of the molecule.

F -- Equilibrium molar fraction and fractional abundance of the spin isomer at the high temperature limit
Format: provide both of them as 'mole fraction (fractional abundance)'
Ex: 'para- ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}{ }^{\prime}={ }^{\prime} 0.125(2 / 16)$ ', 'ortho- ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}{ }^{\prime}={ }^{\prime} 0.5625(9 / 16)$ ', 'meta-
${ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}{ }^{\prime}={ }^{\prime} 0.3125(5 / 16)$ ' for ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}$ (para:ortho:meta $=2: 9: 5$, idem for $\mathrm{NH}_{4}{ }^{+}$)
Notes:

- Molar fraction, value between 0 and 1
- fractional abundance: simple ratio between the number of isomer configurations and the total number of configurations of all isomers
- the sums should be = ' 1 '
- other nuclear spin isomer mixtures (synthetic, at low temperature, ...) should be defined in 'sample' by using a molecular mixture of pure spin isomers

Molecule symmetries

molecule_symmetry

| CS-enum(text) | S2
 BL: S2
 $\left[!!_m\right] ~$ |
| :---: | :---: | Molec \quad F

-- Symmetry (point group) of the molecule, molecular ion, radical or ionic radical.

Enum: $\{\mathrm{C} 1, \mathrm{Cs}, \mathrm{Ci}$, Cinfv, Dinfh, C2, C3, C2h, C3h, C2v, C3v, C4v, D2, D3, D2h, D3h, D4h, D5h, D6h, D2d, D3d, D4d, D5d, Td, Oh, Ih, no, unknown\} Notes:

- true writing of Schönflies symbols is with the number/letter after the
capital letter put in underscript. Ex: ' C 2 v ' $=>\mathrm{C}_{2 \mathrm{v}}$
- 'Dinfv' and 'Dinfh' are for $\mathrm{D}_{\infty v}$ and $\mathrm{D}_{\infty h}$
- for the isotopic mixtures with terrestrial abundance it is given for the main isotopic species $\left(\mathrm{Ex}:{ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}\right)$

References.:

- https://en.wikipedia.org/wiki/Molecular_symmetry

Description of the case category of molecular state for the molecule, molecular ion, radical or ionic radical.
Enum: \{diatomic, linear-triatomic, nonlinear-triatomic, spherical-top, symmetric-top, asymmetric-top, linear-polyatomic, nonlinear-polyatomic, complex $\}$

Note: Correspondance with XSAMS cases (we removed the difference between open/closed shell as we did not fully describe the electronic states):
'diatomic' = 'dcs', 'hunda', 'hundb'
'linear-triatomic' = 'ltcs', 'ltos'
'nonlinear-triatomic' = 'nltcs', 'nltos'
'spherical-top' $=$ 'sphcs', 'sphos'
'symmetric-top' $=$ 'stcs'
'asymmetric-top' = 'asymcs', 'asymos'
'linear-polyatomic' = 'lpcs', 'Ipos'
'nonlinear-polyatomic' $=($ not XSAMS cases $)$
'complex' $=($ not XSAMS cases $)$
Note:

- no difference between linear and nonlinear polyatomic in XSAMS
- 'complex' will be used for complex molecules when there is no possible description of states quantum numbers, but only normal vibration modes.
- the case is used as a constraint on the Quantum Numbers necessary to describe the state of molecules of this type. When a transition will refer to a state its value of "state_case" get the value "molecule_case" of the molecule subjected to the transition
- for the isotopic mixtures with terrestrial abundance it is given for the

```
main isotopic species (Ex: }\mp@subsup{}{}{12}\mp@subsup{\textrm{C}}{}{1}\mp@subsup{\textrm{H}}{4}{}
```


Molecule fundamental vibration modes

Note: for the isotopic mixtures with terrestrial abundance they are given for the main isotopic species (Ex: ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{4}$)
 the vibrational degree of freedom available:

- $3 \mathrm{~N}-6$ for a nonlinear molecule
- $3 \mathrm{~N}-5$ for a linear molecule
- This number takes into account the multiplicity of degenerated modes

molecule_vibrations	List [L5]	[O]				£: Fundamental internal vibrations of the molecular species.
						Condition: Optional bloc - Mandatory active below when "molecule_vibration_mode" \neq 'NULL'
molecule_vibration_mode	enum(text)	$\begin{aligned} & \text { S2 } \\ & \text { BL: U } \\ & \text { [(!!)do } \\ & \text { _m] } \end{aligned}$	MolecL5	F	--	Type of fundamental internal vibration mode of the free molecule, molecular ion or radical.
						Enum: \{stretching, stretching sym., stretching asym., bending, bending in-p, bending out-p, bending sym., bending asym., bending sym. in -p (scissoring), bending asym. in -p (rocking), bending sym. out-p (wagging), bending asym. out-p (twisting), deformation, deformation in-p, deformation out-p, deformation sym., deformation asym., stretching overtone, bending overtone, combination, other, unknown\}
						Default = 'NULL'
						Condition: (option trigger) the filling of this KW is 'absolute mandatory' when this optional bloc is used. It triggers the 'mandatory' status of several others KW in the optional bloc.
						Definitions:

- 'stretching': a change in the length of a bond

Ex: C-H, C-C

- 'stretching sym.': symmetric stretching mode that concerns at least 3 atoms and is symmetric relative to the central atom
- 'stretching asym, stretching antisym.': a(nti)symmetric stretching mode that concerns at least 3 atoms and is antisymmetric relative to the central atom
- 'bending': a change in the angle between two bonds
$E x$: the HCH angle in a methylene group
- 'bending in-p': in-plane bending (can be rocking or scissoring)
- 'bending out-p': out-of-plane bending (can be wagging or twisting)
- 'bending sym.': symmetric bending (can be wagging or scissoring)
- 'bending asym., bending antisym': a(nti)symmetric bending (can be rocking or twisting)
- 'bending sym. in-p (scissoring)': symmetric in-plane bending

Note: mostly for bending with symmetric atoms (ex: H2O, ...),

- 'bending asym. in-p (rocking), bending antisym. in-p (rocking)': a change in angle between a group of atoms.
$E x$: a ethylene group relative to the rest of the C 2 H 4 molecule
- 'bending sym. out-p (wagging)': a change in angle between the plane of a group of atoms,

Ex: a methylene group from the plane through the rest of the C 2 H 4 molecule,

- 'bending asym. out-p (twisting), bending antisym. out-p (twisting)': a change in the angle between the planes of two groups of atoms.

Note: also called 'torsion' for twisting of a bond in large molecules $E x$: a change in the angle between the two ethylene groups in C 2 H 4

- 'deformation': a combination of two or more of the different types of bending modes
- 'deformation sym.': a combination of two or more of the different types of symmetric bending modes
- 'deformation asym.': a combination of two or more of the different types of bending modes, one at least is a(nti)symmetric.

Note: used in particular for bending with asymmetric atoms or in
complex molecules

- 'deformation in-p': a combination of two or more of the different types of bending modes leading in a in-plane deformation
- 'deformation out-p': a combination of two or more of the different types of bending modes leading in a out-of-plane deformation
- 'other': other mode which cannot be described with one or the above term. Need to provide information on this other type in "molecule_vibration_comments"
- 'unknown': unknown mode of vibration

Notes:

- 'xxx sym.' (symmetric) attribute telling that the vibration concerns at least 3 atoms and is symmetric relative to the central atom
- 'xxx asym., xxx antisym.' $:($ (a(nti) symmetric) attribute telling that the vibration concerns at least 3 atoms and is a(nti)symmetric relative to the central atom
- 'xxx in-p': (in-plane) attribute telling that all the changes in the angle of the bonds occurs in the plane defined by the remaining atoms of the molecule
- ' $x x x$ out-p': (out-of plane) attribute telling that the change in the angle occurs between any one of the bonds and the plane defined by the remaining atoms of the molecule
$E x$: a change in the angle between any one of the C-H bonds and the plane defined by the remaining atoms of the ethylene molecule.
$E x$: in BF3 when the boron atom moves in and out of the plane of the three fluorine atoms.
- the 'antisym.' modes have been depreciated and replaced by 'asym.' modes

Notes on other attributes:
A few additional attributes to vibration modes are generally found in the literature:

- 'ring $x x x$ ': attribute telling that the vibration mode concerns a molecular ring.

```
\(\Rightarrow\) this complementary information is given by
    "chemical_bond_formula" of
```

"molecule_vibration_chemical_bond_uid"
Ex: S8, C6H6, ...

- 'degenerate $x x x$ ': attribute telling that the vibration mode is doubly, or more, degenerated (and has no other attribute).
\Rightarrow this complementary information is given in "molecule_vibration_degeneracy"
Note: basic definitions at:
http://en.wikipedia.org/wiki/Vibrational_spectroscopy
https://en.wikipedia.org/wiki/Molecular_vibration
http://chemwiki.ucdavis.edu/Core/Physical_Chemistry/Spectroscopy/Vibr ational_Spectroscopy/Vibrational_Modes/Normal_Modes
molecule_vibration_chemical_bon varchar(255) d_uid [*]
-- Link to the existing UID of the bond, part of the molecular species, or whole molecule, subjected to the fundamental vibration
Condition: Mandatory only if "molecule_vibration_mode" $=$ 'NULL'
Note: the UID starts with either 'BOND_', MOLECPART_', or 'MOLEC' depending on the number of bonds involved and size of the molecule, see below

Notes:

- The bond (2 bonded atoms) is always a specific isotopic bond whatever for natural terrestrial isotopic mixtures, partially isotopic substituted molecules, a pure isotopic molecules.
- In the first case it will be generally the bond made with the major isotopic species of both atoms (if largely dominant, such as for 1 H , $12 \mathrm{C}, 16 \mathrm{O}, 14 \mathrm{~N} \ldots$). In case of atoms with 2 isotopic species of equivalent abundance (ex: 35 Cl and 37 Cl) it will be necessary to create a partly substituted bond to link with it here (ex: $\mathrm{Cl} 16 \mathrm{O}, \mathrm{Cl}$ being 'natural').
- For partially isotopic substituted moleculesthe bond will that of the substituted isotopic atom with the major isotopic species of the second atom.
Notes:
- when more than one bond (generally 2 or 3) are involved in the

molecule_vibration_label	varchar(255)	$\underset{[!\text { !o_m] }}{\mathrm{S} \text { U }}$	Minalac F L5		Labels of the normal mode of vibrations of the molecular species Condition: Mandatory only if "molecule_vibration_mode" \neq 'NULL' Note: First letter should be ' V ' followed by an integer: ' Vi '. When there is only one vibration mode (diatomic molecules) it will be simply ' V ' Ex: ‘V1', ‘V2', ...
molecule_vibration_symmetry	CS- enum(text)	$\underset{[\mathrm{m}]}{\mathrm{S}}$	Mialac FL5	F -- --	Point group symmetries of the normal modes of vibration of the molecular species
					Enum: \{A, Ap, As, A1, A1p, A1s, A2, A2p, A2s, B, B1, B2, B3, E, Ep, Es, E1, E1p, E1s, E2, E2p, E2s, E3, F, F1, F2, Sigma+, Sigma-, Pi, Phi, Delta \}
					Condition: only for isotopic species (if "molecule_isotope_mixture_type" = 'pure isotope')
					Note: The "prime" in A', and the "second" in A" are respectivement noted 'p' and ' s ' Ex: $\{\mathrm{A} 1 \mathrm{p}, \mathrm{A} 1 \mathrm{~s}\}$
molecule_vibration_degeneracy	enum(text)	S S2	Minalac F	F	Degeneracy of the mode of vibration of the free molecule
					Enum: \{no, double, triple, quadruple\}

	[!o_m]	L5		Condition: Mandatory only if "molecule_vibration_mode" $=$ ' ${ }^{\text {NULL }}$
				Note: degeneracy is function of vibration symmetry: - 'no': A, A1, A2, (+ p, s), B, B1, B2, B3, Sigma+ - 'double’: E, E1, E2 (+ p, s), Pi - 'triple': F2 - 'quadruple':
molecule_vibration_fundamental_ float frequency	$\underset{[\mathrm{m}]}{\mathrm{S} \text { U }}$	Mineac F F L5		Fundamental frequency of the normal mode of vibration of the molecular species - stored in the database and provided to user in ' $\mathrm{cm}-1$ ' unit Condition: only for isotopic species (if "molecule_isotope_mixture_type" = 'pure isotope')
				Note: The normal modes of the free molecule are given only for the ground electronic state
molecule_vibration_observed_freq float uency	SS3 BL: U [!o_m]	$\begin{aligned} & \text { Mipeac F F } \\ & \text { L5 } \end{aligned}$	-cm-1	Observed frequency of the normal mode of vibration of the molecular species - stored in the database and provided to user in ' $\mathrm{cm}-1$ ' unit Condition: Mandatory only if "molecule_vibration_mode" $=$ ' N NLL'
				Note: The observed mode is significantly different from the fundamental mode when there is resonance (Fermi, ...) with another mode.
molecule_vibration_observed_freq float uency_2	$\begin{aligned} & \text { SS3 } \\ & \text { BL: U } \\ & {[\mathrm{m}]} \end{aligned}$	Minacac F F L5	-cm-1	Second observed frequency of the normal mode of vibration of the molecular species - stored in the database and provided to user in ' $\mathrm{cm}-1$ ' unit
				Note: a second observed mode frequently appear when there is resonance (Fermi, ...) with another mode.
molecule_vibration_harmonic_fre float quency	$\begin{aligned} & \mathrm{S} \mathrm{U} \\ & {\left[\mathrm{o} _\mathrm{m}\right]} \end{aligned}$	$\begin{aligned} & \text { Minipec F F } \\ & \text { L5 } \end{aligned}$	-cm-1	Harmonic frequency of the normal mode of vibration of the molecular species - stored in the database and provided to user in ' $\mathrm{cm}-1$ ' unit
				Condition: only for isotopic species (if "molecule_isotope_mixture_type" =

the major isotopic species (>95\%).

molecule_vibration_comments	blob	$\underset{[\mathrm{m}]}{\mathrm{S} \mathrm{U}}$	Minatac F L5	F		Comments on this normal mode of vibration of the molecular species
molecule_vibrations_comments	blob	$\underset{[\mathrm{m}]}{\mathrm{S} \mathrm{U}}$	Miatac F	F	-- --	General comments on the normal modes of vibration of the molecular species
molecule_vibrations_publications molecule_vibrations_publication_ uid [*]	List [L4] $\operatorname{varchar}(255)$	[O]				$£$: Publications describing the fundamental vibrations of the molecular species
		$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Molec Publi	F	--	Link to the existing UID of the publication or database(s) in which information on these normal modes of vibration of the molecular species have been published
						Condition: only for isotopic species (if "molecule_isotope_mixture_type" = 'pure isotope')

Molecule properties

molecule_molar_mass
[species_molar_mass]

S3 Molec
BL: F
B
[!_m]

Note:

- For isotopes this "molecule molar mass" is equivalent (in number) to the "molecular mass" in unified atomic mass units ('u', formerly noted 'amu'). It is taken from IUPAC tables.
- This "molecular mass" is not defined for mixtures.
- For an isotopic mixture the molar mass is determined by the sum of "molecule_molar_mass" weighted by their "molecule_isotope_molecule_mole_fraction" for all isotopic molecular species composing the mixture.
- For the terrestrial standard isotopic mixture the "molecule_isotope_molecule_mole_fraction" determined using the standard terrestrial atom mole fractions given by IUPAC (2009) is

- 'nonpolar': a molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule.
- 'polar': a polar molecule has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from polar bonds arranged asymmetrically
- 'ionic': a molecule in which the total number of electrons is not equal to the total number of protons, giving the atom or molecule a net positive or negative electrical charge. Also molecules with local positive and negative electrical charges that compensate (salts...)
- 'amphiphilic ': Large molecules that have one end with polar groups (hydrophilic) attached and another end with nonpolar groups (hydrophobic, lipophilic) are described as amphiphilic molecules (or amphiphiles).
From: https://en.wikipedia.org/wiki/Chemical_polarity

molecule_dipole	float	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {[\mathrm{m}]} \end{gathered}$	Molec	F	D	Permanent dipole moment of the molecular species - stored in the database and provided to user in 'debye (D)' unit
Molecule references and comments						
molecule_links	List [L6]	[O]				£: Web pages describing the molecular species and its properties.
molecule_link_name [species_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MolecL6	F	--	Name of the web page describing molecule, molecular ion, radical or ionic radical and its properties.
						Ex: 'Wikipedia', 'NIST Chemistry Webbook', 'HITRAN', ...
molecule_link_url [species_link_url]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Molec L6	F	--	URL address of web page describing the molecule, molecular ion, radical or ionic radical and its properties.
						Notes:

- you can link to a publication by giving its url address, preferably through its DOI.
Ex: https://doi.org/10.1002/ejic. 200700067

molecule_comments	blob	U	Molec	F	--	Additional information on molecular species (major isotopic molecular $[$ species_comments $]$
			Aj		species, \ldots)	

7. Fundamental Phases

7.1 Definition

The "Fundamental phases" are the basic building pieces of the materials of the samples and matters. They are grouped in 5 main families with common properties: 'molecular solids', 'ionic solids', 'covalent network solids', 'metallic solids', and 'minerals'. We also consider 'liquids' as a special fundamental constituent.

Definitions:

- 'molecular solids': Made up of atoms or molecules held together by London dispersion forces, dipole-dipole forces, or hydrogen bonds.
- 'ionic solids': Made up of positive and negative ions and held together by electrostatic attractions.
- 'covalent network solids' (glasses, ceramics, and polymeric solids): Made up of atoms connected by covalent bonds in a continuous network extending throughout the material. In a network solid there are no individual molecules, and the entire crystal or amorphous solid may be considered a macromolecule.
- 'metallic solids': Made up of metal atoms that are held together by metallic bonds.
- 'minerals': any of the above type of solid but of natural origin
- 'liquids': any of the above type of solid but in the liquid phase (molecular, ionic, atomic, metallic)

The four classes of solids permit six pairwise intermediate forms
Refs:

- Properties of Solids: http://www.chem.fsu.edu/chemlab/chm1046course/solids.html)
- Bonding in solids: $\underline{\text { https://en.wikipedia.org/wiki/Bonding_in_solids }}$

In addition there are two main categories of solid phases: Crystalline solids and amorphous solids.

- Crystalline solids are those in which the atoms, ions, or molecules that make up the solid exist in a regular, well-defined arrangement. The smallest repeating pattern of crystalline solids is known as the unit cell, and unit cells are like bricks in a wall-they are all identical and repeating.
- Amorphous solids do not have much order in their structures. Though their molecules are close together and have little freedom to move, they are not arranged in a regular order as are those in crystalline solids.

The "mineral and rock matters" (see ${ }^{* * *}$) as well as some "extraterrestrial matters" refer to the mineral phases to define the fundamental minerals that form them.

7.2 Classification of the fundamental phases

Each of these families includes several types of constituents:
FIRST DRAFT of SOLIDS CLASSIFICATION ! (family(major class)/class/type/group/code) => see file "solids_classification.docx"
\square Minerals

- Native element
- Non-silicate mineral
- Silicate mineral
- Organic mineralSolids
- I - Molecular solids
- 01- Non polar molecules (London dispersion forces)
- 02 - Polar molecules (dipole-dipole forces)
- 03 - Polar hydrogen bonded molecules (hydrogen bonding)
- 04 - Mixed (non polar and polar and/or hydrogen bonded)
- II - Ionic solids
- 05 - Acid salts $\left(\mathrm{H}^{+}\right)$
- 06 - Alkali (basic) salts $\left(\mathrm{OH}^{-}, \mathrm{O}^{2-}\right)$
- 07 - Normal salts (no H^{+}and OH^{-})
- 08 - Mixed salts
- III - Covalent network solids (or atomic-covalent solids)
- 09 - Chain covalent network (polymers, ...)
- 10 - Sheets covalent network (graphite, ...)
- 11 - Tridimentional covalent network (Ceramics, diamond, quartz, ...)
- 12 - glasses (disordered covalent network)
- IV - Metallic solids
- 13-True metals
- 14 - Pseudometals (semi-conductors)

\square Liquids

- Molecular liquid
- Atomic liquid
- Ionic liquid
- Metallic liquid
- Liquid solution
* Mineral phases describes pure minerals, solid solution series and hydration series. They are found in nature are officially classified, defined and named. Some simple synthetic minerals can also be defined as fundamental species if they have been officially recognized and fully characterized. The others synthetic minerals, as well as isotopic substituted minerals will be defined as mineral matters and characterized by their formation processes and the elemental composition of their constituents.
- Mineral phases need their own set of key-words. They will be defined by their "family and names", "elemental and chemical compositions", "mineral classification", and "crystallographic structure". Some characteristic "optical properties"and "general properties" are also provided.

7.3 Liquid phase Table

Root of the table: liquid

Data type: ‘Fundamental phase'
Notes:

- In "Exp" column 'VL' means a variable key-word of the fundamental liquid phase: when defining a "sample" or a "matter" containing fundamental liquid phases (described in "basic constituents") the VL values in "liquid phase" can be modified (but will not be changed in the fundamental liquid database) to reflect the exact liquid properties (for exemple for liquid solutions). See specific notes in Variable: liquid in Sample and Matters
- currently there is no way to define isotopic mixtures of liquids (only natural terrestrial, pure isotopic mixtures or pure isotopic substitution of molecules are possible)

Key-word	Type	Level	Table	Exp	Unit	Description
phase_polymorphic_type [-xml]	enum(text) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { vc] }]} \end{gathered}$	Liquid	(V)		Type of phase Enum: \{liquid\}
Liquid phase import						
liquid_import_mode [phase_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Liquid	(V)	--	Mode of import of the liquid data Enum: \{first import, ignore, draft, no change, correction \} Definitions: see "sample_import_mode"
liquid_xml_filename [-xml] [phase_xml_filename]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	Liquid	(V)	--	Name of the storage copy of the xml import file of the liquid metadata \rightarrow determined automatically during import (from "liquid_uid»?) Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

Liquid indexes and type

liquid_index [**][-xml] $\quad \operatorname{int}(10) \quad$ B \quad Liquid \quad F $\quad--\quad$ Automatic random but unique number (ID) given to new liquid
[phase_index]

Note: If a possible confusion between 2 solutions (but not for generic solution) then add 'MoleFraction' the "liquid_specie_mole_fraction" of the solute (in \%).

Ex:

- 'LIQUIDSERIES_HCl_H2O' for HCl in H 2 O
- 'LIQUID_HCl_H2O_10' for $10 \% \mathrm{HCl}$ in H 2 O

Note: The fundamental liquid phases stored in the database will be, by default, with natural terrestrial abundance.

Liquid names and identifiers

liquid_official_name
[phase_official_name]
$\operatorname{varchar(255)} \begin{gathered}\text { S0/S0c/S0 } \\ \text { BL. }\end{gathered}$
BL: S1
[!!_m]

Official name of the liquid
Ex: 'sulfuric acid solution'

[phase_secondary_names]						
liquid_secondary_name [phase_secondary_name]	varchar(255)	$\begin{gathered} \text { S0/S0c/S0 } \\ \text { BL: S1 } \\ {[\mathrm{m}]} \end{gathered}$	Liquid L0	F		Alternative name(s) used for the liquid Notes: - start with a capital letter Ex.: ‘vitriol', ...
liquid_cas_number [phase_cas_number]	varchar(255)	$\begin{gathered} \text { S1/S1c/S2 } \\ \text { BL: S1b } \\ {[\mathrm{m}]} \end{gathered}$	Liquid	F	--	CAS registry number, unique, of the liquid (natural and isotopic species) Note: the problem is to found them !!! no registry, not systematic! - a CAS number is generally not linked to a phase but to composition, so not necessary a specific CAS number for the liquid
Liquid family						
liquid_family [constituent/phase_family]	enum(text)	$\begin{aligned} & \text { S1/S1c/S1 } \\ & \text { BL: S1 } \\ & {\left[!!_m\right]} \end{aligned}$	Liquid	F	--	Phase family (or major class) of liquid Enum: \{molecular liquid, atomic liquid, ionic liquid, metallic liquid, liquid solution\} Definitions: see in "constituent_family"
liquid_class [constituent/phase_class]	enum(text)	$\begin{gathered} \text { S1/S1c/S1 } \\ \text { BL: S1b } \\ {\left[!!_m\right]} \end{gathered}$	Solid	F	--	Class of liquid Enum: \{non polar molecular liquid, polar molecular liquid, hydrogen bonded molecular liquid, molecular liquid solution, atomic liquid, atomic liquid solution, ionic liquid, ionic liquid solution, metallic liquid, metallic liquid solution, mixed liquid solution\} Definitions: - For molecular liquids: - 'non polar molecular liquid': liquid made of non polar molecular species - 'polar molecular liquid': liquid made of polar molecular species - 'hydrogen bonded molecular liquid': liquid made of hydrogen

liquid_compound_type	openum(text)	S0/S0c/S0 [phase_compound_type]	BL: S0
	$\left[!_\mathrm{m}\right]$		

bonded molecular species

- 'molecular liquid solution': homogeneous liquid mixture of molecular species
- For atomic liquids:
- 'atomic liquid': liquid made of a single atomic species
- 'atomic liquid solution': homogeneous liquid mixture of atomic species
- For ionic liquids:
- 'ionic liquid’: liquid made of ionic species (molten salts)
- 'ionic liquid solution': homogeneous liquid mixture of ionic and molecular species
- For metallic liquids:
- 'metallic liquid': molten metal
- 'metallic liquid solution': homogeneous liquid mixture of metallic species
- 'mixed liquid solution': homogeneous liquid mixture of different types of species

Notes.

- Equivalent to "constituent_class"
-- General type of liquid compound
OpenEnum: \{liquid, liquid solution, weak acid, strong acid, weak base, strong base, liquid salt, organic liquid, other compound\}
Definitions:
- 'liquid': liquid composed of a single molecular, atomic or ionic species
- 'liquid solution': homogeneous liquid mixture of species (solute: initially gas, liquid or solid) dissolved in another species (solvent) in the liquid state
- 'other compound': compounds which cannot be described by one of the above words (describe in "liquid_comments")

Notes:

- same compound types for "constituent_compound_type". It will be

used for main search.

liquid_solution_type	enum(text)	S1/S2c BL: U [!o_m]	Liquid	F	Type of liquid solution Enum: \{polar protic solution, polar aprotic solution, apolar solution\} Condition: Mandatory and only when "liquid_family" = \{liquid solution $\}$ Definitions: - 'polar protic solution': solution with polar solvent containing H atom (dielectric constant > 15) \Rightarrow 'polar aprotic solution': solution with polar solvent without H atom (dielectric constant > 15) \Rightarrow 'apolar solution': solution with apolar solvent (dielectric constant < 15)

Liquid endmembers

liquid_endmembers [phase_endmembers]	List [L1]	[!o]				$£:$ List of the endmember liquids of the series Condition: mandatory only when "liquid_family" = \{liquid solution $\}$
liquid_endmember_liquid_uid [*] [phase_endmembers_phase_uid]	varchar(255)	$\stackrel{\mathrm{U}}{\left[!\mathrm{o} _\mathrm{m}\right]}$	Liquid Liquid L1	F	--	Link to the existing UID of the endmember liquids of the series Ex:
liquid_figures	List [L2]					$£:$ List of the figures on the liquid
liquid_figure_filename [phase_figure_filename]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid L2	F	--	File name (with extension) of the figure on the liquid Image formats: .png, .jpg, (.gif) Notes: - mostly for solution series - can be a liquid-solid phase diagram - can be a (end)members diagram of a liquid solution series ...

Note DB: this file will be imported in the database

liquid_figure_caption	varchar(255)	U	Liquid	F	--	Caption or comments on the figure on the liquid
$[$ [mase_figure_caption]		L 2		Ex:		
				Note: should include credits when necessary		

Liquid composition

liquid_formula [phase_formula]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[!!\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Liquid V			Developed (empirical) chemical formula of the liquid Syntax: Latex format Ex: - '\$H 2O\$' for $\mathrm{H}_{2} \mathrm{O}$ - '\$(N_2) coolon (CH_4)_\{n\}\$' for (N2):(CH4) ${ }_{n}$ - '\$NH_3 bullet ($\left.\mathrm{H}_{-} _\overline{2} \mathrm{O}\right) _\{\mathrm{n}\} \$$ ' for $\mathrm{NH}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ Notations: - Colon (: or \colon) can separate molecules in liquid solution - Dot • (lbullet) separates hydration - LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf Variable: liquid in Sample and Matters Notes: - Can contain isotopic information when an atom is substituted in a molecule $E x:{ }^{18} \mathrm{H}_{2} \mathrm{O}$
liquid_chemical_formula [phase_chemical_formula]	CS- varchar(255)	$\begin{aligned} & \text { S0/S0c/S1 } \\ & \text { BL: S1 } \\ & {[!!\mathrm{m}]} \\ & {[\mathrm{V}: \mathrm{m}]} \end{aligned}$	Liquid	VL	--	Developed global chemical formula of the liquid Ex: - '(N2:CH4)', or '(N2):0.03(CH4)' for 3\% CH_{4} in liquid solution in N_{2} - ‘NH3•(H2O)n’ for NH3 hydrated in H2O Notes: - can contain ionic information. - liquid solution series are indicated by colon separating the molecules

that varies in amount. The more dominant molecule is usually listed first.

- big point ' \cdot ' (ascii=149) separates hydration in ()
- For liquid with non-natural isotopic abundance, substituted atoms will have their atomic mass between square brackets preceding the atom symbol. D can be used for ${ }^{2} \mathrm{H}$.

$$
E x: \text { 'NH3•(D2[18]O)n’ }
$$

Variable: liquid in Sample and Matters
Developed global chemical and structural formula of the actual liquid

Liquid chemical functions				
liquid_chemical_functions	List [L3a]	$\begin{gathered} {[\mathrm{O}]} \\ {\left[\mathrm{V}: £ _\mathrm{m}\right]} \\ \text { [V Flag: } \\ \text { !!o_m] } \end{gathered}$	VL	£: List of different chemical functions present in the liquid
				Note: this keyword lists all inter-molecular chemical functions, except those already in the molecular species and anionic radicals described as 'species' of the liquid
				Variable: liquid in Sample and Matters
				Condition: compulsory to list the new inter-molecular chemical functions and the intra-molecular chemical functions with changing 'number'
				Flag 'full_definition': \{yes, no\}
				Condition: Flag absolute mandatory when "solid_chemical_function_uid" $\neq \varnothing$
				Definitions:
				- 'yes': fully replace the original list of chemical functions defined in the 'fundamental liquid phase'. Need to fully redefine it.
				- ' $n o$ ': only to add new chemical functions to the original list and modify some already defined (they should have the same
				"liquid_chemical_function_uid" than the original chemical function to be modified).
				Note: the flag 'full_definition' allows to control the mode of definition of the

					chemical functions of the actual liquid.
liquid_chemical_function_uid [*] varchar(255) [phase_chemical_function_uid]	S2/S2c BL: Sli2 [!o_m] [V: ££o_m]	Liquid ChemF L3a	VL	--	Link to the existing UID of the chemical function present in the liquid Condition: mandatory when "liquid_chemical_function_number" $\neq \varnothing$ (i.e. the bloc is used) Note: If the liquid is described in terms of molecular species with "liquid_specie_uid" their chemical functions (already implicitely taken into account) should not be listed here. - it is mostly used to describe chemical functions when a molecular liquid is described in terms of atoms or when it cannot be fully described in terms of molecules
					Variable: liquid in Sample and Matters
					Condition: absolute compulsory when the bloc is used
```liquid_chemical_function_number varchar(255) [+] [phase_chemical_function_numbe r]```	$\begin{gathered} \text { S3/S3c } \\ \text { BL: U } \\ {[\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Liquid L3a		--	Number or range of numbers of this chemical function present in the liquid   Calculation for display:   Condition: when all "liquid_specie_mole_fraction" $\neq\{\varnothing$, NULL $\}$   - $\mathrm{n}($ function_i $)=[$ liquid_chemical_function_number(function_i) + $\sum_{\text {molecule_j }}$ (liquid_specie_mole_fraction(molecule_j) *   specie_chemical_function_number(molecule_j,function_i) +   liquid_specie_number_min(function_i))]/   [liquid_chemical_function_number(function_i) $+\sum_{\text {function_i }}\left[\sum_{\text {molecule_ }}\right.$ i   ("liquid_specie_mole_fraction(molecule_j) *   specie_chemical_function_number(molecule_j,function_i) + liquid_specie_number_min(function_i))]]
					Variable: liquid in Sample and Matters
					Actual number of the chemical functions
liquid_chemical_bonds List [L3b]	[!O]				£: List of the inter-molecular bonds and ionic bonds of the liquid, except those already in the molecular species and anionic radicals described as 'species' of


liquid_chemical_bond_uid [*] [phase_chemical_bond_uid]	varchar(255)	S2/S1c BL: Sli2 [!o_m]	Liquid   ChemB   L3b	F		Link to the existing UID of the inter-molecular bonds and ionic bonds of the liquid   Note:   - The chemical bonds used for liquids are only 'generic mixture' with terrestrial abundance   Ex: for liquid $\mathrm{H}_{2} \mathrm{O}: 2 \mathrm{x}$ 'BOND_HhO'   - For isotopic substituted liquids made of at least one molecule with a purely isotopic atom the bonds are the isotopic bonds using the pure isotopic atom(s) and only the main isotope of the others
liquid_chemical_bond_number   [+]   [phase_chemical_bond_number]	$\operatorname{varchar}(255)$	$\begin{aligned} & \text { S3/S3c } \\ & \text { BL: U } \\ & {\left[!\mathrm{o} _\mathrm{m}\right]} \end{aligned}$	Liquid   L3b	F		Number, or minimum number, of inter-molecular bonds and ionic bonds of each type composing the liquid   $\rightarrow$ Calculation of 'n(bond_i)' for display:   Condition: when all "liquid_specie_mole_fraction" $\neq\{\varnothing$, NULL $\}$   $\Rightarrow \mathrm{n}($ bond_i $)=[$ liquid_chemical_bond_number(bond_i $)+\sum_{\text {specie_ }}$ (liquid_specie_mole_fraction(specie_j) * specie_chemical_bond_number(specie_j, bond_i))]/    (liquid_specie_mole_fraction(specie_j) * specie_chemical_bond_number(specie_j, bond_i))]]
						Note: determined relative to a formula unit   $E x$ : ' $<2$ ' hydrogen bonds per $\mathrm{H}_{2} \mathrm{O}$ molecule for liquid $\mathrm{H}_{2} \mathrm{O}$

## Liquid molecular and atomic composition



## Variable: liquid in Sample and Matters

- the unit can change only when liquid_species 'full_definition':= 'yes'
- otherwise it is necessary to check in which unit is entered the liquid phase and to enter new species in the same unit




						Variable: liquid in Sample and Matters   Condition: mandatory when the bloc is used Notes:
liquid_specie_state [phase_specie_state]	enum(text)	$\begin{gathered} \text { S1/S1c/S1 } \\ \text { BL: S1b } \\ {[!\mathrm{m}]} \\ {\left[\mathrm{V}:!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Liquid L4	VL	--	State of the molecular/atomic species inside the liquid   OpenEnum: \{constituent element, constituent cation, constituent anion, constituent molecular, molecular ion, pure, mixed, monomers, dimers, multimers, solute, solvent, liquid solution, hydration, hydrated, other, unknown, ...\}
						Definitions:   => See "constituent_specie_state"
						Note: This state depends on "liquid_compound_type" which gives the type of liquid and tells how the molecular/atomic species are organized at the molecular/atomic level
						Variable: liquid in Sample and Matters
						Condition: mandatory when "liquid_specie_uid" $\neq \varnothing$
						Notes:
liquid_specie_relevance [phase_specie_relevance]	enum(text)	$\begin{gathered} \mathrm{S} 1 / \mathrm{S} 1 \mathrm{c} / \mathrm{S} 1 \\ \text { BL: } \mathrm{U} \\ {[!!\mathrm{m}]} \\ {\left[\mathrm{V}:!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Liquid L4	VL	--	Relevance of thr molecule or ions species in the liquid
						Enum: \{main, (substituted, impurity)\}
						Definitions: ${ }^{\text {a }}$,
						$\Rightarrow$ 'main': molecules of the liquid   $\Rightarrow$ 'substituted': used only for isotopic molecular/atomic species substituting the equivalent "natural molecule/atom"   $\Rightarrow$ 'impurity': molecules or ions not contributing to the fundamental liquid
						Note: for all molecular species their relevance are all 'main' as the possible 'impurities' are not included in the generic formula of the fundamental liquid.
						Variable: liquid in Sample and Matters


|  | Enum: $\{$ main, substituted, impurity $\}$ <br> Condition: absolute mandatory when "liquid_specie_uid" $\neq \varnothing$ |
| :--- | :--- | :--- |
|  | Note: all molecules not in the fundamental liquid will be 'impurity' |

## Liquid phase

liquid_phase_type
[phase_phase_type]

enum(text)	S1/\$1c/S1 MinduridF VL -- --	Type of phase of the solid
	BL: S1   [! m]	Enum: \{liquid, supercooled liquid, supercritical fluid, unknown\}
	[V:£_m]	Definitions: cf. "constituent_phase_type"
		Notes:
		Variable: solid in Sample and Matters

Condition: compulsory for supercooled liquid of equivalent liquid.
Notes:

## Liquid properties



					ex: '2.5-7', '8.5 (350K)'
					Variable: liquid in Sample and Matters
					Exact value for specific solution
liquid_molar_mass [phase_molar_mass]	varchar(255)	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {[\mathrm{m}]} \end{gathered}$	Liquid	VL g/mol	Molar mass (value or range) of the liquid   - Provided in ' $\mathrm{g} / \mathrm{mol}$ ' unit
		[V: m]			Notes:   - for liquid solution it is determined per mole of solvent   - for liquid solution series the range go from the minimum value for pure solvent to the maximum value determined with solute at full solubility (or the reverse if solute is lighter than solvent)
					ex: '160.3', '160.2-162.5'
					Variable: liquid in Sample and Matters
					Exact value for specific liquid or liquid solution.
liquid_density   [phase_density]	varchar(255)	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {[\mathrm{m}]} \end{gathered}$	Liquid	VL g/cm3	Density (value or range) of the liquid - provided in ' $\mathrm{g} / \mathrm{cm}^{3}$ ' unit
		[V: m]			Notes:   - provide T \& P conditions in parenthesis   - for liquid solution depend on mole fraction of solute(s) and solvent   - range of density for solution series
					ex: '1.236 (300K, 1 bar)', '1.23-1.34'
					Variable: liquid in Sample and Matters
					Exact value for specific liquid solution. Minor changes with impurities molecules or elements.

## Liquid thermodynamic properties

liquid_state_ntp   [phase_state_ntp]
SSDM Data Model

## Enum: \{solid, metastable liquid - solid, liquid, gas \}

## Definitions:

- 'solid': this liquid phase cannot exist at NTP conditions but its constituting species are stable in solid phase at NTP conditions
- 'metastable liquid - solid': this liquid phase can exist at NTP conditions under some conditions but it is outside its thermodynamic stability zone. A solid phase is stable at NTP conditions.
- 'liquid': this liquid phase is stable at NTP conditions
- 'gas': neither this liquid phase nor any solid phases can exist at NTP conditions. The gas is the only stable phase at NTP conditions.
Note: NTP conditions (NIST): $293.15 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right), 101.325 \mathrm{kPa}$ ( 1 atm )
Ex:
- 'solid' for liquid sulphur
- 'liquid' for liquid $\mathrm{H}_{2} \mathrm{O}$ as its melting point is 273.15 K
- 'gas' for liquid $\mathrm{N}_{2}$

liquid_phase_transitions List [L5]	[O]				$£$ : Description of the main phase transitions of the liquid
liquid_phase_transition_type enum(text)   [phase_phase_transition_type]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid L5	F	--	Type of phase transition of the liquid   Enum: \{solid-liquid, liquid-gas, triple point solid-solid-liquid, triple point solid-liquid-gas, quadruple point, liquid decomposition\}   Notes:   - only the most important transition points need to be given (i.e. triple points, solid-liquid at ambient pressure ...)   - the solid-liquid phase diagram can be given in "liquid_figures"
```liquid_phase_transition_other_pha varchar(255) ses [phase_phase_transition_phases]```	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid L5	F	-	Name of the other phase implied in the phase transition of the liquid   Notes:   - it can be one solid (solid-liquid) or two solids (triple point solid-solidliquid), or more (quadruple point)   - the full name and type of phase should be given   Ex: 'Water ice Ih' for liquid Water, 'water ice Ih, liquid, gas' for triple point


liquid_phase_transition_temperatu varchar(255)	U	Liquid	F	K
re	$[\mathrm{m}]$	L 5		Pa,
[phase_phase_transition_temperat				bar
ure]				

_phase_transition_temperat
ure

liquid_phase_transitions_commen blob	U	Liquid	F
ts	$[\mathrm{m}]$		
[phase_phase_transitions_comme			
nts]			

Temperature (value(s) or range) of the phase transition of the liquid at defined pressure, or average value when variable

- temperature should be provided in ' K ' unit, with the unit written after the numbers
- pressure should be provided in parenthesis after the temperature and in 'Pa' or 'bar' unit (or their (sub-)multiples), with the unit written after the numbers

Notes.

- range of temperature for variable liquid.
- No requested value for liquid solutions and hydrated liquids.

Ex: '35.4 K (100 mbar)', '273.2-273.5 K (100 MPa)', '272.3 K (1 bar) 275.2 K (100 bar)'
-- Additional information on liquid phase transitions (unknown limits of transition, ...)

Liquid optical properties

liquid_refraction_index_n $\operatorname{varchar(255)~S3~Liquid~VL~no~Refraction~index,~n,~(value~or~range)~of~the~liquid~(at~} 589.3 \mathrm{~nm}$)

Definition: Standard refractive index measurements are taken at yellow doublet sodium D line, with a wavelength of 589.29 nm .
Note: range of refraction index for solution series
ex: '1.532', '1.456-1.583'
Variable: liquid in Sample and Matters
Exact value for specific solution. Minor changes with impurities elements.

liquid_dispersion_v	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Liquid	VL	no	Abbe number V (value or range) expressing the visible dispersion of a transparent liquid Definition: dispersion is defined as $\mathrm{V}=\left(\mathrm{n}_{\mathrm{d}}-1\right) /\left(\mathrm{n}_{\mathrm{F}}-\mathrm{n}_{\mathrm{C}}\right)$ using the Fraunhofer lines d, F and C at $587.6 \mathrm{~nm}(\mathrm{~d}), 486.1$ (F) and 656.3 nm (C). cf wiki: en.wikipedia.org/wiki/Abbe_number Note: range of Abbe number for liquid solution series Ex: '32, ‘40-65' Variable: liquid in Sample and Matters Exact value for specific solid solution. Possible significant changes with impurities elements
liquid_pure_color [phase_pure_color]	enum(text)	$\begin{gathered} \text { S2 } \\ \text { BL: U } \\ {[\mathrm{m}]} \end{gathered}$	Liquid	F	--	Color of the pure liquid (without any impurity) FreeList: \{colorless, white, blue, bluish, azure, green, greenish, emerald, olive, turquoise, yellow, yellowish, orange, pink, pinkish, red, reddish, lilac, violet, indigo, purple, brown, brownish, beige, gray, grayish, black, blackish, bronze, lead, silver, steel, copper, tin, various, ...\}
liquid_diaphaneity [phase_diaphaneity]	enum(text)	$\begin{gathered} \mathrm{S} 2 \\ \text { BL: U } \\ {[\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Liquid	VL	--	Capacity of the liquid to transmit light Enum: \{transparent, transparent to translucent, translucent, translucent to opaque, opaque, various, unknown\} Variable: liquid in Sample and Matters actual diaphaneity of the liquid

Liquid references and comments

| | | | | |
| :--- | :--- | :---: | :---: | :---: | :--- |
| lisuid_publications $[$ L6a] | $[\mathrm{O}]$ | | | |
| liquid_publication_uid [*] | varchar(255) | U | Liquid | F |
| [phase_publication_uid] | | $[\mathrm{m}]$ | Publi | |
| | | | L6a | |

$£:$ Publications on the fundamental liquid phase and its properties.
-- Link to the existing UID of the publications on the liquid
Note: these papers should be in the bibliography database, with "publication_content" = 'phase'

liquid_links [phase_links]	List [L6b]	[O]				$£:$ Web pages describing the liquid and its properties.
liquid_link_name [phase_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid L6b	F		Name of the web page describing the liquid and its properties. Ex: 'Wikipedia', ...
liquid_link_url [phase_link_url]	CS- varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid L6b	F	--	URL address of web page Notes: you can link to a publication by giving its url address, preferably through its DOI. Ex: https://doi.org/10.1002/ejic. 200700067
liquid_comments [phase_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Liquid	$\begin{aligned} & \mathrm{VL} \\ & \mathrm{Aj} \end{aligned}$		Additional information on the liquid Ex: impurities, ... Variable: liquid in Sample and Matters Flag 'replace': \{yes, no\} Definitions: see "mineral_comments" Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').

7.4 Mineral phase Table

Root of the table: mineral

Data type: 'Fundamental phase'
In "Exp" column 'VM' means a variable key-word of the fundamental mineral: when defining a "sample" or a "matter" containing fundamental mineral phases (described in "basic constituents") the VM values in "mineral phase" can be modified (but will not be changed in the fundamental mineral database) to reflect the exact mineral properties (for exemple for solid solutions and n-hydrated minerals). See specific notes in Variable: mineral in Sample and Matters

To found info on minerals: http://www.webmineral.com, https://www.mindat.org, https://www.mineralienatlas.de/, https://en.wikipedia.org/wiki/List_of_minerals,

Key-word	Type	Level	Table	Exp	Unit	Description
phase_polymorphic_type [-xml]	enum(text)	P	Miner	(V)	--	Type of phase
	$[$ virtual KW]	$[!!$ _vc]				Enum: $\{$ mineral $\}$

Mineral phase import

mineral_import_mode [phase_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Miner	(V)	--	Mode of import of the mineral data Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
mineral_xml_filename [-xml] [phase_xml_filename]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{vc}]} \end{gathered}$	Miner	(V)	--	Name of the storage copy of the xml import file of the mineral metadata determined automatically during import (from "mineral uid"?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

Mineral phase indexes and type

mineral_index $[* *][-\mathrm{xml}]$ [phase_index]	$\operatorname{int}(10)$	B	Miner	F	--	Automatic random but unique number (ID) given to new mineral
SSDM Data Model						

$\begin{aligned} & \text { mineral_uid [**] } \\ & \text { [phase_uid] } \end{aligned}$	varchar(255)	$\begin{gathered} \text { S0 } \\ \text { BL: S2 } \\ \text { [!!_m] } \end{gathered}$	Miner	F	--	Unique identifier code (UID) given to the mineral table (to be created) Nomenclature: Create this code name with 'MINERGROUP_' (mineral_classification_level = $\{$ mineral group, mineral subgroup $\}$), 'MINERSERIES_' (= \{solid solution series $\}$) or 'MINER_' (= \{variable mineral, unique mineral $\}$). It should be of the style 'MINERGROUP_GroupName', 'MINERSERIES_SeriesName' or 'MINERSERIES_EndmemberName1_EndmemberName2' or 'MINER_MineralName' where 'Group/SeriesName' are the Dana group/series names, and 'EndmemberName'n'' and 'MineralName' are the "mineral_ima_name". Note: use only lowercase for the mineral name Note: The fundamental mineral phase stored in the database will be, by default, with natural terrestrial abundance. Ex: MINER_calcite, MINERSERIES_fayalite_forsterite, MINERGROUP_smectites
Mineral names						
mineral_ima_name [phase_official_name]	varchar(255)	$\begin{gathered} \text { S0/S0c/ } \\ \text { S1 } \\ \text { BL: S1 } \\ {[!!\mathrm{m}]} \end{gathered}$	Miner	F		IMA unique name of the mineral (or series) Notes: \Rightarrow Start with capital letter Ex: 'Brucite' \Rightarrow for solid solutions series the name should be built as: 'nom_IMA1''nom_IMA2' series Ex: 'Diopside-Hedenbergite series' \Rightarrow It is used as the title of the mineral page on the SSHADE interface \Rightarrow IMA names are defined by CNMNC of IMA (http://nrmima.nrm.se)
mineral_secondary_name	varchar(255)	$\begin{gathered} \text { S0/S0c/ } \\ \text { S1 } \end{gathered}$	Miner	F	--	Alternative name used for the mineral Notes:

nitride, phosphate, phosphide, phosphite, silicide, selenate, selenide, selenite, sulfate, sulfide, sulfite, sulfosalt, tellurate, tellurite, tungstate, vanadate, vanadium oxysalt, silicate, cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, tektosilicate, organic salt, hydrocarbon, organic mineral $\}$
Definitions:

- 'metal':
- 'metallic alloy':
- 'elemental mineral':
- carbon allotrope
- oxide, hydroxide
- 'oxide-hydroxide':
- 'antimonate, antimonite, arsenate, arsenite, borate, carbide, carbonate, chloride, chromate, fluoride, halide, iodate, molybdate, nitrate, nitride, phosphate, phosphide, phosphite, silicide, selenate, selenide, selenite, sulfate, sulfide, sulfite, sulfosalt, tellurate, tellurite, tungstate, vanadate, vanadium oxysalt' => cf. "solid_compound_type"
- 'silicate':
- 'nesosilicate':
- 'sorosilicate':
- 'cyclosilicate':
- 'inosilicate':
- 'phyllosilicate':
- 'tektosilicate':
- 'organic salt':
- 'hydrocarbon':
- 'organic mineral':

Notes:

- same compound types for "constituent_compound_type". It will be used for main search.
- corresponds to some inter- and intra-grouping of Dana classes (mineral_dana_class)

mineral_classification_level [phase_classification_level]	enum(text) S1/S2c/ Miner S2 BL: U $[!!$ _m]		Level of mineral classification Enum: \{mineral group, mineral subgroup, mineral polymorphs, solid solution series, hydration series, variable mineral, unique mineral\} Definitions: - 'mineral group': General group of mineral, with at least 2 variable elements Ex: Spinel group AE2O4 (A=Fe, $\mathrm{Zn}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Ti},+\mathrm{Al}$) ($\mathrm{E}=\mathrm{Al}$, $\mathrm{Fe}, \mathrm{Cr})$ - 'mineral subgroup': subgroup of a mineral group, with one element of the group fixed, and at least 1 other variable element Ex: Iron spinel subgroup AFe2O4 (A=Fe, Mg, Ni, +Mn, +Zn) 'mineral polymorphs': minerals with exactly same composition but different crystalline structures Ex: Calcite \& Aragonite $\left(\mathrm{CaCO}_{3}\right)$ - 'solid solution series': series between 2 endmembers of a group, or subgroup, with one variable between 2 elements Note: for solid solutions of cations ($\mathrm{Fe}, \mathrm{Mg}, \ldots$) or anions (OH, F, $\mathrm{Cl}, \mathrm{O} . .$. Note: glasses will be always classified as 'solid solution series' Ex: Magnesioferrite-Magnetite series (Iron Spinel subgroup): $(\mathrm{Mg}, \mathrm{Fe}) 2+(\mathrm{Fe} 3+) 2 \mathrm{O} 4$ - 'hydration series': series of hydrates of the same compound but with different number of $\mathrm{H}_{2} \mathrm{O}$ molecules Note: mostly used for 'solids' as mineral have different names for each hydration level Ex: - 'variable mineral': mineral with still at least one variable element. Note: Can be an endmember. It did not includes minerals only with variable hydration. Ex: Cuprospinel (Cu, Mg) Fe+++2O4, Galaxite (Mn, Mg)(Al,Fe3+)2O4 Ex: Montmorillonite (Na, Ca) $0,3(\mathrm{Al}, \mathrm{Mg}) 2 \mathrm{Si4O} 10(\mathrm{OH}) 2 \cdot \mathrm{n}(\mathrm{H} 2 \mathrm{O})$ Nontronite $\mathrm{Na} 0.3(\mathrm{Fe} 3+) 2(\mathrm{Si}, \mathrm{Al}) 4 \mathrm{O} 10(\mathrm{OH}) 2 \bullet \mathrm{n}(\mathrm{H} 2 \mathrm{O})$ - 'unique mineral': mineral with a fully defined formula.

Mineral chemical composition

mineral_formula [phase_formula]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[!!\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner	VM		Developed empirical chemical and structural formula of the mineral Syntax: Latex format $E x: \$\left(\mathrm{Fe}^{\wedge}\{2+\}_{-}\{1.5\}, \mathrm{Mg}_{-}\{0.5\}\right) . \mathrm{Si}_{-} 2 \mathrm{O} _6 \$$ 'for ${ }^{\prime}\left(\mathrm{Fe}^{2+}{ }_{1.5}, \mathrm{Mg}_{0.5}\right) . \mathrm{Si}_{2} \mathrm{O}_{6}{ }^{\text {b }}$ Clinoferrosilite $\left(\left(\mathrm{Fe}^{2+}{ }_{1.5}, \mathrm{Mg}_{0.5}\right) \cdot\left(\mathrm{SiO}_{3}\right)_{2}\right)$ $\$\left(\mathrm{Mg}_{-} \mathrm{xFe} \wedge\{2+\}_{-}\{1-\mathrm{x}\}\right) \cdot \mathrm{SiO}_{-} 4 \$$ for Olivine $\left(\mathrm{Mg}_{x} \mathrm{Fe}^{2+}{ }_{1-\mathrm{x}}\right) \cdot \mathrm{SiO}_{4}$ Note: - Contain ionic information for multiple valences ions Notations: - Small point (.) can separate structural units - Dot • (lbullet) separates hydration - LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf Variable: mineral in Sample and Matters Notes: - Includes replacement and impurities elements, as well as values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ fractions and n -hydration number - Can contain isotopic information when an atom is substituted Ex: ${ }^{29} \mathrm{SiO}_{2}$
mineral_chemical_formula [phase_chemical_formula]	CS- varchar(255)	$\begin{gathered} \text { S0/S0c/ } \\ \text { S1 } \\ \text { BL: S1 } \\ {[!!\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner	VM	--	Developed global chemical and structural formula of the mineral Ex: '(Fe2+,Mg)2Si2O6' for Clinoferrosilite 'Ca2(Fe2+)3A12(Si6Al2)O22(OH)2' ‘Ca6(AsO4)(AsO3OH)3(PO4)0.7(SO4)3.15(H2O)' for Machatschkiite '([],Fe,Mg)(Mg,Al,Fe)5A14Si2(Si,Al)2(B,Si,Al)(O,OH,F)22' Note: - contain ionic information. - individual radicals are in (), such as $\mathrm{OH}, \mathrm{CO} 3, \mathrm{SO} 4, \mathrm{PO} 4, \mathrm{SiO} 4, \ldots$ - Mineral series are indicated by comma separating the elements that varies in amount. The more dominant element is usually listed first. - Anytime there is more than one valence for an atom in a mineral, the valence is written after the element symbol and put in () - big point ' \cdot ' (ascii=149) separates hydration in () - 'n' give a variable value for structural hydration. Ex: Min•n(H2O) - a range of hydration number ' n ' can be given with ' $n 1-n 2$ ':

mineral_hydration
[phase_hydration]
mineral_hydration_series [phase_hydration_series]
mineral_hydration_number [phase_hydration_number]

boolean	S2/S2c/ Miner	F
	S2	

[!!_m]
boolean

Ex: Min•8-12(H2O)

- Square brackets with a 'blanc' [] are used in the formula to signify a vacancy (hole).
- For minerals with isotopic atomic substitution (non-natural isotopic abundance), substituted atoms will have their atomic mass between square brackets preceding the atom symbol. D can be used for ${ }^{2} \mathrm{H}$. Ex: ' $(\mathrm{Fe} 2+, \mathrm{Mg}) 2 . \mathrm{Si} 2[18] \mathrm{O} 6$ '

Note: Definition of this type of formula:
cf http://webmineral.com/help/ChemicalFormula.shtml
Variable: mineral in Sample and Matters
Developed global chemical and structural formula of the actual mineral

U Miner F -- Flag to telling if the mineral is an isostructural series of n-hydrated minerals [!!o_m] ('true')

BoolEnum: $\{$ yes, no $\}$ or $\{$ true, false $\}$
Condition: absolute mandatory when "mineral_hydration" $=\{$ true $\}$
Notes: n-hydrated minerals have variable amount of $\mathrm{H}_{2} \mathrm{O}$ molecules, either structural (limited range of n : min-max, or incremental) or interlayer (variable 'n' from 0 to some maximum value. Ex: phylosilicates...)
-- Number or range of numbers of $\mathrm{H}_{2} \mathrm{O}$ (structural and/or interlayer) in the mineral

Condition: Mandatory when "mineral_hydration" = 'true'
Note: for hydration series put the current value (if well defined and known), or a range (if not well defined or known) either fixed and continuous (' $1-6$ '), or incremental (' $2,3,4,6,12$ ') for some groups, or with one limit unknown (' 2 ?', '? -6 '), or open with no upper limit in ' n ' (' $2-n$ '), or ' n ' if fully unknown
or undefined.
Ex: '2', '4-6', ‘0-20', ‘0-n' (if no real limit to ' n '), ' $2,3,4,6,12$ '
Variable: mineral in Sample and Matters
Note: It will take into account the level of (de)hydration of the matter. Put the value, but if not well known then put some range.
Note: To change the hydration number when a matter is processed to make a sample or when a sample is processed before experiment (heated, ...), or during experiment (adsorption, ...), with the interlayer $\mathrm{H}_{2} \mathrm{O}$ varying: make a sample (or a new sample) with a composition similar to the matter (or to the previous sample) but with ' n ' changed in the mineral (VM) and make a link to the "mineral_matter" (or parent sample) in 'processes'.

Mineral chemical functions and bonds

Mineral atomic and molecular composition

mineral_species	List $[\mathbf{L 4}]$	$[!!\mathrm{o}]$
		$[\mathrm{V}:$
	£_m]	
	$[\mathrm{VFlag}:$	
	!!o_m $]$	

abundance will be set to 'specific abundance' or to 'partly substituted' (one or more atom as a pure isotopic species). Their abundance will be defined in "mineral_specie_isotope_mole_fraction" using the pure isotopologue atoms Note: define the effectif type of isotopic mixture
£: Description of the atomic composition of the mineral
Condition: absolute mandatory when "mineral_classification_level" = \{mineral subgroup, solid solution series, variable mineral, unique mineral\}
Notes:

- Structural H2O hydration will be described by "molecular species". It will thus provide direct link to their bonds.
- there is also a few 'minerals' that may be described by "molecular species", such as ' CH_{4} clathrate hydrate', ' $\mathrm{H}_{2} \mathrm{O}$ ice', \ldots (note: they will be also described in "solids")
- anionic radical will be described directly instead by their atoms, as it will provide direct link to their bonds.

Variable: mineral in Sample and Matters

Condition: compulsory to list the replacement, impurity, or substituted atoms or molecules as well as the main atoms/molecules of the mineral with changing 'number_min/_max'

Notes:

- for isotopic substitution of one or more atom, or for minerals with specific abundance (i.e. non-terrestrial, e.g. for meteorites, ...) all, or at least the main isotopic species present will be listed with same nominal value of "mineral_specie_number_(_min)" but with their isotopic fractional abundance given in "mineral_specie_isotope_mole_fraction"
Flag ‘full_definition’: \{yes, no\} or \{true, false\}
Condition: flag absolute mandatory when "mineral_specie_uid" $\neq \varnothing$
Definitions:
- 'yes': fully replace the original list of species defined in the 'fundamental mineral phase'. Need to fully redefine it.

mineral_specie_family [phase_specie_family] [-xml]	enum(text)	$\begin{gathered} \mathrm{U} \\ {[!!\mathrm{cc}]} \\ {[\mathrm{V}:} \\ !\mathrm{o} \text { _c }] \end{gathered}$	Miner L4	VS		Family of the species composing the mineral Enum: \{element, molecule, chemical function\} Notes: - equivalent to "constituent_specie_family" - 'molecule' will be mostly used for H2O of hydration, but in also in a few special cases CH4, CO2, - "chemical functions" $=$ 'anionic radical' will be described directly instead by their atoms - this will allow to directly heritate the molecule 'bonds' Note xml: determined automatically from the type of the species Variable: mineral in Sample and Matters Condition: mandatory when "mineral_specie_uid" $\neq \varnothing$ Notes:
mineral_specie_uid [*] [phase_specie_uid]	varchar(255)	$\begin{gathered} \text { S0/S0c/ } \\ \text { S1 } \\ \text { BL: Sli1 } \\ {[!!\mathrm{m}]} \\ {[\mathrm{V}:} \\ \text { ££o_m] } \end{gathered}$	Miner Atom L4	VM	--	Link to the existing UID of the atomic/molecular/function species composing the mineral. Notes: if a cation can exist in more than one valence, then it is necessary to define the different ions with different valences ' V^{5+}, ' Cr^{2+},,\ldots and thus call them with 'ATION_xxx' instead of 'ATOM_xx’ Ex: ‘ATOM_Mg', ‘ATION_Fe3+', ... anionic radicals (MINION_) must be used instead of their atoms the link for mineral is only to natural atomic/molecular species (natural

mineral_specie_number_min [phase_specie_number_min]	float or ' n '	$\begin{gathered} \text { S0b/S0c } \\ \text { b } \\ \text { BL: U } \\ {[!\mathrm{m}]} \\ {\left[\mathrm{V}:!\mathrm{o}_{-}\right.} \\ \mathrm{m}] \end{gathered}$	Miner L4	VM	no	Nominal or Minimum total number of this atomic/molecular species composing the mineral Definitions: - It is the nominal value when "mineral_classification_level" = \{unique mineral $\}$ - It is the nominal or minimum value when "mineral_classification_level" $\neq\{$ unique mineral\}
						Notes:
						For 'unique mineral' - Interlayer (variable) n-hydration is not taken into account in the H 2 O count. But it is necessary to count OH and fixed structural hydration. For all other minerals:
						- Minimum value only for atomic/molecular species with variable abundance ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in the mineral, in solid solutions or in n -hydrated minerals (H2O). Also for mineral groups and subgroups. - For solid solution and variable mineral this minimum value is found by putting all variable composition atomic/molecular species to their minimum. - If there is specific information on a limitation in the minimum number of an atomic/molecular species in variable abundance, then put this

mineral_specie_number_max [phase_specie_number_min]	float or ' n '	$\begin{gathered} \text { S0b/S0c } \\ \text { b } \\ \text { BL: U } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner L4	VM	no	Maximum total number of this atomic/molecular species with variable or undefined abundance Condition: Mandatory when "mineral_classification_level" $\neq\{$ unique mineral $\}$ Notes: - do not fill for well defined unique mineral - only for atomic/molecular species with variable abundance ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in the mineral, in solid solutions or in n-hydrated minerals (H2O). Also for mineral groups and subgroups. - For solid solution this maximum value is found by putting all variable composition atomic/molecular species to their maximum. - If there is specific information on a limitation in the maximum number of an atomic/molecular species in variable abundance, then put this

mineral_specie_isotope_mole_fract float ion [in xml: only in 'variable'] [phase_specie_isotope_mole_fracti on]
number.

- For n-hydrated minerals this maximum value for H 2 O is the maximum value of the fixed structural hydration, thus excluding interlayer (variable) n -hydration in the H 2 O counts. If undefined then put ' n '

Variable: mineral in Sample and Matters

Note:
maximum number of atomic/molecular species of each type composing the mineral, including replacement, substituted and impurities elements, OH and fixed structural hydration but excluding interlayer (variable) n-hydration in the H 2 O count.
Note xml:

- need to remove any value of 'mineral_specie_number_max' if molecule number is fixed $=>$ put 'NULLL'

U	Miner	VM
$[-]$	L4	
$[\mathrm{V}:$		
!o_m]		

no Mole fraction of the isotopic species in the isotopic mixture of this molecule/atom in the mineral (for non-terrestrial abundance)
\rightarrow Calculated: set to ' 1 ' for "solid_isotope_mixture_type" $=\{$ terrestrial abundance\}
Notes:

- it is always set to 1 as fundamental 'Minerals' are only natural terrestrial minerals
Note xml:
- only as 'variable' in the xml

Variable: mineral in Sample and Matters
Condition \#1: mandatory when "mineral_specie_uid" $\neq \varnothing$
AND
Condition \#2: when "mineral_isotope_mixture_type" = \{pure isotope, partly substituted\}
AND
Condition \#3: when "mineral_specie_uid"/"molecule_isotope_mixture_type"
$=$ pure isotope, partly substituted $\}$
Note:

mineral_specie_state [phase_specie_state]	enum(text)	$\begin{gathered} \text { S1/S1c/ } \\ \text { S1 } \\ \text { BL: S1b } \\ {[!\mathrm{m}]} \\ {[\mathrm{V}:} \\ \text { !o_m] } \end{gathered}$	Miner L4	VM	--	State of the atomic/molecular species inside the mineral OpenEnum: \{constituent element, constituent cation, constituent anion, anionic radical, molecular ion, hydration, interlayer physically adsorbed, pure, clathrate network, clathrate guest, in complex, other, unknown, ...\} Definitions: => See "constituent_specie_state" Note: - 'pure' can be used for monoatomic minerals - use 'clathrate network, clathrate guest' for clathrate - use 'in complex' for amber, ... - use 'other' for included CH4, CO2, ... Variable: mineral in Sample and Matters Condition: mandatory when "mineral_specie_uid" $\neq \varnothing$
mineral_specie_relevance [phase_specie_relevance]	enum(text)	$\begin{gathered} \text { S1/S1c/ } \\ \text { S1 } \\ \text { BL: U } \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Miner L4	VM	--	Relevance of the atomic/molecular species in the mineral Enum: \{main\} Definitions: - 'main': essential atoms or molecule constituting the nominal elemental

mineral_composition_comments
[phase_composition_comments] \quad blob $\quad[\mathrm{U}$ Miner \quad VM
formula of the mineral (cf. MinDat).

- 'replacement': common replacement atom or ion not included in the nominal elemental formula of the mineral but present as replacement elements, mostly in solid solutions.
- 'substituted': used here only for isotopic atomic species substituting the equivalent "natural element".
- 'impuritiy': atoms, molecule or ions not contributing to the elemental formula of the mineral and generally not present in such mineral (sometimes it is called in the literature 'atom substitution by impurity', but here we will not use 'substituted' in such case).

Note: for all minerals (with fixed and variable composition) all the relevance of their constituting atoms and molecules are 'main' as the possible 'replacement atoms' or unexpected 'atom or molecule impurities' or substituted isotopes are not included in the nominal elemental formula of the mineral.

Variable: mineral in Sample and Matters
Enum: \{main, replacement, substituted, impurity\}
Condition: absolute mandatory when "mineral_specie_uid" $\neq \varnothing$
Note: all atoms or molecules not in the mineral formula will be either 'replacement', 'impurity', or 'substituted' atoms
-- Any additional information (range of values of ' x ', ' y, ' z ', ' n ', sum' $x+y+z$ ', ...) or comments on the composition and formula of the mineral
Variable: mineral in Sample and Matters
Flag 'replace’: \{yes, no\}
Definitions: see "mineral_comments"
Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').

Mineral oxides composition

mineral_oxides	List [L5]	[!]			£: Description of the oxides composition of the mineral
					Variable: mineral in Sample and Matters
					Note xml: need to fully replace the original list of oxides defined in the 'fundamental mineral phase', when changed (equivalent to a "mineral_oxides_full_definition" = 'yes')
mineral_oxide_formula [phase_oxide_formula]	CSenum(text)	$\begin{gathered} \mathrm{U} \\ {[!\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	$\begin{aligned} & \text { Miner VM } \\ & \text { L5 } \end{aligned}$	--	Formula of the different oxides composing the actual mineral Enum: $\{\mathrm{Ag} 2 \mathrm{O}, \mathrm{Al2O3}, \mathrm{As} 2 \mathrm{O} 3, \mathrm{As} 2 \mathrm{O} 5, \mathrm{~B}, \mathrm{~B} 2 \mathrm{O} 3, \mathrm{BaO}, \mathrm{BeO}, \mathrm{Br}, \mathrm{CO} 2, \mathrm{CaO}$, CdO, $\mathrm{CeO} 2, \mathrm{Ce} 2 \mathrm{O} 3, \mathrm{Cl}, \mathrm{CoO}, \mathrm{Co3O} 4, \mathrm{Cr} 2 \mathrm{O} 3, \mathrm{Cs} 2 \mathrm{O}, \mathrm{CuO}, \mathrm{Cu} 2 \mathrm{O}, \mathrm{F}, \mathrm{Fe}, \mathrm{FeO}$, Fe2O3, Fe3O4, Ga2O3, GeO2, H2O, HfO2, HgO, I, K2O, La2O3, Li2O, $\mathrm{MgO}, \mathrm{MnO}, \mathrm{MnO} 2, \mathrm{Mn} 2 \mathrm{O} 3, \mathrm{MoO} 3, \mathrm{~N} 2 \mathrm{O} 5$, (NH4)2O, Na2O, Nd2O3, Nb2O5, NiO, O2, P2O3, P2O5, PbO, PbO2, Pt2O3, PtO, Pt, Rb2O, REE2O3, S, SO2, SO3, SO4, Sb2O3, Sb2O5, $\mathrm{ScO}, \mathrm{Sc} 2 \mathrm{O} 3, \mathrm{SeO} 2, \mathrm{SiO} 2, \mathrm{Sm} 2 \mathrm{O} 3, \mathrm{SnO}$, $\mathrm{SnO} 2, \mathrm{SrO}, \mathrm{Ta} 2 \mathrm{O} 5, \mathrm{ThO} 2, \mathrm{TiO} 2, \mathrm{UO} 2, \mathrm{U} 3 \mathrm{O} 8, \mathrm{VO} 2, \mathrm{~V} 2 \mathrm{O} 3, \mathrm{~V} 2 \mathrm{O} 5, \mathrm{WO} 3$, Y2O3, $\mathrm{ZnO}, \mathrm{ZrO} 2\}$
					Note: cf. http://www.open.ac.uk/earthresearch/tindle/AGTWebPages/AGTSoft.html
					Variable: mineral in Sample and Matters
					Enum: $+\{\mathrm{N} / \mathrm{A}\}$
					Notes: - include also oxides of substitution and major impurity elements - did not distinguish between isotopic species
mineral_oxide_mass_fraction [phase_oxide_mass_fraction]	float	$\underset{\substack{\mathrm{m}]}}{\mathrm{U} \mathrm{o} \mathrm{~m}]} \mathrm{[V}:$	$\begin{aligned} & \text { Miner VM } \\ & \text { L5 } \end{aligned}$	no	Mass fraction (in \%) of each type of oxide composing the actual mineral Condition: mandatory only when "mineral_classification_level" = \{unique mineral\}
					Note: - value between 0 and 1 - variable for generic solid solutions but this fraction will be defined for particular solid solutions at the "solid matter" level.

Variable: mineral in Sample and Matters

Condition: on all "mineral_classification_level"
Note: cf.
http://serc.carleton.edu/research education/equilibria/mineralformulaerecalcul ation.html

mineral_oxides_comments [phase_oxides_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Miner VM	--	Any additional information (sum of oxides, typical formula of the analysis, ...) or comments on the oxides composition of the mineral
		[V: m]			Note: also additional information on impurities not measured by oxides
					Variable: mineral in Sample and Matters

Mineral classification: Strunz classification

sulfantimonites, sulfbismuthites (02.G), sulfosalts of SnS archetype (02.H), sulfosalts of PbS archetype (02.J), sulfarsenates, sulfantimonates (02.K), unclassified sulfosalts (02.L), oxysulfosalts of alkalies and alkali earths (02.M), unclassified Strunz sulfides and sulfosalts (02.X), simple halides, without H2O (03.A), simple halides, with H2O (03.B), complex halides (03.C), oxyhalides, hydroxyhalides and related double halides (03.D), unclassified Strunz halogenides (03.X), metal:oxygen $=2.1$ and 1:1 (04.A), metal:oxygen $=3: 4$ and similar (04.B), metal:oxygen $=2: 3,3: 5$, and similar (04.C), metal:oxygen =1:2 and similar (04.D), metal:oxygen inf or $=1: 2$ (04.E), hydroxides (without V or U) (04.F), uranyl hydroxides (04.G), V[5+,6+] vanadates (04.H), arsenites, antimonites, bismuthites, sulfites (04.J), iodates (04.K), unclassified Strunz oxides: hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates (04.X), carbonates without additional anions, without H2O (05.A), carbonates with additional anions, without H 2 O ($05 . \mathrm{B}$), carbonates without additional anions, with H2O (05.C), carbonates with additional anions, with H2O (05.D), uranyl carbonates ($05 . \mathrm{E}$), nitrates ($05 . \mathrm{N}$), unclassified Strunz carbonates and nitrates (05.X), monoborates (06.A), diborates (06.B), triborates (06.C), tetraborates (06.D), pentaborates (06.E), hexaborates (06.F), heptaborates and other megaborates (06.G), unclassified borates (06.H), sulfates (selenates, etc.) without additional anions, without H2O (07.A), sulfates (selenates, etc.) with additional anions, without H2O (07.B), sulfates (selenates, etc.) without additional anions, with H2O (07.C), sulfates (selenates, etc.) with additional anions, with H2O (07.D), uranyl sulfates (07.E), chromates (07.F), molybdates, wolframates and niobates (07.G), uranium and uranyl molybdates and wolframates (07.H), thiosulfates (07.J), unclassified Strunz sulfates, selenates, tellurates (07.X), phosphates, etc. without additional anions, without H 2 O (08.A), phosphates, etc. with additional anions, without H 2 O (08.B), phosphates without additional anions, with H2O (08.C), phosphates, etc (08.D), uranyl phosphates and arsenates (08.E), polyphosphates, polyarsenates, [4]-polyvanadates (08.F), unclassified Strunz phosphates, arsenates, vanadates (08.X), unclassified Strunz silicates (09.), nesosilicate (09.A), sorosilicate (09.B), cyclosilicate (09.C), inosilicate (09.D), phyllosilicate (09.E), tektosilicate without zeolitic H2O (09.F), tektosilicate with zeolitic H2O (09.G), unclassified silicates (09.H), gemanates (09.J), salts

mineral_strunz_family	openum(text)	S2
[phase_classification_group]		BL: S2
		$[!$ _m]

of organic acids (10.A), hydrocarbons (10.B), miscellaneous organic minerals (10.C) \}

Note: glasses and amorphised minerals have the same Strunz division as the crystalline equivalent
-- Family of the mineral in the Nickel-Strunz classification ($10^{\text {th }}$ ed.)
OpenEnum: $\{02 . \mathrm{BB}, 02 . \mathrm{CC}, 02 . \mathrm{EB}, \ldots, 09 . \mathrm{FA}\}$
Label (code): \{ with Ni, Fe (02.BB), With Ni, Fe, Co, PGE, etc. (02.CC), M:S $=1: 2$, with Fe, Co, Ni, PGE, etc. (02.EB), with Cl, Br, I (halide-sulfides) (02.FC), $\mathrm{M}: \mathrm{X}=1: 1,2: 3,3: 5$, etc. (03.AA), $\mathrm{M}: \mathrm{X}=1: 2$ (03.AB), $\mathrm{M}: \mathrm{X}=1: 3$ (03.AC), $\mathrm{M}: \mathrm{X}=1: 1$ and $2: 3$ (03.BA), $\mathrm{M}: \mathrm{X}=1: 2$ (03.BB), $\mathrm{M}: \mathrm{X}=1: 3$ (03.BC), additional $\mathrm{OH}(03 . \mathrm{BD}$), $\mathrm{M}: \mathrm{O}=2: 1$ (and 1.8:1) (04.AA), $\mathrm{M}: \mathrm{O}=1: 1$ (and up to 1:1.25), with small to medium-sized cations only ($04 . \mathrm{AB}$), $\mathrm{M}: \mathrm{O}=1: 1$ (and up to $1: 1.25$), with large cations (+ - smaller ones) ($04 . \mathrm{AC}$), with small and medium-sized cations ($04 . \mathrm{BA}$), with only medium-sized cations ($04 . \mathrm{BB}$), with medium-sized and large cations ($04 . \mathrm{BC}$), with only large cations ($04 . \mathrm{BD}$), with medium-sized cations ($04 . \mathrm{CB}$), with large and medium-sized cations (04.CC), with small cations: Silica family (04.DA), with medium-sized cations; chains of edge-sharing octahedra (04.DB), with medium-sized cations; frameworks of edge-sharing octahedra (04.DD) , with large ($+/-$ medium-sized) cations; sheets of edge-sharing octahedra (04.DH), Hydroxides with OH, without H2O; chains of edge-sharing octahedra (04.FD), Hydroxides with OH, without H2O; sheets of edge-sharing octahedral (04.FE), Hydroxides with $\mathrm{H} 2 \mathrm{O}+/-(\mathrm{OH})$; sheets of edge-sharing octahedra (04.FL), Alkali-earth (and other M2+) carbonates ($05 . \mathrm{AB}$), with medium-sized cations (05.DA), with medium-sized cations ($07 . \mathrm{AB}$), with medium-sized and large cations ($07 . \mathrm{AC}$), with only large cations ($07 . \mathrm{AD}$), with medium-sized cations ($07 . \mathrm{BB}$), with medium-sized and large cations (07.BC), with only large cations (07.BD), with small cations (07.CA), with only medium-sized cations (07.CB), with medium-sized and large cations (07.CC), with only large cations (07.CD), Nesosilicates without additional anions; cations in tetrahedral [4] coordination (09.AA), Nesosilicates without additional anions; cations in [4] and greater coordination (09.AB), nesosilicates without additional anions; cations in octahedral [6] coordination (09.AC), Inosilicates with 2-periodic single chains, Si 2 O 6 ;

mineral_strunz_code [phase_classification_code]	varchar(255)	$\begin{aligned} & \text { S1/S1c } \\ & \text { BL: S1 } \end{aligned}$	Miner VM	--	Code of the mineral or group of minerals in the Nickel-Strunz classification ($10^{\text {th }}$ ed.)
		[!!o_mc]			Condition: Absolute Mandatory when "mineral_classification_level" $=\{$ solid solution series, variable mineral, unique mineral\}.
					Constraint: Do not fill when condition is not met.
					Notes:
					- glasses and amorphised minerals have no Strunz code as the codes of the crystalline chemical equivalents are defined by their crystalline structure. - However almost all the 31 classified amorphous minerals have a code (opal, allophane, bolivarite, ...), but one (amber)
					Ex: '09.DA. 15', ' , ...
					Variable: mineral in Sample and Matters
					Condition: mandatory when "mineral_crystal_system" = 'amorphous'

Note $x \mathrm{ml}$: for glasses or amorphised minerals of equivalent crystalline mineral: put 'N/A' to remove the Strunz code of the crystalline equivalent.

Mineral classification: Dana classification

| mineral_dana_major_class
 [phase_classification_class] | openum(text) | S1/S1c
 BL: S2
 [!!_m] | Miner |
| :--- | :--- | :--- | :--- | :--- |\quad| F |
| :--- |

(VI), phosphates, arsenates, vanadates (VII), silicates (VIII), organic minerals (IX) $\}$

Note: glasses and amorphised minerals have the same Dana major class as the crystalline equivalent
-- Class of the mineral in the Dana classification (78 classes) $\left(8^{\text {th }}\right.$ ed.)
OpenEnum: $\{01,02,03, \ldots, 78\}$
Label (code): \{native elements (01), sulfides - including selenides and tellurides (02), sulfosalts (03), simple oxides (04), oxides containing uranium and thorium (05), hydroxides and oxides containing hydroxyl (06), multiple oxides (07), multiple oxides with Nb, Ta, and Ti (08), anhydrous and hydrated halides (09), oxyhalides and hydroxyhalides (10), halide complexes; aluminofluorides (11), compound halides (12), acid carbonates (13), anhydrous carbonates (14), hydrated carbonates (15), carbonates - hydroxyl or halogen (16), compound carbonates (17), simple nitrates (18), nitrates - hydroxyl or halogen (19), compound nitrates (20), iodates - anhydrous and hydrated (21), iodates - hydroxyl or halogen (22), compound iodates (23), borates anhydrous (24), anhydrous borates containing hydroxyl or halogen (25), hydrated borates containing hydroxyl or halogen (26), compound borates (27), anhydrous acid and sulfates (28), hydrated acid and sulfates (29), anhydrous sulfates containing hydroxyl or halogen (30), hydrated sulfates containing hydroxyl or halogen (31), compound sulfates (32), selenates and tellurates (33), selenites - tellurites - sulfites (34), anhydrous chromates (35), compound chromates(36), anhydrous acid phosphates (37), anhydrous phosphates (38), hydrated acid phosphates (39), hydrated phosphates (40), anhydrous phosphates containing hydroxyl or halogen (41), hydrated phosphates containing hydroxyl or halogen (42), compound phosphates (43), antimonates (44), acid and normal antimonites, arsenites and phosphites (45), basic or halogen-containing antimonites, arsenites and phosphites (46), vanadium oxysalts (47), anhydrous molybdates and tungstates (48), basic and hydrated molybdates and tungstates (49), salts of organic acids and hydrocarbons (50), nesosilicate insular SiO4 groups only (51), nesosilicate insular SiO 4 groups and $\mathrm{O}, \mathrm{OH}, \mathrm{F}$, and H 2 O (52), nesosilicate insular SiO 4 groups and other anions of complex cations (53), nesosilicate borosilicates and some

mineral_dana_type	openum(text)	S2
[phase_classification_type]		BL: S2
	$[!!$ _m	

beryllosilicates (54), sorosilicate $\mathrm{Si2O}$ groups, generally with no additional anions (55), sorosilicate Si 2 O 7 groups and O, OH, F. and H2O (56), sorosilicate insular Si3O10 and larger noncyclic groups (57), sorosilicate insular, mixed, single, and larger tetrahedral groups (58), cyclosilicate threemembered rings (59), cyclosilicate four-membered rings (60), cyclosilicate six-membered rings (61), cyclosilicate eight-membered rings (62), cyclosilicate condensed rings (63), cyclosilicates (64), inosilicate single-width unbranched chains, $w=1$ (65), inosilicate double-width unbranched chains, $\mathrm{w}=2$ (66), inosilicate unbranched chains with w sup 2 (67), inosilicate structures with chains of more than one width (68), inosilicate chains with side branches or loops (69), inosilicate column or tube structures (70), phyllosilicate sheets of six-membered rings (71), phyllosilicate twodimensional infinite sheets with other than six-membered rings (72), phyllosilicate condensed tetrahedral sheets (73), phyllosilicate modulated layers (74), tectosilicate Si tetrahedral frameworks (75), tectosilicate Al-Si framework (76), tectosilicate zeolite group (77), unclassified silicates (78) \}
Note: glasses and amorphised minerals have the same Dana class as the crystalline equivalent

Miner F -- Type of the mineral in the Dana classification ($8^{\text {th }}$ ed.)
OpenEnum: $\{01.02,02.07,02.08, \ldots, 78.07\}$
Label (code): \{native elements with platinum group metals and alloys (01.02), where $A m B n X p$, with $(m+n): p=9: 8(02.07)$, where $A m B n X p$, with $(\mathrm{m}+\mathrm{n}): \mathrm{p}=1: 1(02.08)$, where AmBnXp , with $(\mathrm{m}+\mathrm{n}): \mathrm{p}=1: 2(02.12)$, Chlorides (02.15), with a cation charge of $1+(\mathrm{A}+2 \mathrm{O})(04.01)$, with a cation charge of $2+$ $(\mathrm{A}++\mathrm{O})(04.02)$, with a cation charge of $3+(\mathrm{A}+++2 \mathrm{O} 3)(04.03)$, with a cation charge of $4+(\mathrm{A}++++\mathrm{O} 2)(04.04)$, where $\mathrm{X}+++\mathrm{O}$ OH (06.01), where $\mathrm{X}++(\mathrm{OH}) 2$ (06.02), containing multiple cations (06.04), ($\mathrm{A}+\mathrm{B}++$)2X4 Spinel group (07.02), where A(B2O6) (08.03), without Dana classification numbers (09.00), where AX (09.01), where $\mathrm{A}(\mathrm{X}) 2$ (09.02), with simple formula $\mathrm{A}+\mathrm{CO} 3$ (14.01), with compound formula $\mathrm{A}+\mathrm{B}++(\mathrm{CO} 3) 2$ (14.02), -unclassified- (16b.07), (Anhydrous, Acid) (28.01), where ($\mathrm{A}+$)2XO4 (28.02), where (A++)XO4 (28.03), with miscellaneous formulae (28.04), (Hydrated, Acid) (29.01), where (A+)2XO4.x(H2O) (29.02), where

mineral_dana_group	openum(text)	S1
$[$ phase_classification_group]		BL: S2
	$[!!\mathrm{m}]$	

openum(text) S1
BL: S2
[!!_m]
$(\mathrm{A}+) 2 \mathrm{~B}(\mathrm{XO} 4) 2 . \mathrm{x}(\mathrm{H} 2 \mathrm{O})(29.03)$, where (A+)2Bn(XO4)p.x(H2O) (29.04), where $\mathrm{AB}(\mathrm{XO} 4) 2 . \mathrm{x}(\mathrm{H} 2 \mathrm{O})$ (29.05), where AXO4.x(H2O) (29.06), where $\mathrm{A}(\mathrm{B}) 2$ (XO4)4.x(H2O) (29.07), where (A)2(XO4)3.x(H2O) (29.08), with miscellaneous formulae (29.09), with all cations in octahedral [6] coordination (51.03), with chains $\mathrm{P}=2$ (65.01), with $1: 1$ layers (71.01), with $2: 1$ layers (71.02), with $2: 1$ clays (71.03), interlayered $1: 1,2: 1$, and octahedra (71.04), with other anions (71.05), SiO 2 with [4] coordinated $\mathrm{Si}(75.01)$, with $\mathrm{Al}-\mathrm{Si}$ frameworks (76.01), Feldspathoids and related species (76.02), ...\}

Note: glasses and amorphised minerals have the same Dana type as the crystalline equivalent.

Miner VM -- Group of the mineral in the Dana classification ($8^{\text {th }}$ ed.)
OpenEnum: $\{02.08 .09,02.07 .01,02.08 .10, \ldots, 76.02 .01, \mathrm{~N} / \mathrm{A}\}$
Label (code): \{Troilite group (02.08.09), Pentlandite group (Isometric: Fm3m) (02.07.01), -Pyrrhotite- group (02.08.10), Pyrite group (Isometric: Pa3) (02.12.01), Djerfisherite group (02.15.02), Gas Hydrate Group (04.01.03), Periclase group (Isometric, Fm3m) (04.02.01), CorundumHematite group (Rhombohedral: R-3c) (04.03.01), -Ferrihydrite- group (04.03.02), Perovskite group (04.03.03), Ilmenite group (04.03.05), Rutile group (Tetragonal: P4/mnm) (04.04.01), -Anatase- group (04.04.04), Brookite- group (04.04.05), Diaspore group (Orthorhombic, Pnma or Pnmd) (06.01.01), Brucite group (Rhombohedral: P-3m1) (06.02.01), -Iowaite- group (06.04.05), Aluminium subgroup (07.02 .01), Iron subgroup (07.02 .02), Chromium subgroup (07.02.03), Titanium subgroup (07.02.05), Kassite group (08.03.09), -Bromide- group (09.00.00), Halite group (09.01.01), -Hydrohalite- group (09.01.02), Fluorite group (09.02.01), -Lawrencite- group (09.02.03), Bischofite group (09.02.09), Calcite group (Trigonal: R-3c) (14.01.01), Vaterite group (14.01.02), Aragonite group (Orthorhombic: Pmen) (14.01.03), Natrite group (14.01.06), Dolomite group (Trigonal: R-3) (14.02.01), -Hydromagnesite- group (16b.07.01), -Thenardite- group (28.02.03), -Anhydrite- group (28.03.02), Langbeinite group (28.04.04), -Millosevichite- group (28.04.05), Kieserite Group (Monohydrates) (29.06.02), -Gypsum- group (Dihydrates, monoclinic) (29.06.03), -Sanderite- group (Dihydrates, orthorhombic) (29.06.04), Rozenite Group (Tetrahydrates,
monoclinic) (29.06.06), Chalchanthite Group (Pentahydrates, triclinic) (29.06.07), Hexahydrite Group (Hexahydrates, monoclinic) (29.06.08), Melanterite Group (Heptahydrates, monoclinic) (29.06.10), Epsomite Group (Heptahydrates, orthorhombic) (29.06.11), -Meridianiite- group (Undecahydrates, triclinic) (29.06.14), Olivine group (51.03.01), P2/c clinopyroxenes (65.01.01), Orthopyroxenes (65.01.02), C2/c clinopyroxenes (Ca clinopyroxenes) (65.01.03a), C2/c clinopyroxenes (intermediate clinopyroxenes) (65.01.03b), C2/c clinopyroxenes (Na clinopyroxenes) (65.01.03c), Kaolinite group (71.01.01), Serpentine group (71.01.02), Serpentine group (-Antigorite- subgroup) (71.01.02a), Serpentine group (Lizardite subgroup) (71.01.02b), Serpentine group (Amesite subgroup) (71.01.02c), Serpentine group (Chrysotile subgroup) (71.01.02d), Allophane group (71.01.04), Pyrophyllite-talc group (71.02.01), Smectite group (Dioctahedral Smectites) (71.03.01a), Smectite group (Trioctahedral Smectites) (71.03.01b), Chlorite group (Tri-Dioctahedral) (71.04.01), Cristobalite group (75.01.01), Quartz group (75.01.03), $\mathrm{K}(\mathrm{Na}, \mathrm{Ba})$ feldspars (76.01.01), Plagioclase series (76.01.03), Nepheline group (76.02.01), ..., N/A\}

Notes:

- groups with name between '-‘: i.e. '-name- group' are not official names (they have no Dana name) but given by us, by extension, from the main mineral of the, generally very short, group.
- glasses and amorphised minerals have no Dana group as the group of the crystalline chemical equivalents are defined by their crystalline structure.
- However all the 31 classified amorphous minerals have a group

Ex: '65.01.03a', '75.00.00', 'N/A', ...
Variable: mineral in Sample and Matters
Condition: mandatory when "mineral_crystal_system" = 'amorphous'
Note $x \mathrm{ml}$: for glasses or amorphised minerals of equivalent crystalline mineral: put ' N / A ' to remove the Dana group of the crystalline equivalent.

Mineral crystallography

mineral_phase_name [phase_phase_name]
mineral_phase_type [phase_phase_type]

$\operatorname{varchar}(255)$	S1S1c/S1 Miner VM
BL: S1	
$[\mathrm{m}]$	
	$[\mathrm{V}: \mathrm{m}]$

-- Common name of the mineral phase.
Notes:

- these names are not normalized but mostly a latin numbering or greek alphabet or letter/symbol derived from crystal system
- We take the names as defined in the literature.

Ex: 'alpha-cubic', 'beta-hexagonal', 'orthorhombic', ... (mostly for crystalline phase types), 'high density amorphous',

Ex:'alpha-quartz', 'beta-quartz'
enum(text) S1/\$1c/S1 MAmer FVM --- Type of phase of the mineral
BL: S1
[! m]
[V: £o_m]

Enum: \{crystalline, semicrystalline, paracrystalline, disordered, quasiamorphous, amorphous, glassy, liquid, mixed, various, unknown\}
Definitions: cf. "constituent_phase_type"

- 'various': used for groups or sub-groups including minerals with

hextetrahedral, hexoctahedral, N/A, various, unknown\}
Condition: mandatory only when "mineral_classification_level" = \{unique mineral, variable mineral, solid solution series \}

Definitions:

- 'N/A': for quasi-amorphous, amorphous, or glassy mineral phase types with 'amorphous' crystal system
- 'various': used for groups or sub-groups including minerals with various classes.
- 'unknown': when still unknown and possibly for 'semicrystalline', 'paracrystalline’ (quasi-amorphous) and 'disordered' phase types (sample and matters only)

Note:

- see list of crystal classes http://webmineral.com/crystall.shtml

Variable: mineral in Sample and Matters
Condition: mandatory when
"basic_constituent_mineral_variables_crystal_system" = 'amorphous'
Notes:

- for glasses or amorphised minerals of equivalent crystalline mineral: 'N/A'.
- crystal class has no meaning for glasses or amorphized minerals.
mineral_crystal_class_symbol [phase_crystal_class_symbol]

-- Crystalline class (point group) Hermann-Mauguin short symbol (and
-- Schönflies symbol) of the mineral
Enum: $\{1(\mathrm{C} 1),-1(\mathrm{Ci}), 2(\mathrm{C} 2), \mathrm{m}(\mathrm{Cs}), 2 / \mathrm{m}(\mathrm{C} 2 \mathrm{~h}), 222(\mathrm{D} 2), \mathrm{mm} 2(\mathrm{C} 2 \mathrm{v})$, mmm (D2h), 3 (C3), -3 (S6), 32 (D3), 3m (C3v), -3m (D3d), 4 (C4), -4 (S4), $4 / \mathrm{m}$ (C4h), 422 (D4), 4 mm (C4v), -42 m (D2d), 4/mmm (D4h), 6 (C6), 6 (C3h), $6 / \mathrm{m}$ (C6h), 622 (D6), 6 mm (C6v), -6 m 2 (D3h), $6 / \mathrm{mmm}$ (D6h), 23 (T), $\mathrm{m}-3$ (Th), $432(\mathrm{O}),-43 \mathrm{~m}(\mathrm{Td}), \mathrm{m}-3 \mathrm{~m}(\mathrm{Oh}), \mathrm{N} / \mathrm{A}$, various, unknown $\}$

Condition: mandatory only when "mineral_classification_level" = \{unique
mineral_crystal_spacegroup [phase_crystal_spacegroup]

CS- enum(text)
SS2
[!o_m]
[V: m_oc]
mineral, variable mineral, solid solution series $\}$

Definitions:

- 'N/A' for 'amorphous' system.
- 'unknown' if unknown (e.g. for 'hypocrystalline' and 'metamict'systems).
Note:
- see list of crystal classes and equivalent full Hermann-Mauguin symbol:
http://en.wikipedia.org/wiki/Crystallographic_point_group
http://en.wikipedia.org/wiki/Hermann-Mauguin_notation
http://webmineral.com/crystall.shtml
https://fr.wikipedia.org/wiki/Liste_des_groupes_d\'espace
- rotoinversion axis ‘' 1 ’ for Hermann-Mauguin symbol will be noted: '1 '
- true writing of Schönflies symbols is with the number/letter after the capital letter put in underscript. $E x: C 2 v=>C_{2 v}$

Variable: mineral in Sample and Matters
Condition: mandatory when
"basic_constituent_mineral_variables_crystal_system" = 'amorphous'
Notes:

- for glasses or amorphised minerals of equivalent crystalline mineral: 'N/A'.
- crystal class symbol has no meaning for glasses or amorphized minerals.
--- Crystalline Hermann-Mauguin symbol of symmetry space group in point group of the mineral

Enum: $\{\mathrm{Aba2}$, Abm2, Ama2, Amm2, C2, C2/c, C2/m, C222, C222(1), Cc, Ccc2, Ccca, Cccm, Cm, Cmc2(1), Cmca, $\mathrm{Cmcm}, \mathrm{Cmm} 2, \mathrm{Cmma}, \mathrm{Cmmm}$, F222, F23, F432, F-43c, F-43m, F4(1)32, Fd-3, Fd-3c, Fd-3m, Fdd2, Fddd,
Fm-3, Fm-3c, Fm-3m, Fmm2, Fmmm, I222, I23, I2(1)2(1)2(1), I2(1)3, I4,
$\mathrm{I} 4 / \mathrm{m}, \mathrm{I} 4 / \mathrm{mcm}, \mathrm{I} 4 / \mathrm{mmm}$, I41cd, I41md, I422, I432, I4cm, I 4 mm , I-4, I-42d, I-
$42 \mathrm{~m}, \mathrm{I}-43 \mathrm{~d}, \mathrm{I}-43 \mathrm{~m}, \mathrm{I}-4 \mathrm{c} 2, \mathrm{I}-4 \mathrm{~m} 2, \mathrm{I} 4(1), \mathrm{I} 4(1) / \mathrm{a}, \mathrm{I} 4(1) / \mathrm{acd}, \mathrm{I} 4(1) / \mathrm{amd}, \mathrm{I} 4(1) 22$,

I4(1)32, Ia-3, Ia-3d, Iba2, Ibam, Ibca, Im-3, Im-3m, Ima2, Imm2, Imma, Immm, P1, P-1, P2, P2/c, P2/m, P222, P222(1), P23, P2(1), P2(1)/c, P2(1)/m, P2(1)2(1)2, P2(1)2(1)2(1), P2(1)3, P3, P312, P31c, P31m, P321, P3c1, P3m1, P-3, P-31c, P-31m, P-3c1, P-3m1, P3(1), P3(1)12, P3(1)21, P3(2), P3(2)12, P3(2)21, P4, P4/m, P4/mbm, P4/mcc, P4/mmm, P4/mnc, P4/n, P4/nbm, P4/ncc, P4/nmm, P4/nnc, P422, P42bc, P42cm, P42mc, P42nm, P42(1)2, P432, P-4, P-42c, P-42m, P-42(1)c, P-42(1)m, P-43m, P-43n, P-4b2, P-4c2, P$4 \mathrm{~m} 2, \mathrm{P}-4 \mathrm{n} 2, \mathrm{P} 4(1), \mathrm{P} 4(1) 22, \mathrm{P} 4(1) 2(1) 2, \mathrm{P} 4(1) 32, \mathrm{P} 4(2), \mathrm{P} 4(2) / \mathrm{m}, \mathrm{P} 4(2) / \mathrm{mbc}$, P4(2)/mcm, P4(2)/mmc, P4(2)/mnm, P4(2)/n, P4(2)/nbc, P4(2)/ncm, P4(2)/nmc, P4(2)/nnm, P4(2)22, P4(2)2(1)2, P4(2)32, P4(3), P4(3)22, P4(3)2(1)2, P4(3)32, P4bm, P4cc, P4mm, P4nc, P6, P6/m, P6/mcc, P6/mmm, P622, P6cc, P6mm, P-6, P-62c, P-62m, P-6c2, P-6m2, P6(1), P6(1)22, P6(2), P6(2)22, P6(3), P6(3)/m, P6(3)/mcm, P6(3)/mmc, P6(3)22, P6(3)cm, P6(3)mc, P6(4), P6(4)22, P6(5), P6(5)22, Pa-3, Pba2, Pbam, Pban, Pbca, Pbcm, Pbcn, Pc, Pca2(1), Pcc2, Pcca, Pccm, Pccn, Pm, Pm-3, Pm-3m, Pm-3n, Pma2, Pmc2(1), Pmm2, Pmma, Pmmm, Pmn2(1), Pmmn, Pmna, Pn-3, Pn-3m, Pn-3n, Pna2(1), Pnc2, Pnma, Pnn2, Pnna, Pnnm, Pnnn, R3, R32, R3c, R3m, R-3, R3c, R-3m, N/A, various, unknown\}

Condition: mandatory only when "mineral_classification_level" = \{unique mineral, variable mineral, solid solution series\}

Definitions:

- 'N/A' for 'amorphous' system.
- 'unknown' if unknown (e.g. for 'microcrystalline', 'nanocrystalline' and 'metamict' systems).
Notes:
- 'indices' are written with '()' and 'upper bar' with '-' preceding the symbol, as in
http://homepage.univie.ac.at/nikos.pinotsis/spacegroup.html

$$
E x: P 2_{1}=>~ ' P 2(1) '
$$

- for each official space group (in International Tables of Crystallography, Vol. A) there are others equivalent ways to describe the symetries with different associated symbols. A good way to found the standard symbol is to found the space group number (230 groups) and go to the link above and found the standard symbol associated with
the space group number.
Ex: orthorhombic Pbnm = Pnma (62)
- one way to found this space group number is to look at the mineral crystallography on 'webmineral' and view one of the "Additional jPOWD Structure files": you will found there the space group followed by its number.

Ex: Space group: PBNM (62)
See: http://en.wikipedia.org/wiki/Space_group,
http://webmineral.com/help/CrystalSystem.shtml
http://www.planewave.de/icp/atoms/atoms.sgml-7.html
http://homepage.univie.ac.at/nikos.pinotsis/spacegroup.html (list in
numerical order (used as reference): one mistake: F4-3m (216) => F-43m)
http://www.cryst.ehu.es/cgi-bin/cryst/programs/nphnorm?choose=choose\&from=norm\&gnum=40\&norgens=en (list list in numerical order. 5 are different with previous list!: Aem2 $=>$ Abm2 (39), Aea2=>Aba2 (41), Cmce=>Cmca (64), Cmme=>Cmma (67), Ccce=>Ccca (68))

Variable: mineral in Sample and Matters
Condition: mandatory when
"basic_constituent_mineral_variables_crystal_system" = 'amorphous'
Notes:

- for glasses or amorphised minerals of equivalent crystalline mineral: 'N/A'.
- Crystal Hermann-Mauguin symbol has no meaning for glasses or amorphized minerals.

Mineral crystal sites

mineral_crystal_sites
[-xml in precursors]

List [L6]
[O]
[V Flag:
!!o_m]
£: Description of the crystallographic sites of atoms in the mineral structure Condition: Optional bloc - Mandatory active below when
"mineral_crystal_site_label" \neq 'NULL'

mineral_crystal_site_label [phase_crystal_site_label]	varchar(255)	$\begin{gathered} \text { SS3 } \\ \text { BL: U } \\ {[\text { fod_m] }} \\ {[\mathrm{V}:} \\ \text { ££o_m] } \end{gathered}$	MAhear FM L6	---	Label of the crystallographic site of the atom in the mineral structure FreeList: $\{\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \mathrm{M} 4, \mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 5, \mathrm{O} 6, \mathrm{O} 7, \mathrm{O}, \ldots\}$ Default $=$ 'NULL' Condition: (option trigger) the filling of this KW is 'compulsory' when this optional bloc is used. It triggers the 'mandatory' status of several others KW in the optional bloc. Definition: 'M' (for Metal ion) or 'O' (for Oxygen atom) \& site order number Note: start the list with the sites of the cations, then eventually Oxygen $E x: ~ ' M 1 ', ~ ' M 2 ', ~ ' O 1 ', ~ ‘ O 2 ', ~ . . . ~$ Note: Determined from "_atom_site_label" of AMCS Database: http://rruff.geo.arizona.edu/AMS Variable: mineral in Sample and Matters Condition: absolute compulsory when the bloc is used Note: add labels for replacement and impurities atoms
mineral_crystal_site_type [phase_crystal_site_type]	enum(text)	$\begin{gathered} S 2 \\ \text { BL: S2b } \end{gathered}$	MAhner PM L6	---	Type of crystallographic site of the atomic species in the mineral structure Enum: \{main, substitutional, isovalent substitutional, aliovalent substitutional,

mineral_crystal_site_species
List [L7]
[!o]
£: specie(s) in the crystallographic site of the mineral structure and their state
Condition: Mandatory when "mineral_crystal_site_label" $=$ 'NULL'
Variable: mineral in Sample and Matters
Notes xml:
\Rightarrow when the crystal site is changed all species and their related information (coordinence, occupancy, oxidation state) should be listed.
\Rightarrow to change one specie, or its associated information, the whole site should be redefined (with "mineral_crystal_sites_full_definition" = 'no')
-- Link to the existing UID of the specie in the crystallographic site.
Condition: Mandatory when "mineral_crystal_site_label" \neq 'NULL'
Note:

- if a cation has more than one valence, then it is necessary to link to the ion with its valence

$$
\begin{aligned}
& \text { ' } \mathrm{V}^{5+} \text {, }, \mathrm{Cr}^{2+} \text {, } \ldots
\end{aligned}
$$

- Species can be elements, but may be also molecular species, such as anionic radicals, $\mathrm{H}_{2} \mathrm{O}$ of hydratation, $\mathrm{H}_{2} \mathrm{O}$ in ice and clathrate, \ldots
- the link for mineral is only to the natural species (natural mixture of the isotopologues with terrestrial abundance).

Variable: mineral in Sample and Matters

Condition: Mandatory when "mineral_crystal_site_label" \neq 'NULL'
Note: includes the replacement and impurities elements
Note: this "specie_uid" refers to particular isotopes only for isotopicaly substituted minerals.
mineral_crystal_site_specie_coordi enum(text)
nence
[phase_crystal_site_specie_coordin
ence]

-- Coordinences of the species (mostly cations) and associated geometry of the crystallographic sites in the mineral structure

Enum: \{linear I, linear II, trigonal planar III, tetrahedral IV, square planar IV, trigonal bipyramidal V, square pyramidal V, octahedral VI, trigonal prismatic
mineral_crystal_site_specie_occupa float
ncy
[phase_crystal_site_specie_occupa
ncy]
mineral_crystal_site_specie_oxidati int(11) on_state
[phase_crystal_site_specie_oxidatio
n_state]

VI, pentagonal bipyramidal VII, face capped octahedral VII, trigonal prismatic square face monocapped VII, cubic VIII, square antiprismatic VIII, dodecahedral VIII, hexagonal bipyramidal VIII, octahedral trans bicapped VIII, trigonal prismatic triangular face bicapped VIII, trigonal prismatic square face bicapped VIII, tricapped trigonal prismatic IX, monocapped square antiprismatic IX, bicapped square antiprismatic X, trigonal prismatic all faces capped XI, icosahedral XII, cuboctahedral XII, anticuboctahedral XII, hexagonal prismatic XII, bicapped hexagonal antiprismatic XIV, no, unknown $\}$
Definition: number of anions and shape of polyhedra surrounding the cation.
But its can also refer to a molecular species such as $\mathrm{H}_{2} \mathrm{O}$ or an anionic radical
Note: 'no' coordinence for O atoms.
Note: cf. http://en.wikipedia.org/wiki/Coordination geometry
Variable: mineral in Sample and Matters
Note: add coordinence for replacement and impurities atoms
specie fractional occupancies of the crystallographic sites of the mineral structure

Note: Determined from "mineral_specie_site_occupancy" of AMCS Database Variable: mineral in Sample and Matters

Note: modify occupancy of main atoms and add for replacement and impurities atoms
$\mathrm{S}^{\mathrm{U}} \quad$ MAheer $\mathrm{FM} \quad-=\quad$ Oxidation state of the atoms (mostly cations) in the crystallographic sites of
[V: m] $\begin{array}{ll}\mathrm{L} 6 \\ \mathrm{~L} 7\end{array}$

SU	MAFiner FMM
$[\mathrm{m}]$	L6
$[\mathrm{V}: \mathrm{m}]$	L 7

Note: no oxidation state for O atoms or molecular species
Reference: https://en.wikipedia.org/wiki/Oxidation_state
https://en.wikipedia.org/wiki/List_of_oxidation_states_of_the_elements
Variable: mineral in Sample and Matters

mineral_crystal_composition_order [phase_crystal_composition_order]	enum(text)	$\begin{gathered} \mathrm{SU} \\ {[\mathrm{~m}]} \end{gathered}$	M4ineer PVM	---	Type of compositional order in the crystallographic sites of the mineral structure
		[V: m]			Enum: \{ordered, disordered, partly ordered, unknown\}
					Note: for mineral it should be set to 'ordered'
					Variable: mineral in Sample and Matters
					Note: change order if modified in actual mineral, especially by replacement and impurities atoms
mineral_crystal_comments [phase_crystal_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner VM	--	Additional information on mineral crystal structure and sites
					Variable: mineral in Sample and Matters
					Flag 'replace': \{yes, no\}
					Definitions: see "mineral_comments"
					Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').
Mineral properties					
mineral_molar_mass [phase_molar_mass]	$\operatorname{varchar}(255)$	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {[!\mathrm{o}=\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner VM	$\mathrm{g} / \mathrm{mol}$	Molar mass (value or range) of the mineral
					provided in ' g /mol' unit
					Condition: Mandatory when "mineral_classification_level" $=\{$ unique mineral, variable mineral, solid solution series\}
					Note: Molar mass is frequently called 'molecular weight'
					Note: range of molar mass for variable mineral, solid solutions and n-hydrated minerals. No requested value for groups and subgroups.
					Note: a mole of mineral is a mole of one 'chemical formula unit'. Its molar mass is determined from its structural or elemental formula.

ex: '161.7', '160.2-162.5'

Variable: mineral in Sample and Matters

Note: determined from the actual elemental formula. Different from generic mineral for solid solution, n -hydrated minerals, or minerals with replacement elements. Minor changes with impurities elements.

- 'metastable solid - other solid': for CaCO3 'aragonite' (the other solid phase, stable, is calcite)

Mineral thermodynamic properties

the numbers

Notes:

- range of temperature for variable mineral.
- No requested value for groups and subgroups, solid solutions and nhydrated solids.

Ex: '35.4 K (100 mbar)', '273.2-273.5 K (100 MPa)', '272.3 K (1 bar) 275.2 K (100 bar)'

Note: the refringence type did not change for a solid solution because of identical crystal structure

Note: could be automaticaly determined using "mineral_crystal_system" Variable: mineral in Sample and Matters

Note: Modified to 'isotropic' in case of glasses or amorphised minerals of
mineral_refringence_sign [phase_refringence_sign]
mineral_birefringence
[phase_birefringence]
enum(text)
$\begin{array}{lc}\operatorname{varchar}(255) & \mathrm{U} \\ & {\left[!\mathrm{o} _\mathrm{m}\right]} \\ & {[\mathrm{V}: \mathrm{m}]}\end{array}$
equivalent uniaxial and biaxial crystalline minerals.

${ }_{[S}^{\mathrm{U}}$	Miner VM
$\left[!\mathrm{O} _\mathrm{m}\right]$	
$[\mathrm{V}: \mathrm{m}]$	

-- \quad Sign of birefringence of the mineral crystal
Condition: Mandatory only when "mineral_classification_level" = \{unique mineral\}
AND when "mineral_refringence_type"=\{uniaxial\}
Enum: \{positive, negative, positive or negative, no, unknown\}
Note: depends on the type of refringence of the mineral crystal
("mineral_refringence_type") and on the difference between refraction indexes ("mineral_refraction_index_na" and " nb")

- ' $n o$ ': for 'isotropic' crystals
- sign of $\mathrm{n}_{\beta}-\mathrm{n}_{\alpha}=\mathrm{n}_{\mathrm{e}}-\mathrm{n}_{\mathrm{o}}=e-w$ for uniaxial crystals:
- 'positif': for biaxial crystals: (always 'positif' by definition)
- 'positif or negatif': for 'various' (but can be positif if 'various' only include 'monoclinic', 'triclinic' and 'orthorhombic' systems)
- 'unknown': for 'unknown

Note: when the birefringence sign can change for a uniaxial solid solution or n-hydrated minerals, especialy when birefringence is low, it is set to 'positif or negatif'

Variable: mineral in Sample and Matters
Notes:

- Do not change for isotropic and biaxial crystals.
- Only 'positif' or 'negatif' for uniaxial crystals.
- Can be different from generic mineral for solid solution, n-hydrated minerals, or minerals with replacement elements.
- Rare changes with impurities elements.

Miner VM no Birefringence, $\Delta \mathrm{n}$, (value or range) of the mineral crystal
Condition: Mandatory only when "mineral_classification_level" = \{unique mineral, variable mineral, solid solution series\}
AND when " mineral_refringence_type" $=\{$ uniaxial $\}$
mineral_refraction_index_na [phase_refraction_index_na]
mineral_refraction_index_nb [phase_refraction_index_nb]

Mineral optical aspect

mineral_pure_color [phase_pure_color]	enum(text)	$\begin{gathered} \text { S2 } \\ \text { BL: U } \\ {[\mathrm{m}]} \end{gathered}$	Miner	F		Main color of the pure mineral crystals (without any impurity) FreeList: \{colorless, white, blue, bluish, azure, green, greenish, emerald, olive, turquoise, yellow, yellowish, orange, pink, pinkish, red, reddish, lilac, violet, indigo, purple, brown, brownish, beige, gray, grayish, black, blackish, bronze, lead, silver, steel, copper, tin, various, ...\} Notes: - The list above contains the main colors in 'WebMineral' website, but there are lot of other nuances (not very homogeneous...). Try to avoid too exotic ones!
mineral_true_color [phase_true_color]	varchar(255)	$\begin{gathered} \text { S2 } \\ \text { BL: U } \\ {[\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Miner	VM	--	Color nuance (pure) and other known colors of the mineral crystals (with impurity) Ex: 'pale pinkish - green, pink, blue'

Mineral references and comments

mineral_publications	List [L7a]	[O]				£: Publications on the mineral phase and its properties.
mineral_publication_uid [*] [phase_publication_uid]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Miner Publi L7a	F	--	Link to the existing UID of the publications on the mineral Note: these papers should be in the bibliography database, with "publication_content" = 'phase'
mineral_links [phase_links]	List [L7b]	[O]				£: Web page describing the mineral and its properties.
mineral_link_name [phase_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{aligned} & \text { Miner } \\ & \text { L7b } \end{aligned}$	F	--	Name of the web page describing the mineral and its properties. Ex: 'Wikipedia', 'WebMineral, 'MinDat', 'Handbook of Mineralogy (Min. Soc. Am)', ...
mineral_link_url [phase_link_url]	CS- varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Miner L7b	F	--	Link to the web page (Webmineral and MinDat database) describing the mineral and its properties => http://webmineral.com => http://www.mindat.org => http://rruff.geo.arizona.edu/AMS/amcsd.php (crystallography) Ex: 'http://webmineral.com/data/Wittichenite.shtml' Ex: 'http://www.mindat.org/min-1088.html' Notes: - you can link to a publication by giving its url address, preferably through its DOI. Ex: https://doi.org/10.1002/ejic. 200700067
mineral_comments [phase_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Miner	$\begin{gathered} \mathrm{VM} \\ \mathrm{Aj} \end{gathered}$	--	Additional information on mineral (possible replacement elements, impurities, ...) Variable: mineral in Sample and Matters

Flag 'replace': \{yes, no\}
Definitions: see "mineral_comments"
Definitions:

- 'yes': the comment replace the original comment of the fundamental mineral
- 'no': the comment is added after the original comment of the fundamental mineral
Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').

7.5 Solid Phase Table

Root of the table: solid
Data type: 'Fundamental phase'
In "Exp" column 'VS' means a variable key-word of the fundamental solid: when defining a "sample" or a "matter" containing fundamental solid phases (described in "basic constituents") the VS values in "solid phase" can be modified (but will not be changed in the fundamental solid database) to reflect the exact solid properties (for exemple for solid solutions, clathrates, ...). See specific notes in Variable: solid in Sample and Matters

Key-word	Type	Level	Table Exp	Unit	Description
phase_polymorphic_type [-xml]	enum(text) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	Solid (V)		Type of phase Enum: \{solid\}
Solid phase import					
solid_import_mode [phase_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	Solid (V)	--	Mode of import of the solid data Enum: \{first import, ignore, draft, no change, correction\}
					Definitions: see "sample_import_mode"
solid_xml_filename [-xml] [phase_xml_filename]	varchar(255) [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{vc}]} \end{gathered}$	Solid (V)	--	Name of the storage copy of the xml import file of the solid metadata \rightarrow determined automatically during import (from "solid_uid»?)
					Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

Solid phase indexes and type

solid_index $[* *][-\mathrm{xml}]$	$\operatorname{int}(10)$	B	Solid	F	--
$\left[p h a s e _\right.$index $]$		Automatic random but unique number (ID) given to new solid			

solid_uid [**] [phase_uid]	$\operatorname{varchar(255)~}$	$\begin{aligned} & \text { S0/S0c/S1 } \\ & \text { BL: S2 } \\ & {\left[!!_m\right]} \end{aligned}$	Solid	F		Unique identifier code (UID) given to the solid table (to be created) Nomenclature: Create this UID with "SOLID_" possibly followed by 'GROUP_' for "solid_classification_level" $=$ \{solid group, solid subgroup $\}$, or 'SERIES_' for 'solid solution series' It should be of the style: \Rightarrow 'SOLIDGROUP_GroupName' \Rightarrow 'SOLIDSERIES_SeriesName' or 'SOLIDSERIES_EndmemberName1_EndmemberName2' \Rightarrow 'SOLID(_Phase)_SolidName' or 'SOLID_SolidFormula' where 'Group/SeriesName' are the group/series names, 'Phase' is the optional phase name of the solid, 'EndmemberName'n' and 'SolidName' are the "solid_official_name" and 'SOLID_SolidFormula' the "solid_chemical_formula" (for small molecules). Note: use only lowercase for the solid name Note: The fundamental solid phases stored in the database will be, by default, with natural terrestrial abundance. Ex: $\begin{aligned} & \Rightarrow \text { 'SOLID_alpha_Fe', } \\ & \Rightarrow \text { 'SOLID_NaCl', } \\ & \Rightarrow \text { 'SOLID_CH4_clathrate', } . . \end{aligned}$
solid_mineral_uid [*] [phase_phase_uid]	$\operatorname{varchar(255)}$	$\begin{gathered} \text { S1i } \\ \text { BL: U } \\ {[\text { £o_m] }} \end{gathered}$	Solid Miner	F	--	Link to the existing UID of the equivalent mineral Condition: compulsory if exist Note: mostly for simple solids - this will allow to link the fundamental solid to its equivalent natural mineral and get its classification
						Ex: - 'MINER_halite' for NaCl ionic solid; - 'MINER_ice' for Water ice Ih, - 'MINER_methane-hydrate-I' for CH_{4} chathrate hydrate I,

- 'MINER_corundum' for alpha- $\mathrm{Al}_{2} \mathrm{O}_{3}$ aluminum oxide, ...

solid_liquid_uid [*]	varchar(255)	S1i	Solid	F
[phase_phase_uid]		BL: U	Liquid	
	[fo_m]			

-- Link to the existing UID of the equivalent liquid
Condition: compulsory if exist
Note:

- mostly for simple solids. Should have exactly the same molecular or atomic composition
- this will allow to link the fundamental solid to its equivalent liquid Ex.
- 'LIQUID_H2O' for corresponding liquid of 'Water ice Ih'
- 'LIQUID_Hg' for corresponding liquid of 'Hg metallic solid'

Solid names

solid_official_name
[phase_official_name]
-- Official name of the solid, series or (sub)group
Notes:

- As there is no current official classification an naming, we will create these names
- start with the common litteral compound name (starting with a capital letter) including its composition, and followed with the phase name/number.

Ex: 'Water ice Ih'

- for solid solutions series the name should be built with: 'endmember_name-1':'endmember_name-2' followed by the type of solid solution series and with the phase name/number (or in front)

Ex: 'beta-N2:CH4 solid solution series'
Ex: 'CH4:C2H6 clathrate hydrate II'

- It is used as the title of the solid page on the SSHADE interface

Reference sites:

- Wikipedia:
- PubChem:
- GuideChem:
- Materials project: https://materialsproject.org
- Topological: https://www.topologicalquantumchemistry.org
- Cambridge Structural Database (CSD):
https://www.ccdc.cam.ac.uk/structures/Home/EditSearchForm

Variable: solid in Sample and Matters

Note: to provide a more precise name for the actual solid

$$
E x \text { : 'beta-N2:CH4 solid solution = 0.97:0.03' }
$$

solid_secondary_names [phase_secondary_names]	List [L0]	[m]				$£:$ List of the alternative names used for the solid
solid_secondary_name [phase_secondary_name]	varchar(255)	$\begin{gathered} \text { S0/S0c/S1 } \\ \text { BL: S1 } \\ {[\mathrm{m}]} \end{gathered}$	Solid L0	F	--	Alternative name used for the solid Note: start with a capital letter
solid_cas_number [phase_cas_number]	varchar(255)	$\begin{aligned} & \text { S1 } \\ & \text { BL: S1 } \\ & {[\mathrm{m}]} \end{aligned}$	Solid	F	--	CAS registry number, unique, of the solid (natural or synthetic) Note: the problem is to found them!!! No registry, not systematic! => some (mostly synthetic) in Wikipedia: http://www.chemindustry.com/chemicals/
Solid family, class and type						
solid_family [constituent/phase_family]	enum(text)	$\begin{aligned} & \text { S1/S1c/S1 } \\ & \text { BL: S1 } \\ & {\left[!!_\mathrm{m}\right]} \end{aligned}$	Solid	F	--	Phase family (or major class) of the solid Enum: \{molecular solid, covalent network solid, ionic solid, metallic solid\} Definitions: see in "constituent_family" Notes: - equivalent to "constituent_family"
solid_class [phase_class]	enum(text)	S1/S1c/S1 BL: S1b	Solid	F	--	Class of solid Enum: \{non polar molecular solid, polar molecular solid, hydrogen bonded molecular solid, mixed molecular solid, chain covalent network solid, sheet

sulfosalt, tellurate, tellurite, tungstate, vanadate, vanadium oxysalt, organic salt, silicate, cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, tectosilicate, metal, metallic alloy, semi-conductor, other compound \}

- For molecular solids:

Homonuclear:

- 'elemental solid': covalent network (ex: , Si...) homonuclear solid (except with C and noble gases atoms)
- 'noble gas solid':
- 'carbon allotrope': molecular (ex: C60, carbon nanotubes) or covalent network (ex: graphite, diamond) homonuclear solid made fully or mostly of C atoms
Polynuclear:
- 'organic molecular solid': all molecular solids made of organic molecules (CnHmOpNq)
- 'inorganic molecular solid': inorganic molecular solid (without Cn) either homonuclear (ex: N2, S8) or heteronuclear
Polymolecular:
- 'clathrate': clathrate structure formed with other host molecules
- 'clathrate hydrate': clathrate structure formed with $\mathrm{H}_{2} \mathrm{O}$ (host)
- 'hydrate': solid stoichiometric hydrate containing water molecules as an integral part of the crystal and combined in a definite ratio
Polymers:
- 'homopolymer': mixture of macromolecules composed of the same unique repeating structural unit.
- 'copolymer': mixture of macromolecules composed of several repeating structural units.
Molecular mixture:
- 'molecular solid solution': solid-state solution of two or more molecules forming a single homogeneous crystalline phase in thermodynamical equilibrium
- 'solid molecular mixture': solid-state mixture of two or more molecules forming an homogeneous phase, but generally out of thermodynamical equilibrium (at ow temperature, ...)
- For covalent solids:
- 'elemental solid': non-metal elemental solid, except carbon allotropes
(Ex: Si, Ge, ...)
- 'oxide': ex: $\mathrm{SiO} 2, \mathrm{TiO}_{2}$,
- 'hydroxide':
- 'oxide-hydroxide':
'non-oxide ceramic': (ex: SiC, BN, ...)
- For ionic solids:
- antimonate,
- antimonite,
- Arsenate $\left(\mathrm{AsO}_{4}{ }^{3-}\right.$)
- Borate $\left(\mathrm{BO}_{3}{ }^{3-}, \mathrm{BO}_{4}{ }^{4-}\right)$
- Bromide (Br^{-})
- Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$
- Chloride (Cl^{-})
- Chlorite $\left(\mathrm{ClO}_{2}{ }^{-}\right)$
- Chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$
- Perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$
- Chromats $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$
- Cyanide (CN)
- Cyanate (NCO-)
- Fluoride (F)
- Fulminate (CNO^{-})
- Halide
- iodate,
- Iodide (I)
- Molybdate $\left(\mathrm{MoO}_{4}{ }^{2-}\right)$
- Nitrite $\left(\mathrm{NO}_{2}{ }^{-}\right)$
- Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$
- Phosphite $\left(\mathrm{HPO}_{3}{ }^{2-}\right)$
- Phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$
- phosphite
- \quad Selenide $\left(\mathrm{Se}^{2-}\right)$
- \quad Selenite $\left(\mathrm{SeO}_{3}{ }^{2-}\right)$
- Selenate $\left(\mathrm{SeO}_{4}{ }^{2-}\right)$
- \quad Sulfide $\left(\mathrm{S}^{2-}\right)$
- \quad Sulfite $\left(\mathrm{SO}_{3}{ }^{2-}\right.$)

solid_classification_level [phase_classification_level]	enum(text)	$\begin{aligned} & \text { S1/S2c/S2 Solid } \\ & \text { BL: U } \\ & {[!!\text { _m] }} \end{aligned}$	F	Level of solid classification Enum: \{solid group, solid subgroup, solid polymorphs, solid solution series, hydration series, variable solid, unique solid\} Definitions: - ' solid group': General group of solid, with at least 2 variable molecules or atoms Ex: 'mixed clathrates hydrates', 'rare gases solids' ... - ' solid subgroup': subgroup of a solid group, with one molecule or atom of the group fixed, and at least 1 other variable. Ex: 'single clathrate hydrates II', 'Rare gases clathrate hydrates I' - 'solid polymorphs': solids with exactly same composition but different crystalline structures - 'solid solution series': series between 2 endmembers of a group, or subgroup, with one variable between 2 or 3 molecules or atoms Note: for solid solutions of Note: amorphous multi-molecules/atoms solids will be always classified as 'solid solution series'

- to tell if it is a true polymorph or a polytype
- to provide some information on the P-T stability domain of the polymorph

$£$: List of the polytypes of the solid

Constraint: only when "solid_classification_level" $=\{$ solid polymorphs, solid solution series, variable solid, unique solid\}
Definition: Polytypism is a particular case of polymorphism, the different structures are formed by stacking a module (in most cases a layer or sheet) of almost identical structure and composition. The polytypes differ in how the module is stacked (translation and / or rotation) along one direction: the two lattice parameters in the plane of the module are common to all polytypes, while the third differs. Polytypes are distinguished by specific symbols. The symbols most frequently used are those of Ramsdell, which associate the number of layers in the period of the polytype with the symbol corresponding to the crystalline or reticular system:

- A: anorthic (triclinic)
- M: monoclinic
- O: orthorhombic
- Q: quadratic (tetragonal)
- T: trigonal (with hexagonal Bravais lattice)
- R: trigonal (with rhomboedric Bravais lattice)
- H : hexagonal
solid_polytype_name [phase_polytype_name]

SO/S0c/
BL: U [o_m]
[V:m]

- C: cubic (isometric)

Other Definition: An element or compound is polytypic if it occurs in several different structural modifications, each of which may be regarded as built up by stacking layers of (nearly) identical structure and composition, and if the modifications differ only in their stacking sequence. Polytypism is a special case of polymorphism: the two-dimensional translations within the layers are (essentially) preserved whereas the lattice spacings normal to the layers vary between polytypes and are indicative of the stacking period. No such restrictions apply to polymorphism. In some cases, layers in different polytypic structures may exhibit slight structural differences and may not be isomorphic in the strict crystallographic sense.
Definition: Polytypes can also be used for polymers to describe various types of polymers of a same global formula, i.e. with various monomer numbers (molar mass), various branching, ..

Ex: 'LDPE', 'LLDPE', 'HDPE', 'UHWPE'... for Polyethylene
Variable: solid in Sample and Matters
Note: keep only the actual polytype, if it is known
Note xml: when filled, it will replace the full list of polytypes

Name of the polytypes of the solid
Note:

- provides a list of the polytypes using their names or names \& symbols (follow official nomenclature) whatever they are considered as separate solids or not.
- If they are considered as separate solids they need to be also listed in "solid_polymorph_solid_uid"

Reference: http://www.iucr.org/resources/commissions/crystallographicnomenclature/polytypes

solid_polytype_comments [phase_polytype_comments]	varchar(255)	U	Solid	VS	--	Additional information on the solid polytype

solid_figures
solid_figure_filename
[phase_figure_filename]
solid_figure_caption
[phase_figure_caption]

List [L2c]

varchar(255)	P	Solid	F
$[\mathrm{m}]$	L2c		

$\operatorname{varchar}(255) \quad \mathrm{U}$ Solid F [m]

Note:
$£$: List of the figures on the solid
-- File name (with extension) of the figure on the solid
Image formats: .png, .jpg, (.gif)
Notes:

- mostly for polymorphs and series
- can be a phase diagram of the polymorphs, or the (end)members diagram of a solid solution series ...
Note $D B$: this file will be imported in the database
-- Caption or comments on the figure on the solid
Ex:
Note: should include credits when necessary

Solid chemical composition

solid_formula	varchar(255)	U
[phase_formula]		[!!_m]

-- Developed structural (empirical) chemical formula of the solid
Syntax: Latex format
Notations:

- Small point (.) can separate molecules
- Dot • (lbullet) separates hydration
- LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf
- Ex:
- '\$H_2O\$' for $\mathrm{H}_{2} \mathrm{O}$
- '\$(N_2)_x. (CH_4)_\{1-x\}\$' for (N2) $)_{x}$. $(\mathrm{CH} 4)_{1-\mathrm{x}}$
- '\$(CH_4)_\{x\}.5.75(H_2O)\$' for CH4 clathrate I
- ' $\$ \mathrm{NH} _\overline{3}$ \bullet $2 \mathrm{H} _2 \mathrm{O} \$$ ' for $\mathrm{NH}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Notes:

- For polymers: give the repeating unit with ' n ' subscript and add the

CS-

 varchar(255)S0/S0c/S1 Solid VS
BL: S1
[!!_m]
[V: m]
terminal groupments/functions, if they are generic (fixed) for the polymer.

```
Ex: '$H-[O-CH_2-CH_2]_n-OH$' or '$-[O-CH_2-CH_2]_n-$' for
polyethylene glycol
```


Variable: solid in Sample and Matters

Notes:

- Includes replacement atoms and substitution and impurities molecules/atoms, as well as values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ fractions and n -hydration number

Ex: '\$(CH_4)_\{0.92\}.5.75H_2O\$' for $\left(\mathrm{CH}_{4}\right)_{0.92} .5 .75 \mathrm{H}_{2} \mathrm{O}$

- Can contain isotopic information for pure isotopes or when an atom is substituted in a molecule

$$
E x: ' \$ \wedge\{18\} \mathrm{H}_{-} 2 \mathrm{O} \$ \text { for }{ }^{18} \mathrm{H}_{2} \mathrm{O} '
$$

- For polymers: give the repeating unit with the value or range of ' n ' subscript and add the terminal groupments/functions, if known.

Ex: '\$H-[O-CH_2-CH_2]_\{50-75\}-OH\$' ' for polyethylene glycol
-- Developed global chemical and structural formula of the solid
Notes:

- contain ionic information.

Notations

- solid series are indicated by comma separating the molecules that varies in amount. The more dominant molecule is usually listed first.
- small point '.' separates molecules
- big point ' \bullet ' (ascii=149) separates hydration in ()
- ' n ' give a variable value for structural hydration.
- a range of hydration number ' n ' can be given with ' $\mathrm{n} 1-\mathrm{n} 2$ ':
- Ex: 'NH3•0.5-2(H2O)'
- For solids with isotopic atomic substitution (non-natural isotopic abundance), substituted atoms will have their atomic mass between square brackets preceding the atom symbol. D can be used for ${ }^{2} \mathrm{H}$.
- Ex: 'NH3•2(D2[18]O)'
- For polymers: give the repeating unit with ' n ' subscript and add the

solid_hydration [phase_hydration]	boolean	$\begin{gathered} \text { S0/S0c/S2 } \\ \text { BL: S2 } \\ {[!!\mathrm{m}]} \end{gathered}$	Solid	F		Flag telling if the solid contains structural $\mathrm{H}_{2} \mathrm{O}$ BoolEnum: $\{$ yes, no\} or $\{$ true, false $\}$
solid_hydration_series [phase_hydration_series]	boolean	$\begin{gathered} \mathrm{U} \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Solid	F	--	Flag telling if the solid is an isostructural series of n-hydrated solids ('true') BoolEnum: \{yes, no\} or \{true, false\} Condition: absolute mandatory when "solid_hydration" = \{true $\}$ Notes: n-hydrated solids have variable amount of structural $\mathrm{H}_{2} \mathrm{O}$ molecules, (limited range of n : min-max, or incremental) Ex: $\mathrm{NH}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}, \mathrm{n}=0.5,1,2$ (but in this exemple it is not isostructural)
solid_hydration_number [phase_hydration_number]	varchar(255)	$\begin{gathered} \text { S3/S3c/S3 } \\ \text { BL: S3 } \\ \text { [!o_m] } \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid	VS	--	Number or range of numbers of structural $\mathrm{H}_{2} \mathrm{O}$ in the solid Condition: mandatory when "solid_hydration" = 'true' Note: for hydration series put the current value (if well defined and known), or a range (if not well defined or known) either fixed and continuous (' $1-3$ '), or incremental (' $0.5,1,2$ ') for some groups, or with one limit unknown (' 2 - ?', '? - 6'), or open with no upper limit in ' n ' (' $2-n$ '), or ' n ' if fully unknown or undefined.

$E x$: ‘2', ‘4-6', ‘0-2', ‘0-n' (if no real limit to 'n'), ‘0.5, 1,2 '

Variable: solid in Sample and Matters

Note: It will take into account the level of (de)hydration of the matter. Put the value, but if not well known then put some range.

Solid polymer composition

solid_polymer_monomer_arrangem enum(text) ent [-xml, only in variables]

Note: only for polymers
-- Monomer(s) arrangement in the polymer molecule
Enum: \{linear homopolymer, branched homopolymer, sequence-controlled copolymer, alternating copolymer, periodic copolymer, statistical copolymer, random copolymer, block copolymer, stereoblock copolymer, branched Graft copolymer, branched star copolymer, other, unknown\}
Note: not for fundamental solids (not in xml "phase_solids', only in "solid_varialbles"

Variable: solid in Sample and Matters

Condition: mandatory when "solid compound type" = \{homopolymer, copolymer\}

Definitions:

- 'linear homopolymer': linear polymer with only a single A unit
- 'branched homopolymer': polymer with only a single A unit but with several polymer chains connected to a central core
- 'sequence-controlled copolymer': macromolecule, in which the sequence of monomers is controlled to some degree
- 'periodic copolymer': linear polymer with A and B units arranged in a repeating sequence (e.g. (A-B-A-B-B-A-A-A-A-B-B-B) ${ }_{\mathrm{n}}$)
- 'alternating copolymer': periodic copolymer with regular alternating A and B units with formula: -A-B-A-B-A-B-A-B-A-B-, or $-(-\mathrm{A}-\mathrm{B}-)_{\mathrm{n}}{ }^{-}$
- 'statistical copolymer': copolymers in which the sequence of monomers follows a statistical rule
- 'random copolymer': purely random arrangement of chemically distinct monomers
- 'block copolymer': comprise two or more homopolymer subunits (the

solid_polymer_terminal_function	varchar(255)
	U $\left[!\mathrm{o} _\mathrm{m}\right]$ $\left[\mathrm{V}!\mathrm{o} _\mathrm{m}\right]$

blocks) linked by covalent bonds

- 'stereoblock copolymer': in which the blocks differ only in the tacticity of the monomers (relative stereochemistry of adjacent chiral centers within a macromolecule)
- 'branched Graft copolymer': in which the main chain is formed from one type of monomer (A) and branches are formed from another monomer (B)
- 'branched star copolymer': with several polymer chains connected to a central core
- 'other': any other monomer(s) arrangement not listed above (provide the information in "solid_polymer_comments")
- ‘unknown’: unknown arrangement

Note: there is a lot of other types or subdivisions of polymer arrangements
Ex: A biopolymer (for example a protein) with a perfectly-defined primary structure is a sequence-controlled polymer.
-- Terminal chemical function(s) of the polymer
Condition: mandatory when "solid_compound_type" = \{homopolymer, copolymer\}
Syntax: Latex format
Note:

- Generally one type of function, but sometimes two
- the terminal functions can also be given in "solid_formula" and "solid_chemical_formula"
- This function and number should be listed in the "solid_chemical_functions" bloc
- Ex: ‘\$-CH_3,-C(=O)OH\$’

Variable: solid in Sample and Matters
Condition: mandatory when "solid_compound_type" = \{homopolymer, copolymer\}

Note:

solid_polymer_monomer_number varchar(255)	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} \mathrm{_m}\right]} \\ {\left[\mathrm{V}:!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$		VS	--	Average number or range of numbers of monomers in the solid polymer molecules
					Condition: mandatory when "solid_compound_type" = \{homopolymer, copolymer $\}$ and when "solid polymer molar mass" $=\varnothing$
					Note: put ' n ' if undefined
					Ex: '50', '30-45', 'n'
					Variable: solid in Sample and Matters
					Condition: mandatory when "solid_compound_type" = \{homopolymer, copolymer\}
					Note: average or range of numbers of monomers of the actual polymer Note: put 'unknown' if unknown
solid_polymer_molar_mass \quad varchar(255)	$\begin{gathered} \text { S3 } \\ \text { BL: U } \\ {[!\mathrm{om}]} \\ {[\mathrm{V}: \text { !o_m] }} \end{gathered}$	Solid	VS	$\mathrm{g} / \mathrm{mol}$	Average molar mass or range of molar masses of the polymer molecules
					$\begin{aligned} & \text { Condition: mandatory when "solid_compound_type" = \{homopolymer, } \\ & \text { copolymer }\} \text { and when "solid_polymer_monomer_number" }=\emptyset \\ & \quad-\quad \text { provided in ' } \mathrm{g} / \mathrm{mol} \text { ' unit } \end{aligned}$
					Ex: '320', '300-450'
					Variable: solid in Sample and Matters
					Condition: mandatory when "solid_compound_type" = \{homopolymer, copolymer \} and when "solid_polymer_monomer_number" = \varnothing
					Note: average molar mass or range of molar masses of the actual polymer Note: put 'unknown' if unknown
solid_polymer_polymolecularity_in varchar(255) dex	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid	VS	--	Polymolecularity index (or polydispersity index) of the numbers of monomers or molar masses of the polymer molecules
					Constraint: only when "solid_compound_type" = \{homopolymer, copolymer $\}$
					Ex: '2.6', '2.3-3.1'
					Definition: measure of the heterogeneity of sizes of molecules in a mixture. It is calculated using the equation $\mathrm{ÐM}=\mathrm{Mw} / \mathrm{Mn}$, where Mw is the weight-

solid_chemical_function_uid [*] [phase_chemical_function_uid]	varchar(255)	S2/S2c BL: Sli2 [!o_m] [V: ££o_m]	Solid Chem F L3a	VS	--	Link to the existing UID of the chemical function present in the solid Condition: mandatory when "solid_chemical_function_number" $\neq \varnothing$ (i.e. the bloc is used) Note: If the solid is described in terms of molecular species with "solid_specie_uid" their chemical functions (already implicitely taken into account) should not be listed here - it is mostly used to describe chemical functions when a molecular solid is described in terms of atoms (such as in covalent or ionic solids), or when it cannot be fully described in terms of molecules, as for exemple for the terminal functions of polymers
						Variable: solid in Sample and Matters Condition: absolute compulsory when the bloc is used
solid_chemical_function_number $[+]$ $[+]$	varchar(255)	$\begin{aligned} & \text { S3/S3c } \\ & \text { BL: U } \end{aligned}$	Solid	VS	--	Number, minimum number, of this chemical function present in the solid Calculation for display:

solid_chemical_bond_number [+] [phase_chemical_bond_number]	$\operatorname{varchar(255)~}$	$\begin{aligned} & \text { S3/S3c } \\ & \text { BL: U } \\ & \text { [!o_m] } \end{aligned}$	$\begin{aligned} & \text { Solid } \\ & \text { L3b } \end{aligned}$	F	--	Number, or minimum number, of intermolecular bonds and ionic bonds of each type composing the solid \rightarrow Calculation of 'n_max(bond_i)' for display: \rightarrow For solids described with molecular species ("solid_specie_family" $=$ \{molecule, chemical function\}): for each 'bond_i' of all 'molecule_j' of "solid_specie_uid" it is: - n_min(bond_i) = solid_chemical_bond_number(bond_i) + $\sum_{\text {specie_j }}$ (solid_specie_number_min(specie_j) * specie_chemical_bond_number(specie_j,bond_i)) - if "solid_specie_number_min(specie_j)" = n ' then: $\mathrm{n} _\min ($ bond_i $)=\mathrm{n}$
						Notes: determined relative to a formula unit $E x$: '2' hydrogen bonds per $\mathrm{H}_{2} \mathrm{O}$ molecule for $\mathrm{H}_{2} \mathrm{O}$ ice Ih
						Variable: solid in Sample and Matters
						Actual number of the chemical bonds

Solid molecular and atomic composition

| solid_elemental_formula [-xml] | CS- | S0/S0c/S1 Solid VS |
| :--- | :--- | :---: | :--- |
| [phase_elemental_formula] | varchar(255) | BL: S3 |
| | | $[!\mathrm{c}]$ |
| | | $[\mathrm{V}: \mathrm{c}]$ |

purely isotopic atom the bonds are the isotopic bonds using the pure isotopic atom(s) and only the main isotope of the others
-- Number, or minimum number, of intermolecular bonds and ionic bonds of each type composing the solid
\rightarrow Calculation of 'n_max(bond_i)' for display:
\rightarrow For solids described with molecular species
("solid_specie_family"=\{molecule, chemical function\}): for each 'bond_i" of all 'molecule j' of "solid_specie_uid" it is:
n_min(bond_i $)=$ solid_chemical_bond_number(bond_i $)+\sum_{\text {specie_j }}$ (solid_specie_number_min(specie_j) *
specie_chemical_bond_number(specie_j,bond_1))
if "solid_specie_number_min(specie_j)" = ' n ' then: n_min(bond_i) = n
otes:
Ex: '2' hydrogen bonds per $\mathrm{H}_{2} \mathrm{O}$ molecule for $\mathrm{H}_{2} \mathrm{O}$ ice Ih

Actual number of the chemical bonds
-- Empirical elemental formula of the solid
\rightarrow Calculated:
\Rightarrow see "constituent_elemental_formula"
Notations: see "constituent_elemental_formula"
Ex: ' C 4 O 23 H 62 ' for CH_{4} clathrate hydrate I
Variable: solid in Sample and Matters
\rightarrow Calculated for each 'atom_i' excepted those with "solid_specie_relevance"
$=\{$ impurity $\}$ when one or more "solid_specie_uid" is added or changed

solid_isotope_mixture_type	enum(text)	S1/S1c/S1
[phase_isotope_mixture_type]		BL: S2
	$[!!$ m $]$	
	$[\mathrm{V}: £ \mathrm{fo}$ m $]$	

solid_species
[phase_species]

List [L4] [!!o]
[V: £_m]

$$
\Rightarrow \text { see "constituent_elemental_formula" }
$$

This formula includes substitution molecules or elements plus replacement elements in the actual solid.
-- Type of isotopic mixture of the solid
Enum: \{pure isotope, partly substituted, terrestrial abundance\}
Definitions: cf "constituent_isotope_mixture_type"
Notes:

- the fundamental solid phases stored in the database will be either with natural terrestrial abundance or with molecules/atoms as pure isotopes (but limited to simple solids).
- Some of the partly isotopically substituted (molecular) solids (the most important/simple/commercially available ones) may be also entered as fundamental phases in the database.

Variable: solid in Sample and Matters

Enum: \{pure isotope, partly substituted, terrestrial abundance, specific abundance, unknown\}

Condition: Compulsory when "solid_isotope_mixture_type" $=$ 'terrestrial abundance'

Notes:

- isotopic mixtures in solids with some molecules/atoms not in natural isotopic abundance will be set to 'specific abundance' or to 'partly substituted' (one or more molecule with an atom as a pure isotopic species).
- their abundance will be defined in
"solid specie isotope mole fraction" using pure or partly substituted isotopologue molecules
Note: define the effectif type of isotopic mixture
£: Description of the molecular and/or atomic composition of the solid
Condition: absolute mandatory when "solid_classification_level" $=\{$ solid


```
solid_specie_uid [*]
[phase_specie_uid]
```

solids) will be described directly instead by their atoms
Note xml: determined automatically from the type of the species
Variable: solid in Sample and Matters

Notes:

-- Link to the existing UID of the molecular species (molecule or molecular ion) the element (atom or ion), or the chemical function (anionic radical) composing the solid.

Notes:

- it is possible to mix elements, molecular species and anionic radicals for mixed molecular/atomic solids
- for polymers use the 'radical' species and add the terminating functions.
- the links are either to natural molecules/atoms (for solids made of natural molecular/atomic mixtures of the isotopologues in terrestrial abundance), or to pure isotopes (for pure isotopic, or partly substituted solids)
- In some limited cases (simple partly substituted solids) it can be also to partly isotopically substituted molecules.
Note xml: the same species (same "solid_specie_uid") can occurs several times only if its relevance ("solid_specie_relevance") is different. They are considered as different species.

Variable: solid in Sample and Matters

Condition: absolute compulsory when the bloc is used

Notes:

- includes the replacement, substituted and impurities molecules/atoms
- For solids as 'pure isotope', and in 'specific abundance' this
"specie_uid" should refer only to pure isotopes.
- only in specific cases it can refer to partly substituted molecules.
- for 'partly substituted' solids "specie_uid" will refer to both 'terrestrial
solid_specie_number_min [phase_specie_number_min]
float or ' n ' S0b/S0cb Solid VS
BL: U
[!_m]
[V:!o_m]

abundance' and 'pure isotope' molecules

Nominal or minimum total number of this molecular/atomic species composing the solid
Definitions:

- It is the nominal value when "solid_classification_level" = \{unique solid $\}$
- It is the nominal or minimum value when "solid_classification_level" \neq \{unique solid $\}$

Notes:

For 'unique solid':

- Total number of this molecular/atomic species, but considering all isotopic species.
- The mole fraction a specific isotope (i.e. not a species with terrestrial mixture) will be given by "solid_specie_isotope_mole_fraction"
For all other solids:
- Minimum value only for molecules/atoms with variable abundance ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in the solid (solid solutions, clathrate hydrates, n -hydrated solids $\left.\left(\mathrm{H}_{2} \mathrm{O}\right), \ldots\right)$. Also for solid groups and subgroups.
- For solid solution the minimum number is found by putting all variable composition of molecules/atoms to their minimum.
- If there is specific information on a limitation in the minimum number of a molecule/atom in variable abundance, then put this number.
- For n-hydrated solids the minimum number of $\mathrm{H}_{2} \mathrm{O}$ is found by putting 'n' of $\mathrm{H}_{2} \mathrm{O}$ to its minimum structural hydration value.

Variable: solid in Sample and Matters

Condition: absolute mandatory when "solid_specie_uid" $\neq \varnothing$

Notes:

For 'unique solid':

- total number of molecules/atoms of each type composing the solid, including replacement atoms, substituted and impurities molecules/atoms.
when an essential (main) molecule of a variable solid, or of a solid

solid_specie_number_max [phase_specie_number_max]	float or ' n '	$\begin{gathered} \text { S0b/S0cb } \\ \text { BL: U } \\ {\left[!\mathrm{o} _\mathrm{m}\right][\mathrm{V}:} \\ \mathrm{m}] \end{gathered}$	Solid L4	VS	no	Maximum total number of this molecular/atomic species with variable or undefined abundance Condition: mandatory when "solid_classification_level" $\neq\{$ unique solid \} Notes: - do not fill for well defined unique solid - only for molecules/atoms with variable abundance ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in the solid (solid solutions, clathrate hydrates, n-hydrated solids $\left(\mathrm{H}_{2} \mathrm{O}\right), \ldots$). Also for solid groups and subgroups. - For solid solution this maximum value is found by putting all variable composition molecules/atoms to their maximum. - If there is specific information on a limitation in the maximum number of a molecule/atom in variable abundance, then put this number. For n-hydrated solids the maximum number of $\mathrm{H}_{2} \mathrm{O}$ is found by putting ' n ' of $\mathrm{H}_{2} \mathrm{O}$ to its maximum structural hydration value. If undefined then put ' n '
						Variable: solid in Sample and Matters Note: maximum number of molecules/atoms of each type composing the solid, including replacement, substituted and impurities molecules/atoms. Note xml: need to remove any value of 'solid_specie_number_max' if the molecule/atom number is fixed $=>$ put 'NULL'
solid_specie_mole_fraction [-xml] [phase_specie_mole_fraction]	float	$\begin{gathered} \mathrm{U} \\ {\left[\mathrm{o} _\mathrm{c}\right][\mathrm{V}: \mathrm{c}]} \end{gathered}$	Solid L4	VS	no	Mole fraction of the molecular species composing the molecular solid Condition: only for "solid_family" = \{molecular solid $\}$ \rightarrow Calculated from "solid_specie_number_max/_min" \Rightarrow 'specie_mole_fraction' $=$ 'specie_isotope_mole_fraction' * ('specie_number_min' + 'specie_number_max') / $\sum_{\text {(Solid) }}$

```
solid_specie_mole_fraction_error [- float
xml]
[phase_specie_mole_fraction_error
]
```

U	Solid	VS
$\left[\mathrm{O} _\mathrm{c}\right]$	L4	
$[\mathrm{V}: \mathrm{o}$ c $]$		

['specie_isotope_mole_fraction’ * ('specie_number_min’ + 'specie_number_max')]
\Rightarrow when "specie_isotope_mole_fraction" is void =>
"solid_specie_mole_fraction" = 1
\Rightarrow when "specie_number_min" or "specie_number_max" = ' n ' $=>$ "solid_specie_mole_fraction" has no value
Note: 'specie_isotope_mole_fraction' is set to ' 1 ' when it is not defined (species with terrestrial abundance)

Definitions:

- It is an 'element' or a 'molecule' mole fraction depending on "solid_specie_family"
- It is the nominal value (from "specie_number_min") when "solid_classification_level" = \{unique solid \}
- It is the nominal or average value when "solid_classification_level" \neq \{unique solid\}
- For a purely or partly isotopic solid the mole fraction of each pure isotopic specie constituting the solid is its partial abundance relative to the whole solid, not only relative to its own specie (where it should be ' 1 ').
Ex: $\mathrm{N}_{2}={ }^{\prime} 0.3$ ', ${ }^{13} \mathrm{CH}_{4}={ }^{\prime} 0.70$ ' for a mixture with $30 \% \mathrm{~N}_{2}+70 \%{ }^{13} \mathrm{CH}_{4}$ Variable: solid in Sample and Matters

Notes:
Ex: $\mathrm{N}_{2}={ }^{\prime} 0.3$ ', ${ }^{12} \mathrm{CH}_{4}={ }^{\prime} 0.35$ ', ${ }^{13} \mathrm{CH}_{4}={ }^{\prime} 0.35$ ' for a mixture with $30 \% \mathrm{~N}_{2}+$ $70 \% \mathrm{CH}_{4}$ with ${ }^{13} \mathrm{CH}_{4}{ }^{12} \mathrm{CH}_{4}=1$
no Mole fraction error of the molecular species composing the molecular solid
Condition: only for "solid_family" $=\{$ molecular solid $\}$
\rightarrow Calculated from "solid_specie_number_max/_min"
\Rightarrow 'specie_mole_fraction_error' $=0.5 *$ specie_isotope_mole_fraction * ('specie_number_max' -'specie_number_min') / $\sum_{\text {(solid) }}$
['specie_isotope_mole_fraction' ${ }^{\text {- }}$ ('specie_number_max' +

```
solid_specie_isotope_mole_fraction float
[phase_specie_isotope_mole_fraction
]
```


'specie_number_min')]
Note: 'specie_isotope_mole_fraction' is set to ' 1 ' when it is not defined (species with terrestrial abundance)

Notes:

- It is ' 0 ' when "solid_classification_level" $=$ \{unique solid $\}$
- It is ' 0 ' or half the range when "solid_classification_level" \neq \{unique solid $\}$
Variable: solid in Sample and Matters
Notes:

Mole fraction of the isotopic species in the isotopic mixture of this molecule/atom in the solid (for non-terrestrial abundance)

Condition \#1: mandatory when "solid_isotope_mixture_type" = \{pure isotope, partly substituted $\}$
AND
Condition \#2: when "solid_specie_uid"/" molecule_isotope_mixture_type" =
\{pure isotope, partly substituted\}
Notes:

- All values should be ' 1 ' as we will only include in the fundamental database partly substituted solids with only one type of isotopic species.
Ex:
- D2O:NH3, H2O:ND2H, HDO:ND3
- But not (D2O,H2O):NH3, H2O:(ND2H,NH3)
- this keyword describes the relative isotopic abundances of a particular species,
- but not its abundance relative to all species in the solid

Note xml:

- for a partly substituted solid, the different isotopes of the specie (pure or substituted) have to be listed with "solid_specie_uid" with their respective "solid_specie_isotope_mole_fraction" set to ' 1 ' while keeping "solid_specie_number_min/_max" at the nominal value for the

solid_specie_state	enum(text)	S1/S1c/S1	Solid	VS
[phase_specie_state]		BL: S1b	L4	
	$\left[!_\mathrm{m}\right]$			

solid (as for the 'terrestrial abundance' solid).
Ex: $\mathrm{N}_{2}={ }^{\prime} 1$ ', ${ }^{13} \mathrm{CH}_{4}={ }^{\prime} 1$ ' for a mixture with $30 \% \mathrm{~N}_{2}+70 \%{ }^{13} \mathrm{CH}_{4}$
Variable: solid in Sample and Matters
\rightarrow Calculated: set to ' 1 ' for "solid_isotope_mixture_type" = \{terrestrial abundance\}

Condition \#3: mandatory when "solid_specie_uid" $\neq \emptyset$
AND
Condition \#1: when "solid_isotope_mixture_type" = \{pure isotope, partly substituted, specific abundance\}
AND
Condition \#2: when "solid_specie_uid"/" molecule_isotope_mixture_type" = \{pure isotope, partly substituted\}

Notes:

- value between 0 and 1
- for solids with a specific isotopic composition (for isotopic substitution of one or more molecule/atom, or for liquids with specific abundance, i.e. non-terrestrial, ...), it is the partial abundance of each isotope relative to its species in the solid.
- all, or at least the main isotopic species present should be listed.

Note xml:

- for a solid with specific abundance, the different isotopes of the specie (pure or substituted) have to be listed with "solid_specie_uid" with their respective "solid_specie_isotope_mole_fraction" while keeping "solid_specie_number_min/_max" at the nominal value for the solid (as for the 'terrestrial abundance' solid).
Ex: $\mathrm{N}_{2}={ }^{\prime} 1$ ', ${ }^{12} \mathrm{CH}_{4}={ }^{\prime} 0.5$ ', ${ }^{13} \mathrm{CH}_{4}={ }^{\prime} 0.5$ ' for a mixture with $30 \% \mathrm{~N}_{2}+$ $70 \% \mathrm{CH}_{4}$ with ${ }^{13} \mathrm{CH}_{4}{ }^{12} \mathrm{CH}_{4}=1$
-- State of the molecular/atomic species inside the solid
OpenEnum: \{constituent element, constituent cation, constituent anion, constituent mer, constituent molecular, molecular ion, anionic radical, pure, mixed, matrix, monomers, dimers, multimers, solute, solvent, solid solution,

solid_composition_comments [phase_composition_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid	VS	--	Any additional information (range of values of ' x ', ' y, ' z ', ' n ', sum' $x+y+z$ ', ...) or comments on the composition and formula of the solid Variable: solid in Sample and Matters Flag 'replace': \{yes, no\} Definitions: see "mineral_comments" Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').
Solid oxides composition						
solid_oxides	List [L4b]	[O]				£: Description of the oxides composition of the solid Variable: solid in Sample and Matters Note xml: need to fully replace the original list of oxides defined in the 'fundamental solid phase', when changed (equivalent to a "solid_oxides_full_definition" = 'yes')
solid_oxide_formula [phase_oxide_formula]	CS- enum(text)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid L4b	VS	--	Formula of the different oxides composing the actual solid Enum: see mineral_oxide_formula Variable: solid in Sample and Matters Notes: include also oxides of substitution and major impurity elements did not distinguish between isotopic species

solid_oxide_mass_fraction [phase_oxide_mass_fraction]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid L4b			Mass fraction (in \%) of each type of oxide composing the actual solid Note: value between 0 and 1 - variable for generic solid solutions but this fraction will be defined for particular solid solutions at the "solid matter" level. Variable: solid in Sample and Matters Note: cf. http://serc.carleton.edu/research_education/equilibria/mineralformulaerecalcul ation.html
solid_oxides_comments [phase_oxides_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	Solid	VS	--	Any additional information or comments on the oxides composition of the solid Variable: solid in Sample and Matters
Solid classification						Simple classification (class, type, group, code) of solids (under development)
solid_classification_class [phase_classification_class]	openum(text)	S1/S1c BL: S2 [!!_m]	Solid	F	--	Class of the solid in the classification (14 classes) OpenEnum: $\{01,02,03,04,05,06,07,08,09,10,11,12,13,14\}$ Label (code): \{molecular solids with apolar molecules (01), molecular solids with polar molecules (02), molecular solids with hydrogen bonded molecules (03), molecular solids with mixed molecules (04), acid salts (05), alkali salts (06), normal salts (07), mixed salts (08), chain covalent networks (09), sheet covalent networks (10), tridimensional covalent networks (11), glasses (12), true metals (13), pseudometals (14)\}
						Note: glasses and amorphised solids have the same class as the crystalline equivalent
solid_classification_type [phase_classification_type]	openum(text)	S1/S1c BL: S2 [!_m]	Solid	F	--	Type of the solid in the classification OpenEnum: $\{01.01,01.02,01.03,01.04, \ldots, 04.01,04.02, \ldots, 14.04\}$ Label (code): $\{$ with monoatomic apolar molecules (A) (01.01), with diatomic

solid_classification_code [phase_classification_code]
varchar(255) S2/S2c
(BL: S2)
[!o_m]
[V: m]
clathrate hydrates, polar guest (04.01.04), double clathrate hydrates, polar guest (04.01.05), mixed clathrate hydrates, polar guest (04.01.06), single clathrate hydrates, hydrogen bonded guest (04.01.07), double clathrate hydrates, hydrogen bonded guest (04.01.08), mixed clathrate hydrates, hydrogen bonded guest (04.01.09),..., N/A \}

Notes:
Groups (defined by their crystalline structure) will be created for the most common crystalline, glasses and amorphised solids.

Variable: solid in Sample and Matters

Condition: mandatory when "solid_crystal_system" = 'amorphous'
Note $x \mathrm{ml}$: for glasses or amorphised solids of equivalent crystalline solid: put ' N / A ' to remove the group of the crystalline equivalent.
-- Code of the solid in the classification
Condition: Absolute mandatory when "solid_classification_level" = \{variable solid, unique solid \}. Do not fill when condition is not met.

Notes:

- Codes will be created for the most common glasses and amorphised solids.
Ex: ‘04.01.01.05’, ...
Variable: solid in Sample and Matters
Condition: mandatory when "solid_crystal_system" = 'amorphous'
Note xml: for glasses or amorphised solids of equivalent crystalline solid: put ' N / A ' to remove the code of the crystalline equivalent.

Solid crystallography

solid_phase_name
[phase_phase_name]
$\operatorname{varchar(255)}$
S1/S1c/S
BL: S1
[!o_m]
-- Common name of the solid phase.
Condition: Mandatory only when "solid_classification_level" $=\{$ solid solution series, variable solid, unique solid\}.

Notes: see "mineral_crystal_spacegroup"
Variable: solid in Sample and Matters
Condition: mandatory when
"basic_constituent_solid_variables_crystal_system" = 'amorphous'
Notes: see "mineral_crystal_spacegroup"

Solid crystal sites

solid_crystal_sites
$[-\mathrm{xml}$ in precursors]
solid_crystal_site_label
[phase_crystal_site_label]

| List [L5] | [O] |
| :---: | :---: | :---: |
| [VFlag: | |
| !!o_m] | |$|$

£: Description of the crystallographic sites of molecular/atomic species in the solid structure

Condition: Optional bloc - Mandatory active below when
"solid_crystal_site_label" $=$ 'NULL'
Variable: solid in Sample and Matters
Flag 'full_definition’: \{yes, no \}
Condition: Flag absolute mandatory when "solid_crystal_site_label" $\neq \varnothing$
Definitions:

- 'yes': fully replace the original list of crystal sites defined in the
'fundamental solid phase'. Need to fully redefine it.
- 'no': only to add new crystal sites to the original list and modify some
already defined (they should have the same "solid_crystal_site_label" than the original site to be modified).

Note: the flag 'full_definition' allows to control the mode of definition of the crystal sites of the actual solid.
--- Label of the crystallographic site of the molecular/atomic species in the solid structure

FreeList: $\{\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \mathrm{M} 4, \mathrm{O}, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O5}, \mathrm{O6}, \mathrm{O} 7, ~ O 8, \ldots\}$
Default $=$ 'NULL'
Condition: (option trigger) the filling of this KW is 'compulsory' when this

optional bloc is used. It triggers the 'mandatory' status of several others KW in the optional bloc.

Definitions:

- 'M1', 'M2', 'M3', 'M4': used for main sites of metals ions (main, substitutional, vacancy), or the metal can be specified when unique in the site: $\mathrm{Fe} 1, \mathrm{Ag} 2, \ldots$
- 'O1', 'O2', 'O3', ...: used for main sites of Oxygen
- ...

Variable: solid in Sample and Matters

Note: add site labels for impurities atomic species
Type of crystallographic site of the atomic species in the molecular solid structure

Enum: \{main, substitutional, isovalent substitutional, aliovalent substitutional, interstitial, split interstitial, topological defect, vacancy, unknown\}

Condition: Mandatory when "solid_crystal_site_label" $=$ 'NULL'

Definition:

- 'main': normal sites of the atoms in the solid structure
- 'substitutional': main site used by another main atomic species, an impurity or an isotopic species (neutral)

Note: sometimes its occurs as a Antisite defect, an exchange of
positions between A and B: A substitutes B and B substitutes A

- 'isovalent substitutional': main site used by a ionic impurity of the same oxidation state as the ion it is substituting
- 'aliovalent substitutional': main site used by an impurity or an isotopic species of a different oxidation state than the ion it is substituting
- 'interstitial': interstitial site (where usually there is not an atom) occupied by an impurity or a main atomic specie.

Note: sometimes its occurs as a Frenkel pair: interstitial + vacancy

- 'split interstitial': interstitial site (where usually there is not an atom) shared by two impurities or main atomic species.

Note: generally neither atoms actually occupy the site

solid_crystal_site_number [phase_crystal_site_number]	int 11)	$\begin{gathered} \mathrm{SU} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \\ {[\mathrm{V}: \text { !o_m] }} \end{gathered}$	Molid NVS L5	no	Number of equivalent crystallographic sites in the fundamental cell of the solid structure Condition: Mandatory when "solid_crystal_site_label" \neq 'NULL' Variable: solid in Sample and Matters Condition: Mandatory when "solid_crystal_site_label" \neq 'NULL' Note: add site numbers for impurities atomic species
solid_crystal_site_wp [phase_crystal_site_wp]	varchar(255)	$\begin{gathered} \text { SS3 } \\ \text { BL: U } \\ {[\mathrm{m}]} \\ {[\mathrm{V}: \mathrm{m}]} \end{gathered}$	$\begin{aligned} & \text { Mrioled FVS } \\ & \text { L5 } \end{aligned}$	---	Wyckoff position code of the crystallographic sites of the atoms in the solid structure Definition: multiplicity, Wyckoff letter, site symmetry Note: - only for ionic, covalent network and metallic solids - see "mineral_crystal_site" Variable: solid in Sample and Matters Note: add Wyckoff positions codes for replacement and impurities atoms
solid_crystal_site_species	List [L6]	[!]			£: Atomic species in the crystallographic site of the solid structure and their state Variable: solid in Sample and Matters

				unknown $\}$
				Definition: number of other atomic species and shape of polyhedra surrounding the atomic specie in the site.
				Note: 'no' coordinence for ??
				Reference: cf. http://en.wikipedia.org/wiki/Coordination_geometry
				Variable: solid in Sample and Matters
				Note: add coordinence for substitution and impurities atomic species and replacement atoms
solid_crystal_site_specie_occupanc float y	$\begin{aligned} & \mathrm{SU} \\ & {[\mathrm{~m}]} \end{aligned}$	Molied FVS L5	no	Atomic species fractional occupancies of the crystallographic sites of the solid structure
[phase_crystal_site_specie_occupa ncy]	[V: m]	L6		Note: For atoms determined from "solid_atom_site_occupancy" of AMCS Database
				Variable: solid in Sample and Matters
				Note: modify occupancy of main atomic species and add for substitution and impurities atomic species and replacement atoms
```solid_crystal_site_specie_oxidation int(11) _state```	$\begin{aligned} & \mathrm{S}^{\mathrm{U}} \\ & {[\mathrm{~m}]} \end{aligned}$	Mfolid FVS L5	---	Oxidation state of the atoms (mostly cations) in the crystallographic sites of the solid structure.
[phase_crystal_site_specie_oxidatio n_state]	[V: m]	L6		Note:   - no oxidation state for O atoms.   - only for ionic, covalent network and metallic solids
				Reference: see in "mineral_crystal_site_atom_oxidation_state"
				Variable: solid in Sample and Matters
				Note: add oxidation state for replacement and impurities atomic species
Solid crystal molecule sites				
```solid_crystal_molecule_sites List [L5b] [-xml in precursors]```	[O]			$£:$ Description of the crystallographic sites of molecular species in the solid
SSDM Data Model Pag				

		lag:			structure
		!!o_m]			Condition: Optional bloc - Mandatory active below when "solid_crystal_molecule_site_label" $=$ 'NULL'
					Variable: solid in Sample and Matters
					Flag 'full_definition': \{yes, no\}
					Condition: Flag absolute mandatory when "solid_crystal_molecule_site_label" $\neq \varnothing$
					Definitions: - 'yes': fully replace the original list of crystal sites defined in the 'fundamental solid phase'. Need to fully redefine it. - ' $n o$ ': only to add new crystal sites to the original list and modify some already defined (they should have the same "solid_crystal_molecule_site_label" than the original site to be modified).
					Note: the flag 'full_definition' allows to control the mode of definition of the crystal sites of the actual solid.
solid_crystal_molecule_site_label [phase_crystal_site_label]	varchar(255)	SS3 BL: U	$\begin{aligned} & \text { Monded FS } \\ & \text { L5b } \end{aligned}$	--	Label of the crystallographic site of the molecular species in the molecular solid structure
		[fod_m] [V:fo_m]			FreeList: \{A, B, C..., I, I1, I2..., cage 5-12, cage 5-12_6-2, cage 5-12_6-4, cage 4-3_5-6_6-3, cage 5-12_6-8, ...\}
					Default = 'NULL'
					Condition: (option trigger) the filling of this KW is 'compulsory' when this optional bloc is used. It triggers the 'mandatory' status of several others KW in the optional bloc.
					Definitions:
					'A', 'B', 'C': used for main site (main, substitutional, vacancy) 'I', 'I1', 'I2', ...: used for interstitial site 'cage 5-12', 'cage 5-12_6-4', ...: used for clathrate cages
					Note: some labels are specific to molecules in molecular solids, and some to specific type of molecular solids (such as clathrates)

solid_crystal_molecule_site_type [phase_crystal_site_type]	enum(text)	S2	$\underset{\text { Solid }}{\text { Miner }} \mathrm{F}$ VS
		BL: S2	$\begin{aligned} & \text { Miner F } \\ & \text { L5b } \end{aligned}$
		[!o_m]	
		[V:!o_m]	

Ex:

- 'cage 5-12', 'cage 5-12_6-2' for the 2 cage types of type I clathrate hydrate
- 'cage 5-12', 'cage 5-12_6-4' for the 2 cage types of type II clathrate hydrate
- 'cage 5-12', 'cage 4-3_5-6_6-3', 'cage 5-12_6-8' for the 3 cage types of type H clathrate hydrate

Variable: solid in Sample and Matters
Note: add site labels for impurities molecular species
-- Type of crystallographic site of the molecular species in the molecular solid structure

Enum: \{main, substitutional, interstitial, split interstitial, topological defect, vacancy, unknown\}
Condition: Mandatory when "solid_crystal_molecule_site_label" \neq 'NULL' Definition:

- 'main': normal sites of the molecules in the solid structure
- 'substitutional': main site of a molecule of the molecular solid used by another main molecular species of the molecular solid, or by an impurity or an isotopic species

Note: sometimes its occurs as a Antisite defect, an exchange of
positions between A and B: A substitutes B and B substitutes A

- 'interstitial': interstitial site (where there is normaly no molecule) occupied by a molecule of the molecular solid, or by an impurity

Note: sometimes its occurs as a Frenkel pair: interstitial + vacancy

- 'split interstitial': interstitial site (where usually there is no molecule) shared by two impurities or main atomic species.

Note: generally neither molecule actually occupy the site

- 'topological defect': normal sites of the atoms in the solid structure but with a different chemical bonding environment than the surrounding sites
- 'vacancy': site normally occupied by a molecule, but vacant.
- 'unknown': ..

```solid_crystal_molecule_site_numbe int(11) r [phase_crystal_site_number]```	$\begin{gathered} \mathrm{SU} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \\ {\left[\mathrm{V}:!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Molid NS ${ }^{e}{ }_{L}$ L5b	по	Number of equivalent crystallographic sites in the fundamental cell of the solid structure   Condition: Mandatory when "solid_crystal_molecule_site_label" $\neq$ 'NULL'   Ex: $\quad 2 \mathrm{x}$ ' $5-12$ ', +6 x ' $5-12 _6-2$ ' for type I clathrate   16x '5-12', + 12x '5-12_6-4' for type II clathrate   3 x '5-12’, +2 x '4-3_5-6_6-3', + 1x '5-12_6-8' for type H clathrate   Variable: solid in Sample and Matters   Condition: Mandatory when "solid_crystal_molecule_site_label" $\neq$ 'NULL'   Note: add site numbers for impurities molecular species
solid_crystal_molecule_site_specie List [L反b] $S$	[!]			£: Molecular species in the crystallographic site of the solid structure and their state   Variable: solid in Sample and Matters   Notes xml:   $\Rightarrow$ when the crystal site is changed all aspecies and their related information (coordinence, occupancy, oxidation state) should be listed.   $\Rightarrow$ to change one specie, or one of its associated information, the whole site should be redefined (with   "solid_crystal_molecule_sites_full_definition" = 'no')
```solid_crystal_molecule_site_specie varchar(255) _uid [*] [phase_crystal_site_specie_uid]```	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \\ {\left[\mathrm{V}:!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	Solid VS   Mole   c   L5b	--	Link to the existing UID of the molecular species in the crystallographic site. Condition: Mandatory when "solid_crystal_molecule_site_label" $\neq$ 'NULL' Notes:   - the links are either to natural molecular species (for solids made of

natural molecular mixtures of the isotopologues in terrestrial abundance), or to pure isotopes (for pure isotopic, or partly substituted solids)

- In some limited cases (simple partly substituted solids) it can be also to partly isotopically substituted molecules.

Variable: solid in Sample and Matters
Condition: Mandatory when "solid_crystal_molecule_site_label" \neq 'NULL' Notes:

- includes the impurities and substitution molecular species
- this "solid_crystal_molecule_site_specie_uid" refers to particular isotopes only for isotopicaly substituted solids.

solid_crystal_molecule_site_specie	enum(text)	S2
BSidide	VS	
coordinence	B2	L5b
[phase_crystal_site_specie_coordin	$[\mathrm{m}]$	L6b
ence]	$[\mathrm{V}: \mathrm{m}]$	

-- Coordinences of the molecular species and associated geometry of the crystallographic sites in the solid structure
Enum: \{linear I, linear II, trigonal planar III, tetrahedral IV, square planar IV, trigonal bipyramidal V, square pyramidal V, octahedral VI, trigonal prismatic VI, pentagonal bipyramidal VII, face capped octahedral VII, trigonal prismatic square face monocapped VII, cubic VIII, square antiprismatic VIII, dodecahedral VIII, hexagonal bipyramidal VIII, octahedral trans bicapped VIII, trigonal prismatic triangular face bicapped VIII, trigonal prismatic square face bicapped VIII, tricapped trigonal prismatic IX, monocapped square antiprismatic IX, bicapped square antiprismatic X, trigonal prismatic all faces capped XI, icosahedral XII, cuboctahedral XII, anticuboctahedral XII, hexagonal prismatic XII, bicapped hexagonal antiprismatic XIV, pentagonal dodecahedron XX, hexagonal truncated trapezohedron XXIV, hexadecahedron XXVIII, no, unknown\}
Definition: number of other molecular species and shape of polyhedra surrounding the molecular specie in the site.
$E x$: For clathrate hydrates:

- tetrahedral IV (H2O),
- pentagonal dodecahedron XX (5-12 cage), for type I, II \& H clathrates
- tetradecahedron/hexagonal truncated trapezohedron XXIV (5-12_6-2 cage), for type I clathrate
solid_crystal_molecule_site_specie float _occupancy
[phase_crystal_site_specie_occupa
ncy]

solid_crystal_molecule_site_specie	enum(text)	U	Solid
Order	$[!\mathrm{o}$ m]	V5b	
[phase_crystal_site_specie_order]	$\left[\mathrm{V}:!\mathrm{o} _\mathrm{m}\right]$	L6b	

| solid_crystal_composition_order
 [phase_crystal_composition_order] | enum(text) | SU
 $[\mathrm{m}]$ |
| :--- | :--- | :--- | [phase_crystal_composition_order] [m]

- hexadecahedron XXVIII (5-12_6-4 cage), for type II clathrate Reference: cf. http://en.wikipedia.org/wiki/Coordination geometry Variable: solid in Sample and Matters

Note: add coordinence for substitution and impurities molecular species
no Molecular species fractional occupancies of the crystallographic sites of the solid structure

Variable: solid in Sample and Matters
Note: modify occupancy of main molecular species and add for substitution and impurities molecular species
-- Order of the molecular species in the crystallographic site.
Enum: \{fixed position, orientationaly disordered, rotating, unknown\}
Condition: mandatory when 'solid_crystal_molecule_site_label" \neq 'NULL'
Notes:
Variable: solid in Sample and Matters
Condition: Mandatory when "solid_crystal_molecule_site_label" \neq 'NULL'
Note: includes the impurities and substitution molecular species
--- Type of compositional order in the crystallographic sites of the solid structure Enum: \{ordered, disordered, partly ordered, unknown\}

Note: for fundamental solid phases it should be set to 'disordered'
Variable: solid in Sample and Matters
Note: change order if modified in actual solid, especially by for substitution and impurities molecular/atomic species and replacement atoms

solid_crystal_comments	blob	U	Solid	VS	--	Additional information on solid crystal structure and sites
[phase_crystal_comments]		[m]				

Flag 'replace': \{yes, no\}
Definitions: see "mineral_comments"
Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').

Solid properties					
solid_molar_mass [phase_molar_mass]	varchar(255)	S3 BL: U [!o_m] [$\mathrm{V}: \mathrm{m}$]	Solid	VS g/mol	Molar mass (value or range) of the solid
					provided in ' g /mol' unit
					Condition: Mandatory when "solid_classification_level" = \{unique solid, variable solid, solid solution series\}
					Notes: \Rightarrow Molar mass is frequently called 'molecular weight' \Rightarrow range of molar mass for variable solid, solid solutions and n-hydrated solids. No requested value for groups and subgroups. \Rightarrow a mole of solid is a mole of one 'chemical formula unit'.
					Its molar mass is determined from its structural or molecular formula. ex: '161.7’, ‘160.2-162.5'
					Variable: solid in Sample and Matters
					Note: determined from the actual molecular formula. Different from generic solid species for solid solution, n-hydrated solids, or solids with replacement atoms and substitution molecules or atoms. Minor changes with impurities molecular/atomic species.
solid_density	varchar(255)	S3	Solid	VS g/cm3	Density (value or range) of the solid, or average value when variable
[phase_density]		BL: U [!o m]			- provided in ${ }^{\prime} \mathrm{g} / \mathrm{cm}^{3}$ ' unit
					Condition: Mandatory only when "solid_classification_level" = \{unique solid variable solid, solid solution series\}

Note: range of density for variable solid, solid solutions and n-hydrated solids. No requested value for groups and subgroups.
ex: '2.37', '2.45-2.58'

Variable: solid in Sample and Matters

Note: Different from generic solid species for solid solution, n-hydrated solids, or solids with replacement atoms and substitution molecules or atoms. Minor changes with impurities molecular/atomic species.

Solid thermodynamic properties

Ex:

- ‘liquid' for $\mathrm{H}_{2} \mathrm{O}$ ice Ih as its melting point is 273.15 K
- 'gas' for solid beta- N_{2}
- 'liquid’ (+gas) for CH_{4} clathrate, as only liquid $\mathrm{H}_{2} \mathrm{O}$ and gaseous CH_{4} exist at NTP
- 'metastable solid - other solid': for CaCO 3 'aragonite' (the other solid is calcite)
£: Description of the main phase transitions of the solid
Condition: Mandatory only when "solid_classification_level" = \{unique solid, variable solid\}

solid_phase_transitions	List [L7]	[!O]		
solid_phase_transition_type [phase_phase_transition_type]	enum(text)	U	Solid	F
[!o_m]	L7			
solid_phase_transition_other_phase	varchar(255)	U	Solid	F
s				
[phase_phase_transition_phases]	L7			

solid_phase_transitions	List [L7]	[!O]		
solid_phase_transition_type [phase_phase_transition_type]	enum(text)	U	Solid	F
[!o_m]	L7			
solid_phase_transition_other_phase	varchar(255)	U	Solid	F
s				
[phase_phase_transition_phases]	L7			

List [L7] [!O]

solid_phase_transition_temperature varchar(255) [phase_phase_transition_temperatu re]	$\underset{\left[!\mathrm{o} _\mathrm{m}\right]}{\mathrm{U}}$	Solid L7	F	K Pa, bar	Temperature (value(s) or range) of the phase transition of the solid at defined pressure, or average value when variable - temperature should be provided in ' K ' unit, with the unit written after the numbers - pressure should be provided in parenthesis after the temperature and in 'Pa' or 'bar' unit (or their (sub-)multiples), with the unit written after the numbers
					Notes: - range of temperature for variable solid. - No requested value for groups and subgroups, solid solutions and nhydrated solids.
					```Ex: '35.4 K (100 mbar)', '273.2-273.5 K (100 MPa)', '272.3 K (1 bar) - 275.2 K (100 bar)'```
solid_phase_transition_comments blob [phase_phase_transition_comments ]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Solid	F	--	Additional information on solid phase transitions (unknown limits of transition, ...)

## Solid optical properties

solid_refringence_type [phase_refringence_type]

enum(text)	S\&/S2c               BL: U   $\left[!\mathrm{o} _\mathrm{m}\right]$

[!o_m]
[V: m]
_-- Type of refringence of the solid crystal
Enum: \{isotropic, uniaxial, biaxial, various, unknown\}
Condition: Mandatory only when "solid_classification_level" = \{unique solid, variable solid, solid solution series \}
Note: depends on the crystalline system of the solid ("solid_crystal_system"):

- 'isotropic' for 'isometric', and 'amorphous'
_ 'uniaxial' for 'trigonal', 'tetragonal' and 'hexagonal'
- 'biaxial' for 'monoclinic', 'triclinic' and 'orthorhombic'
- 'various' for 'various'
- 'unknown' for 'unknown

Note: the refringence type did not change for a solid solution because of



solid_refraction_index_nb [phase_refraction_index_nb]	$\operatorname{varchar}(255)$	$\begin{gathered} \text { S3 } \\ \text { BL: U } \end{gathered}$	Solid	VS	no	Refraction index, $\mathrm{n}_{\beta}$, (value or range) of the solid (at 589.3 nm ) (uniaxial and biaxial crystals)
		$\underset{\mathrm{m}]}{[!\mathrm{o} \text { m] }[\mathrm{V}:}$				Condition \#1: Mandatory only when "solid_refringence_type" = 'uniaxial' or 'biaxial'   AND   Condition \#2: Mandatory only when "solid_classification_level" = \{unique solid, variable solid, solid solution series\}
						For uniaxial crystals: extraordinary indice, $\mathrm{n}_{\mathrm{e}}$, or $e$ (perpendicular to optical axe) if positive (or positive/negative, or unknown; $\mathrm{n}_{\mathrm{o}}$, or $w$ (optical axe) if negative For biaxial crystals: medium ' $n$ ' value
						Note: range of refraction index for variable solid, solid solutions and n hydrated solids
						Ex: '1.326', '1.456-1.583'
						Variable: solid in Sample and Matters
						Note: Exact value for specific solid solution, n-hydrated solids, or solids with replacement atoms and substitution molecules or atoms. Minor changes with impurities molecular/atomic species.
solid_refraction_index_ng   [phase_refraction_index_ng]	varchar(255)	$\begin{gathered} \text { S3 } \\ \text { BL: U } \end{gathered}$	Solid	VS	no	Refraction index, $\mathrm{n}_{\gamma}$, (value or range) of the solid (at 589.3 nm ) (biaxial crystals only)
		$\mathrm{m}]$				Condition \#1: Mandatory only when "solid_refringence_type" = 'biaxial' AND
						Condition \#2: Mandatory only when "solid_classification_level" = \{unique solid, variable solid, solid solution series\}
						For biaxial crystals: highest of the 3 ' n ' values
						Note: range of refraction index for variable solid, solid solutions and n -




## Solid references and comments

solid_publications	List [L7a]	[O]				£: Publications on the fundamental solid phase and its properties.
solid_publication_uid [*]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Solid	F		Link to the existing UID of the publications on the solid
[phase_publication_uid]			Publi			Note: these papers should be in the bibliography database, with
			L7a			"publication_content" = 'phase'


solid_links		
[phase_links]	List $[\boldsymbol{L} 7 \boldsymbol{b}]$	$[O]$
: Web page describing the solid species and its properties.		


solid_link_name [phase_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Solid L7b	F		Name of the web page describing the solid and its properties.   Ex: 'Wikipedia', ('WebMineral, 'MinDat'), ...
solid_link_url [phase_link_url]	CS-   varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Solid   L7b	F	--	Link to the web page describing the solid and its properties
						For those classified as minerals:   => http://webmineral.com (Webmineral database)   => http://www.mindat.org (MinDat database)   => http://rruff.geo.arizona.edu/AMS/amcsd.php (crystallography)
						Ex: 'https://en.wikipedia.org/wiki/Ice\#Phases' Ex: 'https://en.wikipedia.org/wiki/Dry_ice'
						Notes:   - can link to a publication by giving its url address, preferably through its DOI.   Ex: https://doi.org/10.1002/ejic. 200700067
solid_comments   [phase_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	Solid	VS   Aj	--	Additional information on solid (possible substitution molecules/atoms, impurities, replacement atoms, ...). Occuring in nature (equivalent mineral exists), ...
						Variable: solid in Sample and Matters
						Flag 'replace': $\{$ yes, no\}
						Definitions: see "mineral_comments"
						Note: the flag 'replace' allows to control if the comment replace the original one ('yes') or is added to the original one ('no').

## 8. Matters (minerals, rocks, meteorites, natural organics, ...)

### 8.1 Definition

The natural matters include all types of solids matters, terrestrials or extraterrestrials, which are collected in natural environments. They can be simple, with a single material composed of a single constituent made of a single mineral phase (pure mineral), or with several materials (collected mixture of minerals or with some impurities from other minerals), or with several simple constituents (rocks made of several mineral phases). But these matters can be more complex mixtures of more or less well defined and numerous constituting materials and constituents (natural organics, meteorites, ...). We also consider here matters being extracts of natural matters, such as organic extracts from meteorites, ...

We distinguish several types of natural matters which have their own keywords table but with, as much as possible, some common keywords [matter_xxx_keyword]:Terrestrials

- Mineral matters
- Rocks
- Organics matters (coals, kerogen, ...)
- Snows and icesExtraterrestrials
- Meteorites and their Organic extracts
- Micrometeorites
- IDPsPlanetary
- Lunar mineral matters
- ...
* We define as Matters the "materials" (or mixtures of materials) that have either a natural origin (terrestrial or extraterrestrial) or are produced in a systematic way (synthetic materials from laboratory or industry).

They can be complex solids (organic matters, coal, meteorites, ...) natural and synthetics, or simple natural materials (snow, collected minerals, rocks, ...) that have their own origin and "nature controlled" composition and properties.

In most cases (except some rare natural micro-materials such as meteorite particles) they are "basic materials" that can be provided in quantities such that they can be used several times as materials in various samples. They thus need to have their composition, properties and origin described once and independently of the "experimental samples".

Synthetic matters are those produced either by chemical or physical processing (by any way) of 'precursor' materials (synthetics or naturals) or of species (molecular, atomic, minerals). These processings create either new species (chemical), or new constituents (physical phases) in the material.

- Simple synthetic matters are produced as grains or films (ices, "minerals", coated minerals, ...) that can be fully described in terms of assemblage of individual constituents made of simple species (molecules, ions or minerals).
- Complex synthetic matters (tholins, ...) are composed of solid pieces (grains, film, ...) of homogeneous composition (same complex constituent(s)) but which can only be characterized by global elemental/chemical composition + other global physical information. They are difficult to characterize at the individual constituent level.
- "Infamous" synthetic inhomogeneous mixtures of several grain types (with different complex constituent(s)) or some continuous distribution of them) are similar to a layer made of a mixture of several complex materials. They are difficult to characterize at the matter level by another way than their production method, and by global atomic composition.


## Sample - Matters and Species



Figures 5:Relations between Sample, Matters ans Species
Natural matters are those of terrestrial or extraterrestrial origins.

- Simple natural matters are those that are homogeneous and can be described in term of simple materials, constituents and species (molecular or minerals). Collected minerals, many rocks (simple assemblage of minerals) and collected natural ices/snows are of such type. Each type of these matters needs some specific description key-words.
- Complex natural matters and their extracts (organic extracts, ...) cannot be described in term of simple assemblage of constituents and species (molecular or minerals). We also classify here the matters that cannot be described in terms of a simple mixture (more than a few different grains) of simple materials. They need specific classification and description, plus some information on origin. They need their own description key-words (meteorites matter, or natural organic matter in particular).

Several of these matters are linked with geologic "objects" (e.g.extraterrestrial matter from a meteorite object).

- Each matter is defined by "name and identifiers", "origin", "description and preparation", "composition" and some "physical properties". The full description of the composition of the matters use the "sample" description structure from "materials" to "species".


### 8.1.1 Fluids

Definition: A 'fluid matter' is any natural matter (collected on Earth or on planetary bodies) or synthetic matter made of molecular liquid or gas, excluding extraterrestrial fluids from meteorite, micrometeorites, IDPs or cosmic dust.

- Simple synthetic organic gases and liquids, such as CH2, C3H8, ..., will be entrered as "fluid matters"
- Natural terrestrial organic fluids, such as petroleum and derivatives, will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial fluids extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any fluids collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "Fluid matters"


### 8.1.2 Solids

Definition: A 'solid matter' is any natural matter (collected on Earth or on planetary bodies) or synthetic matter made of inorganic solids or minerals, including rocks: natural matter made of assemblage of minerals, excluding extraterrestrial minerals from meteorite, micrometeorites, IDPs or cosmic dust.

- Mineral, rocks and synthetic inorganic solids will be entered as "solid matters"
- Natural and synthetic snows and ices will be entered as "solid matters"
- Carbonaceous mineral matters (carbon, coal, anthracite, lignite, ...) will be preferentiably entrered as "carbonaceous matters" as the KWs are more adapted.
- Organic minerals (such as amber) and organic molecular solids will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial minerals extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any minerals/rocks collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "Solid matters"


## Minerals and rocks

A natural mineral matter (sample coming from a particular place on Earth) is made either of a single or of multiple major fundamental mineral phases (mineral classification) plus possible additional impurity species mostly mixed at grain level (material) or inside grains (constituents). It is also characterized by its geologic origin, the precise composition of each of its major mineral phases (fully defined mineral, solid solution, n -hydrated mineral, replacement elements, impurities) as well as their crystals shape, size and organization of the crystals (constituents) within the material grains (if multi constituents: hetero polycrystals, coating, crystal inclusions, ...).

A rock matter is considered as a material with several simple constituents which are mostly mineral phases (but there can be some organic inclusion). It is also characterized by its geologic origin, the precise composition of each of its major mineral phases (solid solution, replacement elements, impurities) as well as their crystals shape, size and organization within the rock material (if multi constituents).

Both mineral matter and rock matter can also have an official provider and some unique reference name or code.
Composition and properties of the actual minerals in a mineral or rock matter (for each mineral with composition different from the fundamental mineral phases)
A simplified "sample" structure (linked with its "sample_uid" and with "sample_is_matter" key-word set to 'true') provides the compostion, texture and properties of simple mineral matters and rocks trough possible mixing of mineral phases (plus eventually some organic matter) at the materials (granular mixture) and constituents (polycrystal grains) levels.

The chemical composition of a mineral matter made of one or more "mineral phases" with variable composition (mostly solid solution and n-hydrated minerals, but also any other mineral phases including isotopic substitution, replacement elements or important impurities, ...) is given by linking to their generic mineral phases and by providing their actual composition (' $x$ ' fractions, ' $n$ ' hydration number, non-natural isotopic abundances, replacement and impurities atoms) and properties (crystallographic site occupancy, molar mass, density, refraction indexes, color, ...) that will override the corresponding 'mean' or ' min ' values given in the fundamental 'mineral phases' table (these variable properties are taged ' VM '). But no change is needed for the "fixed composition" mineral phases. In addition the "oxides composition' analysis can be provided, when available (given in "mineral phases" only for fixed composition mineral phases).

Note: (almost) all the variable parameters have to be redefined when "mineral_classification_level" = \{variable mineral, unique mineral\} or "mineral_hydration_series" = 'true' (solid solutions and n-hydrated minerals).

Note: For "fixed composition minerals" some properties (color, ...) can strongly change without significant composition change (very minor impurities). Only this (and possibly others) property may be changed in such a case and some information of these minor impurities may be given in "matter_solid_composition_comments" (but better to describe these impurities by modifying the "atomic composition" of the mineral phases).

Note: Minerals with inserted molecules ( $\mathrm{H}_{2} \mathrm{O}$ (except n-hydration of minerals), $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{CO}_{2}, \ldots$ ), such as zeolites, will be described in the "matter_solid_sample" structure as a mineral matter with a constituent composed of a mineral phase and of molecules inserted in cages or in interlayer using "constituent_specie_state"='insertion' or 'interlayer'.

### 8.1.3 Carbonaceous matters

Definition: A 'carbonaceous matter' is any natural matter (collected on Earth or on planetary bodies) or synthetic matter made of organic species or of a carbonaceous macromolecular structure, excluding extraterrestrial carbonaceous materials from meteorite, micrometeorites, IDPs or cosmic dust.

- Carbonaceous mineral matters (carbon, coal, anthracite, lignite, ...) will be preferentiably entrered as "carbonaceous matters" as the KWs are more adapted.
- Organic bio-minerals, such as amber, will be also preferentiably entrered as "carbonaceous matters"
- Natural terrestrial organic fluids, such as petroleum and derivatives, will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial carbonaceous matters extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any other carbonaceous matters collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO,
...) will be entered as "carbonaceous matters"


### 8.1.4 Extraterrestrial (Meteorites, IDPs, ...)

Definition: An 'extraterrestrial matter' is any extraterrestrial matter made of organics and/or minerals found either on Earth (meteorite, micrometeorites), or collected in Earth atmosphere or in orbit (IDPs), or around planetary bodies (asteroids, comets, ...) or in the interplanetary space (cosmic dust), excluding matters collected on planetary bodies.

- Extraterrestrial minerals, carbonaceous matters, or fluids extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any other minerals/rocks, carbonaceous matters, or fluids collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "fluid, solid or carbonaceous matters"


## An extraterrestrial matter will be:

- All raw meteorite pieces, or already prepared sample, received at the lab => This will allow to link them with their meteorite object, meteorite piece provider, ... and to describe their composition, texture, ...
- Any extraterrestrial matter prepared or extracted from one of these raw pieces.
=> They will be linked with its parent 'raw piece' and will have all its preparation procedure described as well as its final composition, texture, ...
However a piece of meteorite, or some amount of extraterrestrial matter specifically prepared for a measurement will be described as a "sample". If it is used another time for another experiment then it will be refered either by the same sample (if no change) or as a parent sample if some additional processing is applied to it prior measurement.

A extraterrestrial matter can be a piece of a meteorite with a quite heterogeneous composition. It is the "global characteristic" of this piece of matter that needs to be described in the Matter table. It is then necessary to describe its constituents (mineral, organics) plus some quantitative information on composition, and then the species that constitute the complex organic constituents (chemical functions and atomic composition). The preparation mode of the piece (before reception and storage: section, coating, ...) should be specified here too, but not the preparation of this piece of meteorite (or a smaller piece) during the process of making it a "sample". This needs to be described in the "sample" table (mostly at "material" level). The specific composition of the piece used as a sample should also be described in the sample/material/constituent/matterspecies tables (in particular for microscopic analysis: cf 3.8.3).

A general practice being to extract some constituents (soluble and insoluble organics, ...) from this piece of meteorite (or from a smaller piece) and then to store it for one or more spectroscopic measurements (or other analysis) it is thus necessary also to describe this "extracted matter" in the matter table and give reference to the parent from which it is extracted. So information on the extraction process should be also available here.

There is also the case of very small matter pieces, such as IDPS or Stardust grains, that will make a unique sample. Although they cannot be considered as "a reservoir of matter" (as, e.g. a box of 1 kg of olivine) they must be described in the matter because they are unique and have associated references on their origin, NASA number, ...

### 8.1.5 Matters Tables (fluid matter, solid matter, carbonaceous matter, extraterrestrial matter)

The different types of matter are stored in different DB tables and are imported within <matter_xxx></matter_xxx> tags defined below:
Definitions:

- 'fluid matter': natural (from Earth or planetary bodies) or synthetic matter made of molecular liquid or gas, excluding extraterrestrial fluids from meteorite, micrometeorites, IDPs or cosmic dust (asteroidal and cometary dust, ...).
- 'solid matter': natural (from Earth or planetary bodies) or synthetic matter made of inorganic solids or minerals, including rocks: natural matter made of assemblage of minerals, excluding extraterrestrial minerals from meteorite, micrometeorites, IDPs or cosmic dust.
- 'carbonaceous matter': complex natural (from Earth or planetary bodies) or synthetic matter made of organic species or of a carbonaceous macromolecular structure, excluding extraterrestrial carbonaceous materials from meteorite, micrometeorites, IDPs or cosmic dust.
- 'extraterrestrial matter': complex extraterrestrial matter made of organics and/or minerals found either on Earth (meteorite, micrometeorites), or collected in Earth atmosphere or in orbit (IDPs), or in interplanetary space (Cosmic dust, ...), but excluding planetary bodies (planets, satellites, asteroids, comets, ...)
- 'planetary matter':

Notes:

- Extraterrestrial minerals, carbonaceous matters, or fluids (when it will be!) extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Extraterrestrial minerals/rocks, carbonaceous matters, or fluids collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "fluid, solid or carbonaceous matters"


### 8.2 Fluid Matters Table

Root of the table: matter_fluid
Data type: 'Matter'
Definition: 'fluid matter' is any natural (from Earth or planetary bodies) or synthetic matter made of molecular liquid or gas, excluding extraterrestrial fluids from meteorite, micrometeorites, IDPs or cosmic dust (asteroidal and cometary dust, ...).
Notes:

- Simple synthetic organic gases and liquids, such as $\mathrm{C} 2 \mathrm{H} 2, \mathrm{C} 3 \mathrm{H} 8, \ldots$, will be entrered as "fluid matters"
- Natural terrestrial organic fluids, such as petroleum and derivatives, will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial fluids extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any fluids collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "Fluid matters"

Key-word	Type	Level	Table	Exp	Unit	Description
Fluid matter import						
matter_fluid_import_mode [matter_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{m}]} \end{gathered}$	MatFluid	(V)	--	Mode of import of the "fluid matter" data
						Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
matter_fluid_xml_filename [-xml]   [matter_xml_filename]	$\operatorname{varchar(255)}$   [virtual KW]	$\begin{gathered} \mathrm{P} \\ {[!!\text { _vc] }} \end{gathered}$	MatFluid	(V)	--	Name of the storage copy of the xml import file of the "matter_fluid" metadata
						$\rightarrow$ determined automatically during import (from "matter_fluid_uid»?)
						Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

## Fluid matter indexes

matter_fluid_index $[* *][-\mathrm{xml}]$

$[$ matter_index] $\quad \operatorname{int}(10) \quad$| B | MatFluid | F | -- |
| :--- | :--- | :--- | :--- |
| $[!!-\mathrm{g}]$ |  |  |  |

matter_fluid_uid [**]
[matter_uid] $\quad$ varchar(255) $\quad \underset{\left[!!_\mathrm{m}\right]}{\text { S0 }}$ MatFluid $\quad$ F

matter_fluid_owner_databases	List [L0]	[!!]		
matter_fluid_owner_database_uid	varchar(255)	S1	MatFluid	F
[*]	[!!o_m]	DatBas		
[matter_owner_database_uid]			L0	

-- Unique identifier code (UID) given to the fluid matter table (to be created)
Nomenclature: Create this UID with 'MATFLUID_' and be very accurately formatted in order to be simple and unique

- It could be of the style
'MATFLUID_Species_Code_Provider(_AB_yyyymmdd)' (or something similar) where 'Species' is the formula or name of the main species of the fluid, 'Code' some provider or local code (typicaly giving purity), and 'Provider' the provider name or acronym (synthetized commercial) or the lab acronym (synthetized laboratory), and, if relevant, ' AB ' are the initials of the person preparing the import, or of the experimentalist, and 'yyyymmdd' is full date of creation of the matter (from matter_fluid_date) or the date of the day.
Note: if several matters are created the same day with the same fluid material(s) then add some distinguishing property after 'Species_Code_Provider'.
Ex:
- MATFLUID_C2H4_N35_AIRLIQUIDE_20081002
- MATFLUID_CH3OH_N25_FISHER_20160205
- MATFLUID_air_atm_dry
- MATFLUID_vacuum_ultrahigh

Note: the Nxy code mean purity of $99.9(\mathrm{x}) \mathrm{y} \%$ with ' x ' the number of ' 9 ' and ' y ' as the last digit. $E x$ : $\mathrm{N} 28=99.8 \%, \mathrm{~N} 45=99.995 \%$
£: databases which manage this matter
-- Link to the existing UID of the database which owns and manages this matter information

Condition: at least one database
Note: For common 'reference' matters and for matters from external laboratories (not managed by a database), it should be 'DB_SSHADE'

## Fluid matter experimentalist



## Fluid matter description



matter_fluid_name   $[$ matter_name $]$	$\operatorname{varchar}(255)$	S0
$\left[!!_\mathrm{m}\right]$		

- 'fluid': matters primarily made of fluid materials
matter_fluid_name
[matter_name]
$\operatorname{archar}(255)$ [!!_m]
-- Common or given name of the fluid matter
Notes:
- It should contain explicit info on the matter and constituting materials/constituent/species: name(s) and some typical properties of the matter (phase type, components, ...).
- It maybe for exemple the name of the main species in the fluid (if pure, almost pure, or the major component) or a name describing the main species if mixed
- It is used as the title of the matter page on the SSHADE interface

Ex: 'CO2 gas', 'Sulfuric acid', 'Air with 350ppm CO2',
Note DB: In SSHADE it will be an 'air' with various CO 2 and H 2 O fractions, as well as several 'vacuum' with various molecules impurities, or for different vacuum levels (primary, secondary, ultra-high) but with unknown species.

[matler_date]	date	$\begin{gathered} \text { S1 } \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	MatFluid	F	$\begin{aligned} & \text { YYYY- } \\ & \text { MM- } \\ & \text { DD } \end{aligned}$	Date of creation of the matter   Note: This date can be the date of collection for natural matters, or of delivery for commercial ones, or of creation for synthetic ones, or of end of processing(s) in the case of a matter generated by processing another one (parent matter).
						Note: general matters such as air or vacuum will have no date.
matter_fluid_parent_matter_uid [*] [matter_parent_matter_uid]	varchar(255)	$\begin{aligned} & \text { S2/S1i } \\ & \text { [\$o_m] } \end{aligned}$	MatFluid MatXxx	F	--	Link to the existing UID of the parent matter (if present in the database) used to create this one by some processing (e.g. thermal cycle, irradiation, sieving, ...)
[matter_parent_matter_uid]						Recommendation: Strongly recommended when already exist in the database
matter_fluid_first_parent_matter_ uid [*] [-xml] [matter_first_parent_matter_uid]	varchar(255)	$\begin{aligned} & \text { S2/S1i } \\ & {\left[!\mathrm{o} _\mathrm{c}\right]} \end{aligned}$	MatFluid   MatXxx	F		Link to the existing UID of the first parent of the generation of matters (present in the database) that has been initially used to create this one by a series of processes.
						Condition: when "matter_fluid_parent_matter_uid" $\neq \Phi$
						$\rightarrow$ calculated recursively using "matter_fluid_parent_matter_uid", when it exist

## Fluid matter origin



## simulated $\}$

Definitions: cf. "matter_solid_origin"
Note:

- a fluid matter should be predominantly synthetic (laboratory or commercial)
- it may also be mixed with some natural material as long as this material is not the main focus of the matter (e.g. darkening material, dilution material, ...)
- it may also be simulated (numerical simulation)


## Fluid matter provider

matter_fluid_provider [matter_provider]	varchar(255)	$\begin{aligned} & \mathrm{SS} 2 \\ & {\left[!_\mathrm{m}\right]} \end{aligned}$	Matfelui		Provider name of the fluid matter   Note: industrial/commercial company, individual + laboratory name, ... Ex: ‘Air Liquide' (Gas factory), 'Catania Observatory, INAF', 'IPAG'
matter_fluid_provider_reference_ code   [matter_provider_reference_code]	varchar(255)	$\underset{[\mathrm{m}]}{\mathrm{SidS} 1 \mathrm{bs}} \underset{\mathrm{~N}}{ }$	Mateluilf	F	Reference number or name given by the provider of the fluid matter Ex: ‘CO2 N95 B20’
matter_fluid_igsn_code [matter_igssn_code]	varchar(255)	$\underset{[\mathrm{m}]}{\mathrm{SigS} 1 \mathrm{bs}}$	Matetuit	F	'International Geo Sample Number'code (IGSN) of the fluid matter   Constraint: only when "matter_fluid_origin" = \{natural terrestrial, extraterrestrial\}   Definition: The IGSN is an alphanumeric code that uniquely identifies samples from our natural environment and related sampling features (http://www.geosamples.org)   Ex: 'IEJEN00CH’
matter_fluid_igsn_url [-xml] [matter_igssn_url]	varchar(255)	$\underset{\left[!\mathrm{o} _\mathrm{c}\right]}{\mathrm{SU}}$	Matiteluit	F --	url address of the information page for fluid matters with an IGSN code Condition: mandatory when " $m$ atter_fluid_igsn_code" $\neq \emptyset$

$\rightarrow$ Calculated with
https://app.geosamples.org/sample/igsn/"matter_fluid_igsn_code"
Ex: ‘https://app.geosamples.org/sample/igsn/IEJEN00CH' for IGSN='IEJEN00CH'

matter_fluid_local_reference_cod varchar(255) e	$\underset{[\mathrm{m}]}{\mathrm{SigS} 1 \mathrm{bs} \text { MhitFldị }} \mathrm{F} \quad$--	Local reference number or name given by local experimentalists to the fluid matter
[matter_local_reference_code]		Ex: 'CO2-N95-B20 AirLiq'

## Natural fluid matter: planetary body

matter_fluid_body_object_uid [*] varchar(255) [matter_body_object_uid]
matter_fluid_body_uid [*] [-xml] varchar(255) S\$/S1s Mhitfluiథ F -- -[matter_body_uid] [!!o_m] Object [!!o_c] Body

S\$/S1s MhatFluid F -- -- Link to the existing UID of the planetary object from which the natural matter originates
Condition: absolute mandatory when "matter_fluid_origin" $=\{$ planetary $\}$ Notes: see "matter_solid_body_object_uid"

Link to the existing UID of the planetary body from which the natural matter originates

Condition: absolute mandatory when "matter fluid origin" = \{natural terrestrial, extraterrestrial, planetary\}
$\rightarrow$ Calculated:
$\Rightarrow=$ 'BODY_planet_Earth' when "matter_fluid_origin" = \{natural terrestrial, extraterrestrial\}
$\Rightarrow$ = "matter_fluid_body_object.planetary_recovery_body_uid" when "matter_fluid_origin" $=\{$ planetary $\}$

## Note:

- added in order to be able to set "body" automatically to 'Earth' for 'natural terrestrial' matters who did not have a mandatory 'planetary object')
- not used for laboratory, commercial and simulated matters

matter_fluid_body_terrain_type
[matter_body_terrain_type]

OpenEnum: \{mineral surface, icy surface, organic surface, liquid surface, mixed surface types, mineral subsurface, icy subsurface, organic subsurface, liquid subsurface, mixed subsurface types, atmosphere, other, unknown\}
Condition: mandatory when "matter_fluid_origin" $=\{$ natural terrestrial, extraterrestrial $\}$
Definitions: see "matter_solid_body_terrain_type"
Note: the precise type and location on the planetary body is described in "matter_fluid_geolocation_xxx"
matter_fluid_body_coordinate_sy openum(text) U MatFluid F -- Coordinate system on the planetary body of the geographic location of the stem
[matter_body_coordinate_system]
natural matter

OpenEnum: $\{$ WGS84, Mars 2000, Moon 2000, Pluto 2015, ...\}
Condition: mandatory when "matter_fluid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}

Definitions: see "experiment_body_coordinate_system"
Notes:

- Prefer 'Planetocentric latitude with east longitude' coordinate systems approved by the International Astronomical Union
- currently only 'WGS84' system for Earth


## Natural fluid matter: geolocation



matter_fluid_geolocation_region   [matter_geolocation_region]	varchar(255)	$\begin{gathered} \text { S1b } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatFluid	F	--	Region, state, province or county (administrative location) on Earth of the natural matter
						Condition: mandatory and only when "matter_fluid_body_uid" = ‘BODY_planet_Earth’
matter_fluid_geolocation_country _code	enum(text)	$\begin{gathered} \text { S1b } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatFluid	F	--	2-digit code of the country of the geographic location on Earth of the natural matter
[matter_geolocation_country_cod e]						Enum: $\{\mathrm{CH}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}$
						Label (code): see "laboratory_address_country_code"
						Condition: mandatory and only when "matter_fluid_body_uid" = 'BODY_planet_Earth'
						Definitions: see "laboratory_address_country_code"
matter_fluid_geolocation_type	enum(text)	U	MatFluid	F	--	Type of geographic location the natural matter
						Enum: \{point, line, box, polygon\}
						Condition: mandatory when "matter_fluid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
						Condition: absolute mandatory when   "matter_fluid_geolocation_coordinate_latitude" $\neq \varnothing$
						Definitions: see "experiment_geolocation_type"
matter_fluid_geolocation_coordin	List [L3]	[!O]				£: Geolocation on the planetary body of the natural matter
[matter_geolocation_coordinates]						Condition: mandatory when "matter_fluid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
						Condition: absolute mandatory when "matter_fluid_geolocation_type" $=\varnothing$


matter_fluid_geolocation_coordin ate_latitude   [matter_geolocation_coordinate_1 atitude]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatFluid L3	F	deg	Latitude of the geographic location on the planetary body of the natural matter Format: in N 'decimal degrees' in "matter_fluid_body_coordinate_system" Condition: mandatory when "matter_fluid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
matter_fluid_geolocation_coordin ate_longitude   [matter_geolocation_coordinate_1 ongitude]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatFluid L3	F	deg	Longitude of the geographic location on the planetary body of the natural matter   Format: in E 'decimal degrees' (in the E direction only) in "matter_fluid_body_coordinate_system"   Condition: mandatory when "matter_fluid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
matter_fluid_geolocation_coordin ate_altitude   [matter_geolocation_coordinate_a ltitude]	float	$\begin{gathered} \mathrm{S} 3 \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid L3	F	m	Altitude of the geographic location on the planetary body of the natural matter   Format: in 'meter' in "matter_fluid_body_coordinate_system"   Notes:   - from the body reference ellipsoid (planetographic coordinates)   - or from the reference sphere (planetocentric coordinates) (altitude 0 )
matter_fluid_geolocation_comme nts   [matter_geolocation_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid	F	-	Any additional information or comments about the geolocation of this matter Ex: 'matter was collected within 100 m of this point', 'very approximate coordinates $\left(+/-0.1^{\circ}\right)^{\prime} \ldots$

## Fluid matter images

matter_fluid_images List [L4] [O] £: Pictures of the fluid matter

matter_fluid_image_filename [matter_image]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid   L4	F	--	File name (with extension) of the picture of the fluid matter Image formats: .png, .jpg, (.gif)
--						Note: could be used to put picture(s) of fluid cylinder or flask, or of the matter from which the fluid has been extracted (natural fluids)
						Note: this file will be imported in the database
matter_fluid_image_caption [matter_image_caption]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid   L4	F	--	Caption or comments on the picture of the fluid matter Ex:
						Note: should include credits when necessary

## Fluid matter preparation and component types

matter_fluid_method [matter_method]	varchar(255)	$\begin{gathered} \mathrm{S} 3 \mathrm{~s} \\ {[\mathrm{~m}]} \end{gathered}$	M4tFleyid	FF	Method of extraction (natural) or synthesis of the fluid matter   Ex: 'gas extracted by crushing volcanic glasses', 'isotope enrichment by centrifugation', 'CO2 gas produced by natural coal combustion and separated by filters'
matter_fluid_storage_condition [matter_storage_condition]	varchar(255)	$\begin{gathered} \mathrm{SU} \\ {[\mathrm{~m}]} \end{gathered}$	Mhateluic	F	Storage condition of the fluid matter   Ex: 'stored at $20^{\circ} \mathrm{C}$ in 1 bar of pure and dry Ar gas since formation', $\ldots$   Notes: see "matter_solid_storage_condition"
matter_fluid_phase_type [matter_phase_type]	enum(text)	$\begin{gathered} \mathrm{S} 0 / \mathrm{S} 2 \mathrm{~s} \\ {[!\mathrm{m}]} \end{gathered}$	MatFluid	F	Type of phase of the fluid matter   Enum: $\{$ liquid, gas $\}$   Note: if there are several phase types, then give the main here and add a comment in "matter_fluid_comments"
matter_fluid_components   [matter_components]	List [L5]	[!]			£: Components type and group of the fluid matter


matter_fluid_component_type   [matter_component_type]	enum(text)	S1	MatFluid	F	--	Type of fluid matter
$[!!\mathrm{m}]$	L5		Enum: $\{$ molecular, ionic, covalent, metallic $\}$			
				Definitions:		


matter_fluid_component_group   [matter_component_group]	openum(text)	S1	MatFluid	F	--
$[!$ G $]$	L5			Group of fluid matter (type of 'mixture')	

## Definitions.

- 'pure': one single type of atom, molecule, ... (all)
- 'mixture': simple homogeneous mixture without any special interactions between components (gas, liquid)
- 'solution': homogeneous mixture (1 phase) of a solvent and a solute (liquid)
- 'alloy': mixture or metallic solid solution composed of two or more elements (liquid metal)
- 'emulsion': heterogenous mixture (several phases) of two or more liquids that are normally immiscible (liquid)
- 'suspension': heterogenous mixture (several phases) containing solid or liquid particles that are sufficiently large for sedimentation (gas, liquid). Particles have diameters $>1 \mu \mathrm{~m}$ (note: for gas it is called an aerosol)
- 'colloid': substance (phase) microscopically dispersed throughout another substance (phase). Particles have diameters $\sim 1-1000 \mathrm{~nm}$


## nts



## Fluid matter composition

Note: Whatever are the materials, gas or liquid, that constitute the matter they will be always defined from the "material" level (link(s) with "matter_fluid_material_index") through their "constituents" and "species", or through other matter(s). Only their type of mixing is described here.


matter_fluid_matters	List [L6a]	[!]				£: matters constituting this fluid matter
matter_fluid_matter_index [*][-   xml] ---   [matter_matter_index]	$\operatorname{int}(10)$   [Internal link]	$\begin{aligned} & \mathrm{B} / \mathrm{S} 1 \\ & {[!\mathrm{g}]} \end{aligned}$	Matfluid   MatXxx   L6a	F	--	ID of the matter constituting the 'fluid matter'   Note $x \mathrm{ml}$ : in practice the description of the material(s) is done directly under "matter_fluid" without providing the ID link
> Same structure as "sample"						
matter_fluid_materials	List [L6b]	[!]				£: materials constituting this fluid matter
matter_fluid_material_index [*][-   xml]   [matter_material_index]	varchar(255)   [Internal link]	$\begin{aligned} & \mathrm{B} / \mathrm{S} 1 \\ & {[!\mathrm{g}]} \end{aligned}$	MatFluid   Mater	F	--	ID of the material constituting the 'fluid matter' Notes:
> Same structure as "sample"						when there are particles in suspension in the fluid: colloids). The different fundamental liquid phases composing the fluid matter are linked inside this matter-materials structure at the basic constituent level.   - the modifications of the liquid parameters (VL in 'liquid' phases) (composition and properties) are also described at the constituent level
						Note: ID determined automatically during import   Note xml: in practice the description of the matter-material(s) is done directly under "matter" without providing the ID link
matter_fluid_comments   [matter_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid	F	--	Additional information on the fluid matter (minor impurities, ...) or comments on the composition and formula of the species composing the fluid matter

## Precursor materials

Note: "material_is_precursor" = 'true'
Note: refer to the same table as "materials" in the sample structure but without the "material arrangement and abundance" bloc
See definitions and notes in "Mineral matter"
matter_fluid_precursor_materials List [L7] S2 Mater $\quad$ : Precursor materials used to create the fluid matter

[matter_precursor_materials]	$[\mathrm{O}]$	PreMater
L7		

Condition: description of precursor materials is optional.
> Use exactly the same structure as for "Mineral matter"

## Fluid matter processings:

matter_fluid_processings	List [L8]	[O] MatFluid	£: Processing steps of the precursor materials/matters
[matter_processings]		L8	Condition: only when there is processing of materials or parent matter/sample

> Use exactly the same structure as for "Mineral matter"
Condition: only when there is processing of materials or parent matter/sample

## Fluid matter documentation and references

matter_fluid_documentations	List [L9]	[O]				£: Documentations about the fluid matter
matter_fluid_documentation_nam   e   [matter_documentation_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid   L9	F	--	Name of the documentation describing the fluid matter   Note: this name will appear as the documentation title in the interface Ex: 'Specifications of liquid C3H4 purity'
matter_fluid_documentation_filen ame   [matter_documentation_filename]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatFluid L9	F	--	File name (with extension) of the documentation describing the fluid matter   Condition: Mandatory when "matter_fluid_documentation_name" $\neq \Phi$   File formats: .pdf, .png, .jpg, .gif, .tiff, .txt, ...   Note: this file will be imported in the database
matter_fluid_links	List [L10]	[O]				$£$ : Web pages describing the fluid matter and its properties
matter_fluid_link_name [matter_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid L10	F	--	Name of the web page describing the fluid matter and its properties.   Ex: ‘Air Liquide’, ‘Sigma Aldrich’, ...
matter_fluid_link_url [matter_link_url]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatFluid   L10	F	--	URL address of web page describing the fluid matter and its properties   Note: usefull only when the fluid matter comes from a stable commercial supplier, or an individual/laboratory providing information on a web page (gas

## extracts, synthesis method, ...)

Notes:

- can also link to various types of measurements made on this matter
- you can link to a publication by giving its url address, preferably through its DOI.
Ex: https://doi.org/10.1002/ejic. 200700067
£: Publications describing the fluid matter and its properties.

matter_fluid_publications	List [L11]	[O]		
matter_fluid_publication_uid [*]	varchar(255)	S2	MatFluid	F
[matter_publication_uid]		$[\mathrm{m}]$	Publi	
			L11	

-- Link to the existing UID of the publications describing the fluid matter and its properties.
Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter'

### 8.3 Solid Matters Table

## Root of the table: matter_solid

Data type: 'Matter'
Definition: 'solid matter' is any natural (from Earth or planetary bodies) or synthetic matter made of inorganic solids or minerals, including rocks: natural matter made of assemblage of minerals, excluding extraterrestrial minerals from meteorite, micrometeorites, IDPs or cosmic dust (asteroidal and cometary dust, ...).
Notes:

- Mineral, rocks and synthetic inorganic solids will be entered as "solid matters"
- Natural and synthetic snows and ices will be entered as "solid matters"
- Carbonaceous mineral matters (carbon, anthracite, lignite, ...) will be preferentiably entrered as "carbonaceous matters" as the KW are more adapted.
- Organic minerals (such as amber) and organic molecular solids, will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial minerals extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any minerals/rocks collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "Solid matters"

Key-word	Type	Level	Table	Exp	Unit	Description
Solid matter import						
matter_solid_import_mode [matter_import_mode]	enum(text)	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	MatSol	F	--	Mode of import of the "solid matter" data   Enum: \{first import, ignore, draft, no change, correction\}
						Definitions: see "sample_import_mode"
matter_solid_xml_filename [-xml] varchar(255) [matter_xml_filename] [virtual KW]		$\begin{gathered} \mathrm{P} \\ {[!!\mathrm{vc}]} \end{gathered}$	MatSol	(V)	--	Name of the storage copy of the xml import file of the "matter_solid" metadata
		$\rightarrow$ determined automatically during import (from "matter_solid_uid»?)				
		Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction				

## Solid matter indexes

matter_solid_index [**][-xml] [matter_index]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{B} \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	MatSol	F	no	Automatic random but unique number (ID) given to new solid matter
matter_solid_uid [**] [matter_uid]	varchar(255)	$\begin{gathered} \mathrm{S} 0 / \mathrm{S} 1 \\ {[!!\mathrm{m}]} \end{gathered}$	MatSol	F	--	Unique identifier code (UID) given to the solid matter table (to be created)   Nomenclature: Create this UID with 'MATSOL_' for synthetic solids or 'MATMIN_' for minerals   It should be of the style:   - 'MATSOL_SolidMatter_AB_yyyymmdd' where 'SolidlMatter' is the matter name (part of "matter_solid_name") or main solid name,   - 'MATMIN_MineralMatter_AB_yyyymmdd' where 'MineralMatter' is the matter name (part of "matter_solid_name") or main mineral name,   - and where ' AB ' are the initials of the person preparing the import, or of the experimentalist preparing the matter (experimentalist_acronym of matter_solid_experimentalist), 'yyyymmdd' is full date of creation of the matter (from "matter_solid_date") or the date of the day.   Note: if several matters are created the same day with the same solid material(s) then add some distinguishing property after 'Mineral/SolidMatter'.   Ex:   - MATSOL_Snow-Chamrousse_BS_20170105   - MATMIN_SWy2_25-50_BS_20131003,   - MATMIN_Portlandite_96_AG_20130828   - MATMIN_Basalt-Moon_BS_20130828
matter_solid_owner_databases	List [L0]	[!!]				£: databases which manage this matter
```matter_solid_owner_database_uid [*] [matter_owner_database_uid]```	$\operatorname{varchar}(255)$	$\begin{gathered} \mathrm{S} 1 \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatSol DatBas L0	F	--	Link to the existing UID of the database which owns and manages this matter information   Condition: at least one database

Solid matter experimentalist

Solid matter description

matter_solid_family
$\mathfrak{£}$: experimentalists who prepared the matter

Condition: can be no experimentalist when the matter is stored as it is delivered
[matter_family]
matter_solid_name
[matter_name]
$\operatorname{varchar}(255) \quad \mathrm{S} 0 / \mathrm{S} 1$ MatSol
-- Family of the solid matter
Enum: \{solid, mineral\}
Definitions:

- 'solid': matters made of different types of synthetic solids
- 'mineral': matters made primarily with natural minerals
- Common or given name of the solid matter

Notes:

- It should contain explicit info on the matter and constituting materials/constituent/species: name(s) and some typical properties of the matter (phase type, components, ...).
- It may be the name of the main solid (if pure, almost pure, or the major component) or a name describing the main solid components if mixed
- the names of glasses will be that of the equivalent solid followed by 'glass'
- It is used as the title of the matter page on the SSHADE interface

Ex: 'Olivine', Smectite SWy-2', 'Smectite with Quartz and Feldspar', ...
Ex: 'forsterite glass'

matter_solid_date date [matter_date]	$\begin{gathered} \mathrm{S} 1 \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	MatSol	F	$\begin{aligned} & \text { YYYY- } \\ & \text { MM- } \\ & \text { DD } \end{aligned}$	Date of creation of the matter Note: This date can be the date of collection or delivery for natural matters, or of creation for synthetic ones, or of end of processing(s) in the case of a matter generated by processing another one (parent matter).
```matter_solid_parent_matter_uid varchar(255) [*] [matter_parent_matter_uid]```	$\begin{aligned} & \mathrm{S} 2 / \mathrm{S} 1 \mathrm{i} \\ & {\left[\$ \mathrm{o} _\mathrm{m}\right]} \end{aligned}$	MatSol   MatXxx	F		Link to the existing UID of the parent matter (if present in the database) used to create this one by some processing (e.g. thermal cycle, irradiation, sieving, ...)   Recommendation: Strongly recommended when already exist in the database Ex: a granular matter sieved to a specific grain size range gives a daughter matter from the parent unsieved matter.
matter_solid_first_parent_matter_ varchar(255) uid [*] [-xml]   [matter_first_parent_matter_uid]	$\begin{aligned} & \mathrm{S} 2 / \mathrm{S} 1 \mathrm{i} \\ & {\left[!\mathrm{o} _\mathrm{c}\right]} \end{aligned}$	$\begin{gathered} \text { MatSol } \\ \text { MatXxx } \end{gathered}$	F	--	Link to the existing UID of the first parent of the generation of matters (present in the database) that has been initially used to create this one by a series of processes.   Condition: when "matter_solid_parent_matter_uid" $\neq \Phi$   calculated recursively using "matter_solid_parent_matter_uid", when it exist

## Solid matter origin



## distributed.

Ex: ‘Johnson Space Center JSC Mars-1 simulant’, ‘Coals
repository at Pittsburgh Mining Technology Center', 'source clays of Clay Mineral Society repository', 'meteorite from MNHM', ...

- 'from laboratory repository': natural or synthetic matter collected or synthesized in substantial amount by a laboratory and stored in a local repository and distributed more or less widely.

Ex: ' $2 \%$ CH4 tholins at LATMOS'

- 'from commercial suppliers': mostly synthetic matter provided by a commercial supplier,

Ex: ‘CH4 gas bottle', 'Natrite, Merck Co’

- 'local matter': natural or synthetic matter collected or synthesized for local use only (not shared with other laboratories). Includes matters measured on the field.
- 'other': any other types of matter

Note: for the 4 first cases the repository or supplier should be given in "matter_solid_provider"
matter_solid_origins
matter_solid_origin
[matter_origin]

## List [L2]

enum(text)

## [!!]

 SB/S1s MiqesolF F -- -[!!_m] L2£: Origins of the solid matter
Synthetic origin of the solid matter
Enum: \{natural terrestrial, extraterrestrial, planetary, laboratory, commercial, simulated $\}$

## Definitions.

- 'natural terrestrial': natural matter (mineral, rock, snow-ice, organic, ...) colleted on Earth
- 'extraterrestrial': extraterrestrial matter collected on Earth (meteorite, micrometeorite, IDP).
- 'planetary' extraterrestrial matter (planetary soil, rock or grains, ...) collected on or around planetary bodies (planets, satellites, comets, asteroids, ...) and in the interplanetary space.
- 'laboratory': non-natural solid matter experimentally synthesized in a laboratory (well or relatively well-known synthesis process)
- 'commercial': non-natural solid matter synthesized by a chemical
company (less or no knowledge on the synthesis process)
- 'simulated': fictive matter defined for a numerical simulation

Note:

- a solid matter should be predominantly synthetic (laboratory or commercial),
- it may also be mixed with some natural material as long as this material is not the main focus of the matter (e.g. darkening material, dilution/matrix material, ...)
- it may also be simulated (numerical simulation)


## Solid matter provider

matter_solid_provider [matter_provider]	varchar(255)	$\begin{aligned} & \mathrm{SS} 2 \\ & {\left[!_\mathrm{m}\right]} \end{aligned}$	MandeolF	F	-- --	Name, address, $\ldots$ of the provider of the solid matter   Note: Mineral repository, commercial company, individual + laboratory name, ...   Ex: 'Clay Mineral Society' (Mineral repository)
matter_solid_provider_reference_ code   [matter_provider_reference_code]	varchar(255)	$\begin{gathered} \mathrm{Si8S} 1 \mathrm{bs} \\ {[\mathrm{~m}]} \end{gathered}$	MatacolF	F		Reference number or name given by the provider of the solid matter $E x: ~ ' S W y-2 '$
matter_solid_igsn_code [matter_igssn_code]	varchar(255)	$\begin{gathered} \mathrm{SigS} 1 \mathrm{bs} \\ {[\mathrm{~m}]} \end{gathered}$	MatacolF	F		'International Geo Sample Number'code (IGSN) of the solid matter   Constraint: only when "matter_solid_origin" = \{natural terrestrial, extraterrestrial\}   Definition: The IGSN is an alphanumeric code that uniquely identifies samples from our natural environment and related sampling features (http://www.geosamples.org)
matter_solid_igsn_url [-xml] [matter_igssn_url]	varchar(255)	$\begin{aligned} & \mathrm{SU} \\ & {\left[!\mathrm{o} _\mathrm{c}\right]} \end{aligned}$	WhateolF	F	--	url address of the information page for solid matters with an IGSN code Condition: mandatory when "matter_solid_igsn_code" $\neq \varnothing$

$\rightarrow$ Calculated with
https://app.geosamples.org/sample/igsn/"matter_solid_igsn_code"
Ex: ‘https://app.geosamples.org/sample/igsn/IEJEN00CH' for IGSN=‘IEJEN00CH’

matter_solid_local_reference_cod varchar(255) e	Sl8S1bs MAderolF F -- -[m]	Local reference number or name given by local experimentalists to the solid matter
[matter_local_reference_code]		'Smectite SWy-2 - CMS'

## Natural solid matter: planetary body

matter_solid_body_object_uid [*] varchar(255) S\$/S1s MiatifolF F -- -- Link to the existing UID of the planetary object from which the natural matter
[matter_body_object_uid] originates
Condition: absolute mandatory when "matter_solid_origin" = \{planetary $\}$
Notes.

- it is the "object_planetary_uid"
- the use of "object_planetary" to describe the collection on the planetary body is absolute mandatory for extraterrestrial matters collected on another planetary body than Earth.
- extraterrestrial matters collected on Earth (meteorites, micrometeorites, IDPs) should use "matter_extraterrestrial"
- natural terrestrial matters collected on Earth generally do not use an "object_planetary" to describe the collection, but it can.
matter_solid_body_uid [*] [-xml] varchar(255) S\$/S1s MMA\&§olF F -- -- Link to the existing UID of the planetary body from which the natural matter [matter_body_uid]

originates
Condition: absolute mandatory when "matter solid origin" $=\{$ natural terrestrial, extraterrestrial, planetary
$\rightarrow$ Calculated:
$\Rightarrow$ = 'BODY_planet_Earth' when "matter_solid_origin" = \{natural terrestrial, extraterrestrial\}
$\Rightarrow$ = "matter_solid_body_object.planetary_recovery_body_uid" when

$$
" \text { matter_solid_origin" }=\{\text { planetary }\}
$$

Note:
added in order to be able to set "body" automatically to 'Earth' for 'natural terrestrial' matters who did not have a mandatory 'planetary object')

- not used for laboratory, commercial and simulated matters



## Definitions:

- 'mineral surface': situated at a predominantly mineral surface or close surface (sand desert, salty lake, everywhere on Mars and Moon, ...)
- 'icy surface': situated a predominantly icy surface or close surface (e.g. snow covered surface, icy satellite surfaces, ...)
- 'organic surface': situated a predominantly organic surface or close surface (e.g. tholins surface, comet surface, vegetation surface, ...)
- 'liquid surface': situated a predominantly liquid surface or close surface (e.g. lake surface, river, Titan lakes, ...)
- lake bottom, ocean, ...)
- 'mixed surface types': mix of the above surface types
- 'mineral subsurface': situated in a predominantly mineral subsurface
- 'icy subsurface': situated in a predominantly icy subsurface (e.g. in polar cap, ...)
- 'organic subsurface': situated in a predominantly organic subsurface (e.g. coal mine, hydrocarbon reservoir, ...)
- 'liquid subsurface': situated in a predominantly liquid subsurface (e.g.
- 'mixed subsurface types': mix of the above subsurface types
- 'atmosphere': situated in the atmosphere

matter_solid_body_coordinate_sy stem	openum(text)	$\begin{gathered} \mathrm{U} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatSol	F	--	Coordinate system on the planetary body of the geographic location of the natural matter
[matter_body_coordinate_system]						OpenEnum: $\{$ WGS84, Mars 2000, Moon 2000, Pluto 2015, ...\}
						Condition: mandatory when "matter_solid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
						Definitions: see "experiment_body_coordinate_system"
						Notes:   - Prefer 'Planetocentric latitude with east longitude' coordinate systems approved by the International Astronomical Union   - currently only 'WGS84’ system for Earth

## Natural solid matter: geolocation

matter_solid_geolocation_place $\quad$ varchar(255) $\quad \mathbb{\$} 1 \mathrm{~b} \quad$ WhateqolF $\quad \mathrm{F} \quad$-- -- Geologic source and geographic location on the planetary body of the natural [matter_geolocation_place]
matter_solid_geolocation_region
[matter_geolocation_region]

		[!o_m]				Condition: mandatory and only when "matter_solid_body_uid" = 'BODY_planet_Earth'
						```Ex: - 'Murmanskaja Oblast', `Sicilia', 'Rhône-Alpes', `Arizona', `Zambezi` (Earth)```
matter_solid_geolocation_country _code	enum(text)	$\begin{gathered} \text { S1b } \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatSol	F	--	2-digit code of the country of the geographic location on Earth of the natural matter
[matter_geolocation_country_cod						Enum: $\{\mathrm{CH}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}$
						Label (code): see "laboratory_address_country_code"
						Condition: mandatory and only when "matter_solid_body_uid" = 'BODY_planet_Earth'
						Definitions: see "laboratory_address_country_code"
matter_solid_geolocation_type	enum(text)	U	MatSol	F	--	Type of geographic location of the natural matter
[matter_geolocation_type]		[!!o_m]				Enum: \{point, line, box, polygon\}
						Condition: mandatory when "matter_solid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
						Condition: absolute mandatory when "matter_solid_geolocation_coordinate_latitude" $\neq \varnothing$
						Definitions: see "experiment_geolocation_type"
matter_solid_geolocation_coordin	List [L3]	[!o]				£: Geolocation on the planetary body of the natural matter
ates [matter_geolocation_coordinates]						Condition: mandatory when "matter_solid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
						Condition: absolute mandatory when "matter_solid_geolocation_type" $\neq \varnothing$
						Conditions: on the number of long/lat couple: see "experiment_geolocation_coordinates"

matter_solid_geolocation_coordin
ate_latitude
[matter_geolocation_coordinate_1
atitude]
matter_solid_geolocation_coordin
ate_longitude
[matter_geolocation_coordinate_1
ongitude]
matter_solid_geolocation_coordin ate_altitude
[matter_geolocation_coordinate_a ltitude]

float \begin{tabular}{cccc}
S3

{$\left[!\mathrm{o} _\mathrm{m}\right]$}

 MatSol

L3
\end{tabular}

float	S3
$\left[!\mathrm{o} _\mathrm{m}\right]$	$\underset{\mathrm{MatSol}}{\mathrm{S} 3} \mathrm{~F} \quad$ deg

float

[m]
L3

Note $D B$: will be stored in shapefile format?
Latitude of the geographic location on the planetary body of the natural matter Format: in N 'decimal degrees’ in "matter_solid_body_coordinate_system"

Condition: mandatory when "matter_solid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}

Longitude of the geographic location on the planetary body of the natural matter

Format: in E 'decimal degrees' (in the E direction only) in "matter_solid_body_coordinate_system"

Condition: mandatory when "matter_solid_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}

Altitude of the geographic location on the body of the natural matter
Format: in 'meter' in "matter_solid_body_coordinate_system"
Notes:

- from the body reference ellipsoid (planetographic coordinates)
- or from the reference sphere (planetocentric coordinates) (altitude 0)
- Any additional information or comments about the geolocation of this matter Ex: 'matter was collected within 100 m of this point', 'very approximate coordinates (+/- 0.1°)'...

Solid matter images

matter_solid_images	List $[$ L4]	$[\mathrm{O}]$				£: Pictures of the solid matter
matter_solid_image_filename	varchar(255)	U	MatSol	F	--	File name (with extension) of the picture of the solid matter
$[$ matter_image $]$	$[\mathrm{m}]$	L 4			Image formats: .png, .jpg, (.gif)	

matter_solid_image_caption [matter_image_caption]	varchar(255)	U	MatSol	F	--	Caption or comments on the picture of the solid matter
			$\mathrm{m}]$	L 4		Ex:
				Note: should include credits when necessary		

Solid matter preparation and component types

matter_solid_preparation [matter_preparation]	enum(text)	$\begin{gathered} \mathrm{S} 1 \\ {\left[!_\mathrm{m}\right]} \end{gathered}$	MatSol	F	Type of preparation of the solid matter Enum: \{raw, section, polished section, selected components, crushed, crushed and sieved, sieved fraction, extracted components, other method\} Definitions: - 'raw': extraterrestrial object (or piece) without chemical treatment nor selection of a particular component nor other type of preparation (cutting, polishing, ...) - 'section': raw rock (or grain) cut - 'polished section': raw rock (or grain) cut and polished by different ways - 'selected components': peculiar petrologic entity (chondrules, CAIs, metal grains, matrix grains, specific minerals...) selected mechanically without any chemical treatment - 'crushed': raw rock (or grain) crushed, without sieving - 'crushed and sieved': raw rock (or grain) crushed and separated by sieving - 'sieved fraction': size fraction of granular matter separated by sieving 'extracted components': meteoritic materials/phase extracted using a chemical or physical treatment (Insoluble Organic Matter, Soluble Organic Matter, ...) - 'other method': other method of preparation: describe in "matter_extraterrestrial_method".
matter_solid_method [matter method]	varchar(255)	SS2	MaiatefolF		Method of extraction of this (natural) mineral matter or synthesis of this solid matter

For 'igneous rock':

- 'carbonatite': contains more than 50% modal primary carbonate
- 'melilitic rock': contains more than 10% modal melilite
- 'kalsilitic rock': contains more than 10% modal kalsilite
- 'kimberlite': volatile-rich (dominantly CO_{2}), potassic, ultrabasic rock with common distinctive inequigranular texture.
- 'lamproite': presence of widely variable amounts (5-90 vol. \%) of $\mathrm{Al}_{2} \mathrm{O}_{3}$-poor titanian phlogopite, titanian tetraferriphlogopite, titanian potassic richterite, forsteritic olivine, $\mathrm{Al}_{2} \mathrm{O}_{3}$-poor $\mathrm{Na}_{2} \mathrm{O}$-poor diopside, Fe-rich leucite, Fe-rich sanidine
- 'leucitic rock': see QAPF diagram
- 'lamprophyre':
- 'plutonic rock (coarse-grained crystalline rock)': plutonic rock (IUGS)
- 'volcanic rock (fine-grained crystalline rock)': volcanic rock (IUGS)
- 'pyroclastic rock or sediment':
- 'tuffite':
- 'volcaniclastic sedimentary rock or sediment':

For 'metamorphic rock':

- sedimentary protolith,
- volcaniclastic protolith,
- igneous protolith,
- unknown protolith,
- brocken and reconstituted rock,
- metasomatic and hydrothermal rock

For 'sedimentary rock':

- siliciclastic sediment,
- carbonate sediment,
- phosphate-sediment or phosphorite,
- iron-sediment or ironstone,
- organic-rich sediment,
- non-carbonate salt,
- non-clastic siliceous sediment,
- miscellaneous oxide and hydroxide and silicate sediment,
- ...,
- hybrid sediment,
- sediment with volcaniclastic debris
- lunar basaltic regolith sediment
- lunar anorthositic regolith sediment
- asteroidal regolith

For 'superficial deposit':

- 'mass movement deposit':
- 'residual deposit':
- 'aeolian deposit':
- 'organic deposit':
- 'biological deposit':
- 'chemical deposit':
- 'alluvial deposit':
- 'lacustrine deposit':
- 'coastal deposit':
- 'marine deposit':
- 'proglacial deposit':
- 'glacigenic deposit':
- 'organic-rich cometary regolith':

For 'magmatic ice':

- 'sea ice': ice formed by solidification of salty sea water
- 'lake and river ice': ice formed by solidification of stagnant or flowing water. Includes 'aufeis' (sheet-like mass of layered ice that forms from successive flows of ground water during freezing temperatures.)
- 'ground ice': ice formed inside the ground. Inludes permafrost.
- 'icicle': spike of ice formed when water dripping or falling from an object freezes. Include ice stalactites
For 'sedimentary ice':
- 'snow': ice formed by water vapor condensation in the atmosphere and subsequent sedimentation
- 'atmospheric ice': ice formed by liquid water solidification in the atmosphere and subsequent sedimentation. Includes hail, sleet and
ice pellets.
- 'rime ice': ice formed by direct liquid water solidification on a surface
- 'frost': ice formed by direct water vapor condensation on a surface For 'metamorphic ice':
- 'mantle ice': ice constituting the mantle inside several planets and satellite
- 'glacier ice': ice from ice sheets, ice caps and glaciers formed by compression of snow and flowing
- 'firn ice': ice formed only by compression of snow

For 'other' component group:

- 'complex mix':
- 'other':
- 'unknown':

Note: for rocks the major mineral group(s) composing the rock can be also specified in addition to the rock group.

Note: classification defined by British Geological Survey (except planetary components): http://www.bgs.ac.uk/bgsrcs/
Ref: BGS Rock Classification Scheme, British Geological Survey Research Report, Volumes 1 to 4:

- igneous rocks (RR 99-01) M.R. Gillespie and M.T. Styles,
- metamorphic rocks (RR 99-02) S. Robertson,
- sedimentary rocks (RR 99-03) C.R. Hallsworth and R.W. O’B Knox,
- artificial (man-made) ground and natural superficial deposits (RR 99-04) A.A. McMillan and J.H. Powell.
=> see also IUGS ?
matter_solid_components_comme blob

U

MatSol F
[m]
[matter_components_comments]

Solid matter global density

matter_solid_compacity [layer/matter_compacity]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	no	Compacity of the solid matter (fraction of solid material volume per matter volume unit)
						Note: compacity $=(1-$ porosity $)$ Note: value of the raw matter before any preparation for sample
matter_solid_compacity_error [layer/matter_compacity_error]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	no	Absolute uncertainty on the compacity of the solid matter
matter_solid_density [layer/matter_density]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	$\mathrm{g} / \mathrm{cm} 3$	Density of the solid matter - stored in the database and provided to user in ' $\mathrm{g} / \mathrm{cm}^{3}$ ' unit
						Note: value for the raw matter before any preparation for sample
matter_solid_density_error [layer/matter_density_error]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	$\mathrm{g} / \mathrm{cm} 3$	Absolute uncertainty on the density of the solid matter - stored in the database and provided to user in ' $\mathrm{g} / \mathrm{cm}^{3}$ ' unit
Solid matter global texture						
matter_solid_shape [matter_shape]	$\operatorname{varchar(255)}$	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	--	Description of the macroscopic shape of the solid matter Notes:
						- mostly for single piece (compact or cemented/sintered granular textures) - write 'undefined (loose)’ for loose granular solids.
						Exemples: - thick slab, polished thin section, conchoidal fractured solid, ...
matter_solid_texture [layer/matter_texture]	enum(text)	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	--	Macroscopic texture of the solid matter (at scale above material grains)
						OpenEnum: \{muddy, earthy, pulverulent, loose fine grained, loose coarse grained, loose granular, sintered granular, cemented granular, mixed granular, compact, compact glassy, compact poor grained, compact fine grained, compact coarse grained, compact lamellar, compact fibrous, compact crystal, compact mixed, single grain, individual grains, aggregated grains, isolated

matter_solid_porosity_type [layer/matter_porosity_type]	enum(text)	S2 $\left[!_\mathrm{m}\right]$	Mat	F	--
	Type of porosity of the matter (at scale above material grains) OpenEnum: $\{$ particulate, porous, open pores, closed pores, without pores,				
		Definitions: voir "layer_porosity_type"			

Matter global grain size distribution and texture

matter_solid_grain_size_unit [sample/matter_grain_size_unit]	enum(text)	$\begin{aligned} & \text { U } \\ & \text { [£o_m } \\ &] \end{aligned}$	MatSol	F		Unit for the solid matter and material grain sizes (diameter) Enum: $\{\mathrm{nm}$, micron, $\mathrm{mm}, \mathrm{cm}\}$ Condition: compulsory when "matter_solid_grain_size_min" OR "matter_solid_grain_size_max" has a value Note DB: all grain sizes data will be stored in ' mm ' Note: used for "matter_solid_grain_size_min/_max" and "material_grain_size_min/_max"
matter_solid_grain_size_method [material/matter_grain_size_meth od]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatSol	F	--	Description of the grain size ($\mathrm{min} / \mathrm{max}$) definition, and of the method of determination of the grain size distribution Ex: 'sieving by 2 stainless steel sieves with 50 and $100 \mu \mathrm{~m}$ meshs', 'microscope measurement of section'
matter_solid_grain_sizes	List [L6]	[O]				£: Size distribution of the solid matter grains Note: Used when only a global grain size distribution of the solid matter is available, but not for each of its materials
matter_solid_grain_size_median [material/matter_grain_size_medi	float	S3	MatSol	F	var.	Median size (diameter) of solid matter grains

matter_solid_grain_size_width
[material/matter_grain_size_widt
h]
matter_solid_grain_size_min
matter_solid_grain_size_max
[material/matter_grain_size_max]
matter_solid_grain_size_fraction
[material/matter_grain_size_fracti
on]
matter_solid_grain_size_fraction_
error
[material/matter_grain_size_fracti
on_error]
[material/matter_grain_size_min]
matter_solid_grain_size_max
float
[material/matter_grain_size_max]
float [material/matter_grain_size_widt

float

Unit: in "matter_solid_grain_size_unit"

- converted in 'm' unit in the database but provided to user in "matter_solid_grain_size_unit"

Note: mostly used when only one median size is known for the matter grains

MatSol F var. Full w
grains

Unit: in "matter_solid_grain_size_unit"

- converted in 'm' unit in the database but provided to user in "matter_solid_grain_size_unit"
Note: mostly used when only one median size and its distribution is known for the matter grains

S3	MatSol
$[\mathrm{m}]$	L6

F \qquad ar. Smallest size (diameter) of solid matter grains of this size range
Unit: in "matter_solid_grain_size_unit"

- converted in ' m ' unit in the database but provided to user in "matter_solid_grain_size_unit"
S3
[m]
MatSol
L6

F
var. Largest size (diameter) of solid matter grains of this size range
Unit: in "matter_solid_grain_size_unit"

- converted in 'm' unit in the database but provided to user in "matter_solid_grain_size_unit"
no Mass fraction of solid matter grains comprised between size min and size max (diameter)

Note: value between 0 and 1
MatSol F no

Absolute uncertainty on the mass fraction of solid matter grains comprised between size min and size max (diameter)

Solid matter composition

Note: Whatever are the materials that constitute the solid matter they will be always defined from the "material" level (link(s) with
"matter_solid_material_index") through their "constituents" and "species", exactly as for sample. or through other matter(s). All the structure is taken from sample and only their type of material mixing is repeated here.

```matter_solid_materials_mixing [+] [matter_materials_mixing]```	enum(text)	$\begin{gathered} \mathrm{S} 2 \\ {[!\mathrm{m}]} \end{gathered}$	MatSol	F	--	How the different materials are mixed in the solid matter   Enum: \{single material, homogeneous mixing, heterogeneous mixing, grains in fluid, fluid in porous solid, spatial distribution...\}
$\cdots$						Definitions: cf. "layer_materials_mixing"
$\begin{aligned} & \text { matter_solid_materials_number } \\ & {[+][-\mathrm{xml}]} \\ & \text { [matter_materials_number] } \end{aligned}$	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{U} \\ {\left[!_\mathrm{c}\right]} \end{gathered}$	MatSol	F	no	Number of different materials mixed in the solid matter   $\rightarrow$ calculated from " matter_solid_materials" list
matter_solid_matters	List [L8a]	[!]				£: matters constituting this solid matter
```matter_solid_matter_index [*][- xml] [matter_matter_index]```	$\operatorname{int}(10)$   [Internal link]	$\begin{gathered} \mathrm{B} \\ {[!, \mathrm{g}]} \end{gathered}$	$\begin{gathered} \text { MatSol } \\ \text { MatXxx } \\ \text { L8a } \end{gathered}$	F	--	ID of the matter constituting the 'solid matter'   Note xml: in practice the description of the material(s) is done directly under "matter_solid" without providing the ID link

> Same structure as "sample"

£: materials constituting this solid matter
-- ID of the material constituting the 'solid matter'
Note: The different solids (fundamental phases or custom constituents) composing the solid matter are described inside this materials structure at the constituent level.

Note: For solid solutions or n-hydrated minerals
("mineral_classification_level" = \{variable mineral, unique mineral\} or "mineral_hydration_series" = 'true') the modifications of the mineral solid solution parameters (VM) (composition and properties) are described at the species level
Notes:

- Case of 'glasses': amorphised forms of a (or a mixture of) solid phases.
They are defined as amorphous solid constituents that refer to the equivalent crystalline solid/mineral phase(s), with modification of
"solid/mineral_crystal_system" = 'amorphous',
"solid/mineral_crystal_class/_symbol/_spacegroup" = 'N/A', and modification of some variables parameters (VS/VM) (composition and properties)
- Case of 'clays/silts' (complex mix and disordered): mineral matters or sedimentary rocks made of one or more clay minerals (+ possible impurities) filled with interlayer water.
They are described as a solid matter with mineral phases defined inside the matter structure at the constituent level and water defined as another constituent inserted inside layers of each mineral phase ("constituent_phase_type" = 'interlayer' +
"constituent_sorption_constituent_uid"). If there are several clay mineral phases intimately mixed, they should be defined inside one multi-species constituent.

Note $x m l$: in practice the description of the material(s) is done directly under "matter_solid" without providing the ID link

matter_solid_comments [matter_comments]	blob	U MatSol $[\mathrm{m}]$	F	Additional information on the solid matter (minor impurities in substitution or in crystal defects, \ldots) or comments on the composition and formula of the actual solid phases composing the solid matter

Precursor materials

Condition: description of precursor materials is optional but strongly recommended.

Note: "material_is_precursor" = 'true'
Note: refer to the same table as "materials" in the sample structure but without the "material arrangement and abundance" bloc
Note: Precursor materials which are not matter(s) are defined here through the "material(s)/constituent(s)/specie(s)" structure. They are used in "processing" through links with their "matter_precursor_material_uid". Precursors which are "matters" (gas bottle, liquid matters, ...) are directly linked in "processing". Their mixing and processing step(s) up to the formation of the final matter are described in "matter_processings".
matter_solid_precursor_materials List [L9] [O] £: Precursor materials used to create the solid matter
[matter_precursor_materials]
[matter_precursor_materials]

matter_solid_precursor_material_i int(11)	B MatSol	F	--	ID of the different precursor materials used to create the 'solid matter'
ndex [*][-xml] [Internal link] [matter precursor material index	[O!!_g PreMater			Note: determined automatically during import
[matter_precursor_mater] L9			Note: a precursor material is a "simple material" described through the material/constituent(s) and specie(s) structure. When the precursor material is
Same structure as "materails" but without the "material arrangement and abundance" bloc				a "matter" then no need to describe it here because it can be linked directly as a matter (with its "matter_uid") in the processings with "matter_processing_precursor_matter_uid"
				Note $x \mathrm{ml}$: in practice the description of the precursor material(s) is done directly under the "matter_solid" structure without providing the ID link

Solid matter processings: step

[O]
Condition: only when there is processing of materials or parent matter/sample
Note: refer to the same table as "processings" in the sample structure but with a few restrictions (no sample layer, ...) and with "Layer/Sample" replaced by "Matter".

Note: They can be processings of materials (atoms, molecules, solids, minerals, ...) to form a synthetic solid matter, or processing of a natural mineral phase, or processing of a matter to form another solid matter.

Note: the new matter should be available for future experiments (at least two). Otherwise (processings for a single experiment) these processings will be described directly in the sample description using the parent matter with no new matter created.

Note: the physical units are used only as text in "processing_process" and are not specified in "matters" (contrary to "sample") but it is requested to express all them in an homogeneous way by choosing ONE of each of the following units:

- Temperature: $\left\{\mathrm{K},{ }^{\circ} \mathrm{C}\right\}$
- Pressure: $\{\mathrm{Pa}, \mathrm{hPa}$, mbar, bar, atm, torr $\}$
- Time: $\{\mathrm{s}, \mathrm{min}, \mathrm{h}, \mathrm{d}\}$
- Energy: $\{\mathrm{J}, \mathrm{kJ}, \mathrm{eV}, \mathrm{keV}, \mathrm{MeV}, \mathrm{A}, \mathrm{nm}$, micron, cm-1 $\}$
matter_solid_processings
matter_solid_processing_index
$[* \S][-\mathrm{xml}]$

List [L10]	$[\mathrm{O}]$		£: Processings of the matter.	
int(11)	B	MatSol F	--	ID of the processing of the matter.
[Internal Links]	$[\mathrm{O}!!$ g	Process		
]	L10		

L10

> Use the same structure as for "Sample processings" with only a few changes (noted in "Sample processings")

- Not used for matters: "processings_product_sample_uid", "processings_product_sample_uid", "processings_chronology"
- Used only for matters: processings_product_matter_uid

Solid matter documentation and references

matter_solid_documentations	List [L11]	[O]				£: Documentations about the solid matter
matter_solid_documentation_nam e [matter_documentation_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{aligned} & \text { MatSol } \\ & \text { L11 } \end{aligned}$	F	--	Name of the documentation describing the solid matter Note: this name will appear as the documentation title in the database Ex: 'Optical properties of Jacobsite'
matter_solid_documentation_filen ame [matter_documentation_filename]	varchar(255)	$\begin{gathered} \mathrm{U} \\ \text { [!o_m] } \end{gathered}$	$\begin{gathered} \text { MatSol } \\ \text { L11 } \end{gathered}$	F	--	File name (with extension) of the documentation describing the solid matter Condition: Mandatory when "matter_solid_documentation_name" $\neq \Phi$ File formats: .pdf, .png, .jpg, .gif, .tiff, .txt, ... Note: this file will be imported in the database
matter_solid_links	List [L12]	[O]				£: Web pages describing the solid matter and its properties
matter_solid_link_name [matter_link_name]	varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{gathered} \text { MatSol } \\ \text { L12 } \end{gathered}$	F	--	Name of the web page describing the solid matter and its properties. Ex: ‘Clay Mineral Society', ...
matter_solid_link_url [matter_link_url]	CS-varchar(255)	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{gathered} \text { MatSol } \\ \text { L12 } \end{gathered}$	F	--	URL address of the web page describing the solid matter and its properties Notes: - useful when the solid matter comes from a mineral database, a stable commercial supplier, ... - can also link to various types of measurements made on this matter - can link to a publication by giving its url address, preferably through its DOI. Ex: https://doi.org/10.1002/ejic. 200700067
matter_solid_publications	List [L13]	[O]				£: Publications describing the solid matter and its properties.

matter_solid_publication_uid [*] varchar(255) [matter_publication_uid]

S2
[m]

MatSol F

Publi
L13
-- \quad Link to the existing UID of the publication describing the solid matter and its properties.

Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter', at least

8.4 Carbonaceous Matters (Natural and synthetic) Table

Root of the table: matter_carbonaceous

Data type: 'Matter’
Definition: 'carbonaceous matter' is any complex natural (from Earth or planetary bodies) or synthetic matter made of organic species or of a carbonaceous macromolecular structure , excluding extraterrestrial carbonaceous materials from meteorite, micrometeorites, IDPs or cosmic dust (asteroidal and cometary dust, ...).
Notes:

- Carbonaceous mineral matters (carbon, coal, anthracite, lignite, ...) will be preferentiably entrered as "carbonaceous matters" as the KW are more adapted.
- Organic bio-minerals, such as amber, will be also preferentiably entrered as "carbonaceous matters"
- Natural terrestrial organic fluids, such as petroleum and derivatives, will be also preferentiably entrered as "carbonaceous matters"
- Extraterrestrial carbonaceous matters extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any other carbonaceous matters collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "carbonaceous matters"
Key-word Type \quad Level \quad Table $\underset{p}{\text { Ex }}$ Unit Description

Carbonaceous matter import

```matter_carbonaceous_import_mo enum(text) de [matter_import_mode]```	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{m}\right]} \end{gathered}$	MatCarb F	--	Mode of import of the "carbonaceous matter" data   Enum: \{first import, ignore, draft, no change, correction\}   Definitions: see "sample_import_mode"
```matter_carbonaceous_xml_filena varchar(255) me [-xml] [virtual KW] [matter_xml_filename]```	$\begin{gathered} \mathrm{P} \\ {\left[!!_\mathrm{vc}\right]} \end{gathered}$	$\begin{gathered} \text { MatCarb (V } \\ \text { ) } \end{gathered}$	--	Name of the storage copy of the xml import file of the "matter_carbonaceous" metadata   determined automatically during import (from "matter_carbonaceous_uid" ?)
				Note: this file is stored in order to be able to retrieve it when it is necessary to

Carbonaceous matter indexes

matter_carbonaceous_index [**][-xml] [matter_index]	$\operatorname{int}(10)$	$\begin{gathered} \mathrm{B} \\ {\left[!!_\mathrm{g}\right]} \end{gathered}$	MatCarb F		-	Automatic random but unique number (ID) given to new carbonaceous matter
matter_carbonaceous_uid [**] [matter_uid]	varchar(255)	$\begin{gathered} \mathrm{P} / \mathrm{U} \\ {[!!\mathrm{m}]} \end{gathered}$	MatCarb	F	--	Unique identifier code (UID) given to the carbonaceous matter table (to be created)

Nomenclature: Create this UID with 'MATCARB_' very accurately in order to be simple and unique

- It should be of the style
'MATCARB_CarbonaceousMatter_AB_yyyymmdd' where
'CarbonaceousMatter' is the matter name (part of matter_carbonaceous_name) or the main carbonaceous material/constituent name, 'AB' are the initials of the person preparing the import, or of the experimentalist preparing the matter
(experimentalist_acronym of matter_carbonaceous_experimentalist),
'yyyymmdd' is the full date of creation of the matter (from matter_carbonaceous_date) or the date of the day.
Note: use lowercases for 'CarbonaceousMatter'
Note: if several matters are created the same day with the same carbonaceous material then add some distinguishing property after 'CarbonaceousMatter'. Ex:
- 'MATCARB_tholins-SA98 EQ 20131003'
- 'MATCARB_kerogen_PB_20130828'

Note: For common 'reference' matters and for matters from external laboratories (not managed by a database), it should be 'DB_SSHADE'

Carbonaceous matter experimentalist

| matter_carbonaceous_experiment | List [L1] | [O] | | £: experimentalists who prepared the matter |
| :--- | :--- | :--- | :--- | :--- | :--- |
| alists | | | | |

Carbonaceous matter family and description

Ex: ‘sulfurous planktonic kerogen (II) - Liptinite', 'Titan tholins SA98-2\% CH4'

Carbonaceous matter origin

matter_carbonaceous_level [matter_level]	enum(text)	$\begin{aligned} & \mathrm{SS} 2 \\ & {\left[!_\mathrm{m}\right]} \end{aligned}$	Midefaibl F -- --		Level of the carbonaceous matter
					Enum: \{from sample return mission, from international repository, from laboratory repository, from commercial supplier, local matter, other\}
					Definitions: cf. "matter_solid_level"
matter_carbonaceous_origins	List [L2]	[!!]			£: Origins of the carbonaceous matter

matter_carbonaceous_origin [matter_origin]	enum(text)	$\begin{aligned} & \mathrm{S} \mathrm{~S} \\ & {[!!\mathrm{m}]} \end{aligned}$	Matayaib	F -- --	Origin of the carbonaceous matter
			L2		Enum: \{natural terrestrial, extrat
			L2		al terrestria, extrat

Definitions: cf. "matter_solid_origin"
Notes:

- a carbonaceous matter should be predominantly synthetic (laboratory or commercial),
- it may also be mixed with some natural material as long as this material is not the main focus of the matter (e.g. darkening material, dilution/matrix material, ...)
- it may also be simulated (numerical simulation)

Carbonaceous matter provider

Natural carbonaceous matter: planetary body

matter_carbonaceous_body_objec varchar(255) t_uid [*]
[matter_body_object_uid] [*] [-xml]
[matter_body_uid]
matter_carbonaceous_body_uid varchar(255) S $1 /$ S1s MAh\&CaFb F -- -- Link to the existing UID of the planetary body from which the natural matter
SSI/S1s MARACAFB F -- -- Link to the existing UID of the planetary object from which the natural matter [!!o_m] Object originates

Condition: absolute mandatory when "matter_carbonaceous_origin" = \{extraterrestrial, planetary \}
Notes: see "matter_solid_body_object_uid" originates
Condition: absolute mandatory when "matter_carbonaceous_origin"= \{natural terrestrial, extraterrestrial, planetary\}
\rightarrow Calculated:
\Rightarrow = 'BODY_planet_Earth' when "matter_carbonaceous_origin" = \{natural terrestrial, extraterrestrial
\Rightarrow = "matter_carbonaceous_body_object.planetary_recovery_body_uid" when "matter_carbonaceous_origin" = \{planetary $\}$

Note:
added in order to be able to set "body" automatically to 'Earth' for
'natural terrestrial' matters who did not have a mandatory 'planetary object’)

- not used for laboratory, commercial and simulated matters

Natural carbonaceous matter: geolocation

matter_carbonaceous_geolocation varchar(255) _place
[matter_geolocation_place]

SS1b Mhlatalif F -- -- Geologic source and geographic location on the planetary body of the natural [!o_m] matter (geologic type, place and area names)
terrestrial, extraterrestrial $\}$
Ex:

matter_carbonaceous_geolocation _region	varchar(255)	$\begin{gathered} \mathrm{S} 1 \mathrm{~b} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatCarb	F	--	Region, state, province or county (administrative location) on Earth of the natural matter
[matter_geolocation_region]						Condition: mandatory and only when "matter_carbonaceous_body_uid" = 'BODY_planet_Earth'
```matter_carbonaceous_geolocation _country_code [matter_geolocation_country_cod e]```	enum(text)	$\begin{gathered} \mathrm{S} 1 \mathrm{~b} \\ {\left[!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatCarb	F	--	2-digit code of the country of the geographic location on Earth of the natural matter
						Enum: $\{\mathrm{CH}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}$
						Label (code): see "laboratory_address_country_code"
						Condition: mandatory and only when "matter_carbonaceous_body_uid" = ‘BODY_planet_Earth'
						Definitions: see "laboratory_address_country_code"
```matter_carbonaceous_geolocation _type [matter_geolocation_type]```	enum(text)	$\begin{gathered} \mathrm{U} \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatCarb	F	--	Type of geographic location the natural matter
						Enum: \{point, line, box, polygon
						Condition: mandatory when "matter_carbonaceous_body.family" = \{planet, dwarf planet, satellite \}
						Condition: absolute mandatory when "matter_carbonaceous_geolocation_coordinate_latitude" $\neq \varnothing$
						Definitions: see "experiment_geolocation_type"
matter_carbonaceous_geolocatio n_coordinates [matter_geolocation_coordinates]	List [L3]	[!O]				£: Geolocation on the planetary body of the natural matter
						Condition: mandatory when "matter_carbonaceous_body.family" = \{planet,

matter_carbonaceous_geolocatio
[matter geolocation_coordinates]

					dwarf planet, satellite \}
					Condition: absolute mandatory when "matter_carbonaceous_geolocation_type" $\neq \varnothing$
					Conditions: on the number of long/lat couple: see "experiment_geolocation_coordinates"
					Note $D B$: will be stored in shapefile format?
matter_carbonaceous_geolocation _coordinate_latitude [matter_geolocation_coordinate_1 atitude]	float	$\begin{gathered} \text { S3 } \\ \text { [!o_m] } \end{gathered}$	MatCarb L3	$F \operatorname{deg}$	Latitude of the geographic location on the planetary body of the natural matter Format: in N 'decimal degrees' in "matter_carbonaceous_body_coordinate_system"
					Condition: mandatory when "matter_carbonaceous_body.family" = \{planet, dwarf planet, satellite \}
matter_carbonaceous_geolocation _coordinate_longitude	float	$\begin{gathered} \text { S3 } \\ \text { [!o_m] } \end{gathered}$	MatCarb L3		Longitude of the geographic location on the planetary body of the natural matter
[matter_geolocation_coordinate__ ongitude]					Format: in E 'decimal degrees' (in the E direction only) in "matter_carbonaceous_body_coordinate_system"
					Condition: mandatory when "matter_carbonaceous_body.family" $=$ \{planet, dwarf planet, satellite \}
matter_carbonaceous_geolocation	float	S3	MatCarb	F m	Altitude of the geographic location on the planetary body of the natural matter
[matter geolocation coordinate a		[m]	L3		Format: in 'meter' in "matter_carbonaceous_body_coordinate_system"
					Notes: - from the body reference ellipsoid (planetographic coordinates) - or from the reference sphere (planetocentric coordinates) (altitude 0)
matter_carbonaceous_geolocation _comments [matter_geolocation_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	Any additional information or comments about the geolocation of this matter Ex: 'matter was collected within 100 m of this point', 'very approximate coordinates ($+/-0.1^{\circ}$) \ldots

dwarf planet, satellite $\}$
Condition: absolute mandatory when
"matter_carbonaceous_geolocation_type" $\neq \varnothing$
Conditions: on the number of long/lat couple: see
"experiment_geolocation_coordinates"
Note $D B$: will be stored in shapefile format?
Latitude of the geographic location on the planetary body of the natural matter
Format: in N 'decimal degrees' in
"matter carbonaceous body coordinate system"
Condition: mandatory when "matter_carbonaceous_body.family" = \{planet

Longitude of the geographic location on the planetary body of the natural matter

Format: in E 'decimal degrees' (in the E direction only) in "matter_carbonaceous_body_coordinate_system"

Condition: mandatory when "matter_carbonaceous_body.family" = \{planet, dwarf planet, satellite \}

Altitude of the geographic location on the planetary body of the natural matter Format: in 'meter' in "matter_carbonaceous_body_coordinate_system" otes:

- from the body reference ellipsoid (planetographic coordinates)
- or from the reference sphere (planetocentric coordinates) (altitude 0)

Carbonaceous matter images

Carbonaceous matter preparation and component types

including microorganisms such as yeasts and molds, that form the kingdom of Fungi.

- 'protist': large and diverse group of eukaryotic microorganisms, which belong to the kingdom Protista.
- 'bacteria': prokaryotic microorganisms.

For 'soil organic compound'

- 'soil organic matter': non-living components which are a heterogeneous mixture composed largely of products resulting from microbal and chemical transformations of organic debris. Include unaltered materials, transformed products (humus: humic and nonhumic substances, pyrogenic carbon, ...).
For 'sedimentary organic':
- 'kerogen': Mixture of organic chemical compounds (sedimentary carbonaceous matter) (sub-types: I, II, III)
- 'sapropelic kerogen (I)':
- 'planktonic kerogen (II)': (or liptinite)
- 'sulphurous kerogen (II)':
- 'humic kerogen (III)': (or votrinite)
- 'kerogen residue (IV)': (or inertinite)
- 'coal': combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins (sedimentary carbonaceous matter). Coal is composed primarily of carbon along with variable quantities of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen
- 'peat': (or turf) accumulation of partially decayed vegetation (sub-types: fibric, hemic, sapric)
- 'lignite': (or brown coal) lowest rank of coal ($\mathrm{C}=25-35 \%$)
- 'sub-bituminous coal': whose properties range from those of lignite to those of bituminous coal
- 'bituminous coal': (or black coal) dense sedimentary rock, usually black, but sometimes dark brown. Relatively soft coal containing a tarlike substance called bitumen.
- 'steam coal': grade between bituminous coal and anthracite
- 'anthracite': hard, compact, glossy black coal ($\mathrm{C}=92-98 \%$)
- 'graphite': highest rank of coal
- 'bitumen': very heavy petroleum which are viscous or solid. Natural bitumens come from degradated kerogens that migrated in a porous rock-reservoir. They fall into the following classes: asphalt, asphaltite, maltha, kerite and anthraxolite. There are also synthetic bitumen which is a by-product of petroleum distillation.
- 'petroleum': naturally occurring flammable liquid consisting of a complex mixture of hydrocarbons of various molecular weights and other liquid organic compounds, that are found in geologic formations beneath the Earth's surface (sedimentary carbonaceous matter) (C = 8387\%)
- 'crude oil': unrefined petroleum
- 'paraffins': (or alkanes) white or colourless soft solid ($\mathrm{C}=20-$ 40), liquid kerosene ($\mathrm{C}=6-16$)
- 'naphthenes': (or cycloalkanes) types of alkanes that have one or more rings of carbon atoms in the chemical structure of their molecules
- 'aromatics':
- 'asphalt': (or bitumen) sticky, black and highly viscous liquid or semi-solid form of petroleum
- 'natural gas': naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly including varying amounts of other hydrocarbons, carbon dioxide, nitrogen and hydrogen sulfide (sedimentary carbonaceous matter)
- 'natural gas': low molecular weight components of gas contained in crude oil
- 'natural gas liquid': higher molecular weight components components of gas contained in crude oil
- 'town gas': gaseous fuel made by the destructive distillation of coal and contains a variety of calorific gases including hydrogen, carbon monoxide, methane and other volatile hydrocarbons together with small quantities of non-calorific gases such as carbon dioxide and nitrogen
- 'bio gas': produced by the anaerobic decay of non-fossil organic matter (biomass)
- 'shale gas':
- 'methane clathrate': naturally occurring clathrate hydrate from seabed, bottom of lake or permafrost consisting primarily of methane and commonly including varying amounts of other hydrocarbons, carbon dioxide, nitrogen and hydrogen sulphide (sedimentary organic matter),
For 'organic mineral':
- 'organic acid salt': salts of organic acids: oxalates, mellitates, citrates, cyanates, and acetates (50.01, 50.02 and 50.04 Dana types)
- 'hydrocarbon mineral': with formula CxHy (50.03 and 50.00 Dana types)
For 'natural abiotic carbonaceous matter':
- 'natural abiotic carbonaceous matter': Def ?
- meteorite organic: organic extracts from meteorites (with a "matter_meteorite" as parent matter)
- solar system dust organic: organic extracts from solar system dust: IDPs, cometary dust, micrometeorites. .
For 'synthesized carbonaceous matter'
- 'photolysis product': carbonaceous matter produced by photolysis of simpler molecules
- 'radiolysis product': carbonaceous matter produced by radiolysis of simpler molecules
- 'plasma product': carbonaceous matter produced in a plama of simpler molecules
- 'plasma deposited product': carbonaceous matter produced by plama deposition on a surface
- 'heating process product': carbonaceous matter resulting from heating processes (pyrolysis)

Note: Tholins are heteropolymer molecules formed by irradiation
(UV, electrons, ...) of simple organic compounds such as methane or ethane. So they are either 'photolysis product', 'radiolysis
product', 'plasma product' or 'plasma deposited product'.
For 'pure carbon allotrope':

- 'diamond': metastable allotrope of carbon, where the carbon atoms are arranged in a variation of the face-centered cubic crystal structure.
- 'graphite': allotrope of carbon, where the carbon atoms are arranged in
matter_carbonaceous_component blob
s_comments
[matter_components_comments]
a layered planar structure.
- 'fullerene': molecules of varying sizes composed entirely of carbon, which take the form of a hollow sphere, ellipsoid, or tube and many other shapes.
- 'amorphous or disordered carbon': carbon that does not have any crystalline structure
- 'other carbon allotrope': carbon allotrope not listed above,
ex: Lonsdaleite, Chaoite, ...
cf. http://en.wikipedia.org/wiki/Allotropes_of_carbon
For 'molecular organics'
- 'molecular organic': simple condensed (solid or liquid) organic molecule or molecular mixture.
Others:
- 'mixed organics': more than one of the above organics mixed in the carbonaceous matter (put information on groups in
"matter_carbonaceous_comments")
- 'other': any other organic matter, either natural or synthetic (put information in "matter_carbonaceous_comments")
- 'unknown': unknown group of carbonaceous matter

```
http://en.wikipedia.org/wiki/Organic_matter
http://en.wikipedia.org/wiki/Soil_organic_matter
http://en.wikipedia.org/wiki/Kerogen
http://en.wikipedia.org/wiki/Coal
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Allotropes_of_carbon
http://en.wikipedia.org/wiki/Tholin
```

U MatCarb F
[m]

F -- Additional comments on the component(s) of the carbonaceous matter

Carbonaceous matter global density

matter_carbonaceous_compacity float [layer/matter_compacity]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	no	Compacity of the carbonaceous matter (fraction of solid material volume per matter volume unit)
					Note: compacity = (1 - porosity $)$ Note: value of the raw matter before any preparation for sample
matter_carbonaceous_compacity_float error [layer/matter_compacity_error]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	no	Absolute uncertainty on the compacity of the carbonaceous matter
matter_carbonaceous_density float [layer/matter_density]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	$\mathrm{g} / \mathrm{cm} 3$	Density of the carbonaceous matter - stored in the database and provided to user in ${ }^{\mathrm{g}} \mathrm{g} / \mathrm{cm}^{3 \text { 3 }}$, unit Note: value of the raw matter before any preparation for sample
matter_carbonaceous_density_err float or [layer/matter_density_error]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	$\mathrm{g} / \mathrm{cm} 3$	Absolute uncertainty on the density of the carbonaceous matter - stored in the database and provided to user in ' $\mathrm{g} / \mathrm{cm}^{3}$ ' unit
Carbonaceous matter global texture					
matter_carbonaceous_shape varchar(255) [matter_shape]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Description of the macroscopic shape of the carbonaceous matter, mostly for sedimentary organic rocks (compact or cemented/sintered granular textures)
					Note: for loose granular carbonaceous matters: 'undefined (loose)'.
					Exemples: - For naturally occurring carbonaceous matters: aggregates, dendritic, ... - For sedimentary rock: massive, foliated, lamellar, mossy, nodular, ... - For (semi-)prepared sedimentary rocks: thick slab, polished thin section, ...
matter_carbonaceous_texture enum(text) [layer/matter_texture]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Macroscopic texture of the carbonaceous matter (at scale above material grains)
					OpenEnum: \{muddy, earthy, pulverulent, loose fine grained, loose coarse grained, loose granular, sintered granular, cemented granular, mixed granular,

Matter global grain size distribution and texture

matter_carbonaceous_grain_size_	enum(text)	U	MatCarb F	--	Unit for the carbonaceous matter and material grain sizes (diameter)
unit [sample/matter grain size unit]		[£o_m]			Enum: $\{\mathrm{nm}$, micron, mm, cm $\}$
					Condition: compulsory when "matter_carbonaceous_grain_size_min" OR "matter_carbonaceous_grain_size_max" has a value
					Note DB: all grain sizes data will be stored in 'mm'
					Note: used for "matter_carbonaceous_grain_size_min/_max" and "material_grain_size_min/_max"

Note: the other units are only used in formation and processing conditions ("matter_carbonaceous_material_processing_xxx") as text. But it is requested to expres all these units in an homogeneous way by choosing one of each of the following units:

- Temperature: $\left\{\mathrm{K},{ }^{\circ} \mathrm{C}\right\}$
- Pressure: \{Pa, hPa, mbar, bar, atm, torr $\}$
- Time: $\{\mathrm{s}, \min , \mathrm{h}, \mathrm{d}\}$
- Energy: $\{\mathrm{J}, \mathrm{kJ}, \mathrm{eV}, \mathrm{keV}, \mathrm{MeV}$, A, nm, micron, cm-1 \}

matter_carbonaceous_grain_size_ blob
method

SSDM Data Model

matter_carbonaceous_grain_size_fra float ction [material/matter grain size fraction	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarbL6		no	Mass fraction of carbonaceous matter grains comprised between size min and size max (diameter)
[material/matter_grain_size_fraction					Note: value between 0 and 1
```matter_carbonaceous_grain_size_ float fraction_error [material/matter_grain_size_fracti on_error]```	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb   L6	F	no	Absolute uncertainty on the mass fraction of carbonaceous matter grains comprised between size min and size max (diameter)
```matter_carbonaceous_grain_size_ enum(text) shape [material/matter_grain_size_shap e]```	$\begin{aligned} & \mathrm{S} 2 \\ & {[\mathrm{~m}]} \end{aligned}$	MatCarb   L6	F	--	Dominant shape of the carbonaceous matter grains (granular matter) or crystals (compact matter) of this size range   Enum: \{amorphous, irregular, equant, reniform, globular, spherical, flakes, platy, tabular, lathlike, columnar, acicular, capillary, cubic, cylindrical, hexagonal, octahedral, prismatic, pyramidal, rhombohedral, nuggets, botryoidal, dendritic, spheres aggregate, aggregate, fluid, other, unknown\} Definitions:   - see "matter_solid_grain_size_shape"
matter_carbonaceous_grain_size_ blob distribution [material/matter_grain_size_distri bution]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Description and parameters of the size distribution of the matter grains Note: see "material_grain_size_distribution"
matter_carbonaceous_grain_textu openum(text) re [material/matter_grain_texture]	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Description of the major grain texture of the carbonaceous matter OpenEnum: \{clay-like, silt-like, compact, compact with defects, compact with bubbles, compact porous, compact microporous, lamellar, fibrous, compact mixed, complex, other, unknown, ...\} Definitions: - see "matter_solid_grain_texture"
matter_carbonaceous_grain_com float pacity [material/matter_grain_compacity	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	no	Compacity of the grains of the carbonaceous matter (fraction of solid volume per grain volume unit) Note: compacity = (1-porosity $)$

]
matter_carbonaceous_grain_com float pacity_error
[material/matter_grain_compacity
_error]
matter_carbonaceous_grain_densi float ty
[material/matter_grain_density]
matter_carbonaceous_grain_densi float ty_error
[material/matter_grain_density_er ror]
matter_carbonaceous_texture_co mments
[material/matter_texture_commen ts]

U MatCarb F no Absolute uncertainty on the compacity of the grains of the carbonaceous [m]

U MatCarb F g/cm ${ }^{3}$ Mean bulk density of the grains of the carbonaceous matter

Carbonaceous matter global composition

matter_carbonaceous_atoms	List [L7]	[O]				$£:$ Global elemental (atomic) composition of the carbonaceous matter.
matter_carbonaceous_atom_uid [*] [material/matter_atom_uid]	varchar(255)	$\begin{gathered} \mathrm{S} 1 \mathrm{i} \\ {\left[!!\mathrm{o} _\mathrm{m}\right]} \end{gathered}$	MatCarb Atom	F	--	Link to the existing UID of the atom (natural or isotopic atomic species) composing the carbonaceous matter
			L7			Condition: absolute mandatory when "matter_carbonaceous_atom_mole_fraction" or "matter_carbonaceous_atom_mole_fraction" $\neq \emptyset$
						Note: it is mostly ' ${ }^{\text {', }}$ ' H ', ' O ', ' N ' and ' S ', but also can be any other atom.

matter_carbonaceous_atom_mole _fraction [+]	float	$\begin{gathered} \mathrm{U} \\ {[\mathrm{mc}]} \end{gathered}$	$\begin{aligned} & \text { MatCarb } \\ & \text { L7 } \end{aligned}$		no	Mole fraction of each type of atom (natural or isotopic atomic species) composing the carbonaceous matter
[material/matter_atom_mole_fract ion]						Notes: - value between 0 and 1 - For natural atoms it is the total fraction for this chemical element (no specific isotope).
matter_carbonaceous_atom_mass _fraction [material/matter_atom_mass_fract ion]	float	$\begin{gathered} \mathrm{U} \\ {\left[\mathrm{~m} _\mathrm{co}\right]} \end{gathered}$	MatCarb L7	F	-	Mass fraction of each type of atom (natural or isotopic atomic species) composing the carbonaceous matter Notes: - value between 0 and 1 - for natural atoms it is the total fraction for this chemical element (no specific isotope).
matter_carbonaceous_H_C_ratio [matter_H_C_ratio]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[\mathrm{~m} _\mathrm{co}\right]} \end{gathered}$	MatCarb	F	--	Elemental H / C ratio of the carbonaceous matter Note: used in Van Krevelen maturity diagram (H/C versus O/C) http://en.wikipedia.org/wiki/Van_Krevelen_diagram
matter_carbonaceous_O_C_ratio [matter_O_C_ratio]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[\mathrm{~m} _\mathrm{co}\right]} \end{gathered}$	MatCarb	F	--	Elemental O/C ratio of the carbonaceous matter Note: used in Van Krevelen maturity diagram (H/C versus O/C)
matter_carbonaceous_N_C_ratio [matter_N_C_ratio]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[\mathrm{~m} _\mathrm{co}\right]} \end{gathered}$	MatCarb	F	--	Elemental N/C ratio of the carbonaceous matter
matter_carbonaceous_S_C_ratio [matter_S_C_ratio]	float	$\begin{gathered} \mathrm{S} 3 \\ {\left[\mathrm{~m} _\mathrm{co}\right]} \end{gathered}$	MatCarb	F	--	Elemental S/C ratio of the carbonaceous matter
```matter_carbonaceous_sp2_sp3_ra tio [matter_sp2_sp3_ratio]```	float	$\begin{gathered} \text { S3 } \\ {[\mathrm{m}]} \end{gathered}$	MatCarb	F	--	$\mathrm{sp} 2 / \mathrm{sp} 3$ ratio of the carbon of the carbonaceous matter Definition:


matter_carbonaceous_gap_Tauc [matter_gap_Tauc]	float	$\begin{gathered} \mathrm{S} 3 \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Tauc Gap of the carbonaceous matter   Definition: the optical band gap refers to the energy difference (in electron volts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors.   http://en.wikipedia.org/wiki/Tauc_plot
matter_carbonaceous_gap_E04 [matter_gap_E04]	float	$\begin{gathered} \mathrm{S} 3 \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	eV	Band gap E04 of the carbonaceous matter   Definition: the band gap E04 is the energy at which the absorption coefficient reaches $10^{4} \mathrm{~cm}^{-1}$
matter_carbonaceous_compositio n_comments   [matter_composition_comments]	blob	$\begin{gathered} \mathrm{U} \\ {[\mathrm{~m}]} \end{gathered}$	MatCarb	F	--	Any additional information or comments on the composition of the carbonaceous matter   Ex: sum of atomic fractions, vitrinite reflectance VR (in oil: \%Ro) of coal carbonaceous matter, ...   Note: also additional information on impurities not measured

## Carbonaceous matter composition

Note: Whatever are the materials that constitute the carbonaceous matter they will be always defined from the "material" level (link(s) with "matter_carbonaceous_material_index") through their "constituents" and "species", or through other matter(s). Only their type of mixing is described here.

matter_carbonaceous_materials_ enum(text)	S2	MatCarb	F	--
mixing $[+]$	$\left[!_\mathrm{m}\right]$	How the different materials are mixed in the carbonaceous matter		
		Enum: $\{$ single material, homogeneous mixing, heterogeneous mixing, grains		

[matter_materials_mixing]

```
matter_carbonaceous_materials_n int(10)
umber [+][-xml]
[matter_materials_number]
``` in fluid, fluid in porous solid, spatial distribution...\}

Definitions: cf. "layer_materials_mixing"
U MatCarb F no Number of different materials mixed in the carbonaceous matter [!_c]
\(\rightarrow\) calculated from " matter_carbonaceous_materials" list
matter_carbonaceous_matters

\section*{List [L8a]}
[!]
£: matters constituting this carbonaceous matter

> Same structure as "sample"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_carbonaceous_materials & List [L8b] & [!] & & & & £: materials constituting this carbonaceous matter \\
\hline matter_carbonaceous_material_in & int(10) & U/S & MatCarb & F & -- & ID of the material constituting the 'carbonaceous matter' \\
\hline dex [*][-xml] & [Internal link] & [! g] & Mater & & & Note: The different organic solids (fundamental phases or custom constituents) \\
\hline [matter_material_index] & & & & & & composing the carbonaceous matter are described inside this materials \\
\hline > Same structure as "sample" & & & & & & structure at the constituent level. The different, molecules, chemical functions (chemical description) and/or atoms (elemental composition) composing the extraterrestrial matter are described at the species level. \\
\hline & & & & & & Note \(x \mathrm{ml}\) : in practice the description of the matter-material(s) is done directly under "matter carbonaceous" without providing the ID link \\
\hline \begin{tabular}{l}
matter_carbonaceous_comments \\
[matter_comments]
\end{tabular} & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatCarb & F & -- & Additional information on the carbonaceous matter (minor impurities, ...) or comments on the composition of the actual organic species or functions of the carbonaceous matter \\
\hline
\end{tabular}

\section*{Precursor materials}

Note: "material_is_precursor" = 'true'
Note: refer to the same table as "materials" in the sample structure but without the "material arrangement and abundance" bloc
See definitions and notes in "Mineral matter"
\begin{tabular}{lccc} 
matter_carbonaceous_precursor_ & List [L9] & [O] & \begin{tabular}{c} 
MatCarb \\
PreMater
\end{tabular} \\
materials & & L9
\end{tabular}
£: Precursor materials used to create the carbonaceous matter
Condition: description of precursor materials is optional
- Use exactly the same structure as for "Mineral matter"

\section*{Carbonaceous matter processings}
\begin{tabular}{lcccc} 
matter_carbonaceous_processings & List [LIO] & [O] MatCarb & £: Processing steps of the precursor materials/matters \\
[matter_processings] & L10 & Condition: only when there is processing of materials or parent matter/sample
\end{tabular}
- Use exactly the same structure as for "Mineral matter"

stable commercial supplier, a laboratory, ...
Notes:
- can also link to various types of measurements made on this matter
- can link to a publication by giving its url address, preferably through its DOI.
Ex: https://doi.org/10.1002/ejic. 200700067
£: Publications describing the carbonaceous matter and its properties.

S2 MatCarb F -- Link to the existing UID of the publication describing the carbonaceous
[m] matter(s) and its properties.

\section*{Publi}

L13

Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter'

\subsection*{8.5 Extraterrestrial matter Table}

\section*{Root of the table: matter_extraterrestrial}

Data type: 'Matter'
Definition: 'extraterrestrial matter' is any complex extraterrestrial matter made of organics and/or minerals found either on Earth (meteorite, micrometeorites), or collected in Earth atmosphere or in orbit (IDPs), or in interplanetary space (Cosmic dust: asteroidal and cometary dust, ...), but excluding planetary bodies (planets, satellites, asteroids, comets, ...).

\section*{Notes:}
- Extraterrestrial minerals, carbonaceous matters, or fluids extracted from meteorite, micrometeorites, IDPs or cosmic dust will be entrered as "extraterrestrial matters"
- Any other minerals/rocks, carbonaceous matters, or fluids collected at the surface or in the atmosphere of planetary bodies (planets, satellites, asteroids, comets, TNO, ...) will be entered as "fluid, solid or carbonaceous matters"

\section*{Key-word Type Level Table Exp Unit Description}

\section*{Extraterrestrial matter import}
\begin{tabular}{|c|c|c|c|c|}
\hline ```
matter_extraterrestrial_import_m enum(text)
ode
[matter_import_mode]
``` & \[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{m}]}
\end{gathered}
\] & MatExtra F & -- & \begin{tabular}{l}
Mode of import of the "extraterrestrial matter" data \\
Enum: \{first import, ignore, draft, no change, correction\} \\
Definitions: see "sample_import_mode"
\end{tabular} \\
\hline ```
matter_extraterrestrial_xml_filen varchar(255)
ame
 [virtual KW]
[-xml]
[matter_xml_filename]
``` & \[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{vc}]}
\end{gathered}
\] & MatExtra (V) & -- & \begin{tabular}{l}
Name of the storage copy of the xml import file of the "matter_extraterrestrial" metadata \\
\(\rightarrow\) determined automatically during import (from "matter_extraterrestrial_uid"?)
\end{tabular} \\
\hline
\end{tabular}

Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

\section*{Extraterrestrial matter indexes}


Note: if several matters are created the same day with the same extraterrestrial object then add some distinguishing property after 'ExtraterrestrialName'.
Ex:
- ‘MATMET_Allende_LB_20131003’
- 'MATMICROMET_DC060937_LF_20130828'
£: databases which manage this matter
[matter_owner_database_uid]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
matter_extraterrestrial_owner_da varchar(255) \\
tabase_uid [*] \\
[matter_owner_database_uid]
\end{tabular}} & \[
\begin{gathered}
\text { P/U } \\
{\left[!!\mathrm{o} _\mathrm{m}\right]} \\
\text { MatExtras }
\end{gathered}
\] & Link to the existing UID of the database which owns and manages this matter information \\
\hline & L0 & Condition: at least one database \\
\hline & & Note: For common 'reference' matters and for matters from external laboratories (not managed by a database), it should be 'DB_SSHADE' \\
\hline
\end{tabular}

\section*{Extraterrestrial matter}
experimentalist


\section*{Extraterrestrial matter family and description}
matter_extraterrestrial_family \([-\) enum(text)
xml]
\([\) matter_family \(]\)


Definitions:
- 'extraterrestrial': matters primarily made of extraterrestrial materials
\begin{tabular}{lllll}
\begin{tabular}{l} 
matter_extraterrestrial_name \\
[matter_name]
\end{tabular} & \(\operatorname{varchar}(255)\) & S \\
{\(\left[!!_\mathrm{m}\right]\)}
\end{tabular} MatExtra F \(\quad--\quad\) Common or given name of the extraterrestrial matter

Notes:
- It should contain explicit info on the matter or constituting materials/constituent/species: name(s) and some typical properties of the matter (phase type, components, preparation, ...).
- It may be the name of the extraterrestrial object plus some feature
- It is used as the title of the matter in the sample structure bloc of the SSHADE interface

Ex: 'Allende slice', 'Nagoya powder', 'ALH8044 IOM extract', ...
matter_extraterrestrial_date
date [matter_date]
matter_extraterrestrial_parent_ma varchar(255)
tter_uid [*]
[matter_parent_matter_uid]
matter_extraterrestrial_first_pare varchar(255) nt_matter_uid [*] [-xml]
[matter_first_parent_matter_uid]

S2/S1i MatExtra F [\$o_m] MatXxx

S2/S1i MatExtra F
[!o_c]

P MatExtra F YYYY- Date of creation of the matter
[!_m] MM-

DD Note: This date can be the date of delivery of the extraterrestrial object (or the date of preparation of the piece at the repository lab), or of end of processing(s) in the case of a matter generated by some processing (selection, extraction, ...) of a parent extraterrestrial matter

Link to the existing UID of the parent matter (if present in the database) used to create this one by some processing (e.g. thermal cycle, irradiation, sieving, ...)
Recommendation: Strongly recommended when already exist in the database \(E x\) : a granular matter sieved to a specific grain size range gives a daughter matter from the parent unsieved matter.
-- Link to the existing UID of the first parent of the generation of matters (present in the database) that has been initially used to create this one by a series of processes.

Condition: when "matter_extraterrestrial_parent_matter_uid" \(\neq \Phi\)
\(\rightarrow\) calculated recursively using "matter_extraterrestrial_parent_matter_uid", when it exist

\section*{Extraterrestrial matter origin}


Definitions: cf. "matter_solid_level"


\section*{Extraterrestrial matter provider}
matter extraterrestrial provider [matter_provider]
matter_extraterrestrial_provider reference code [matter_provider_reference_code]
matter_extraterrestrial_igsn_code varchar(255)
[matter_igssn_code]

[! m]

S 18S1bs Mhatfextra F -- --
[m]

S18S1bs MifatolF F --
[m]
origin of the extraterrestrial matter: extraterrestrial object repository, laboratory (name), commercial (name) + web address ...

Reference code (catalog number or name) given by the provider of the extraterrestrial matter (e.g., section number)


\section*{Extraterrestrial matter: planetary body}

\begin{tabular}{|c|c|c|c|c|}
\hline matter_extraterrestrial_object_ui d [*] & varchar(255) & SS1 Mhitfextra [!!o_m] ObjMet & F -- -- & Link to the existing UID of the object to which the extraterrestrial matter belong \\
\hline [matter_object_uid] & & & & Condition: absolute mandatory when "matter_extraterrestrial_origin" = \{extraterrestrial, planetary\} \\
\hline & & & & Note: \\
\hline
\end{tabular}

\section*{Extraterrestrial matter images}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_images & List [L2] & [O] & & & & £: Pictures of the extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_image_fil ename \\
[matter_image]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra
L2 & F & -- & \begin{tabular}{l}
File name (with extension) of the picture of the extraterrestrial matter Image formats: .png, .jpg, (.gif) \\
Note: this file will be imported in the database
\end{tabular} \\
\hline \begin{tabular}{l}
matter_extraterrestrial_image_ca \\
ption \\
[matter_image_caption]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra
L2 & F & -- & \begin{tabular}{l}
Caption or comments on the picture of the extraterrestrial matter Ex: \\
Note: should include credits when necessary
\end{tabular} \\
\hline
\end{tabular}

\section*{Extraterrestrial matter location}



\section*{Extraterrestrial matter preparation and component types}
\begin{tabular}{|c|c|c|c|c|}
\hline matter_extraterrestrial_preparatio enum(text) & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{MatExtra} & \multirow[t]{3}{*}{F} & Type of preparation of the extraterrestrial matter \\
\hline \begin{tabular}{l}
n \\
[matter_preparation]
\end{tabular} & & & & Enum: \{raw, section, polished section, selected components, crushed, crushed and sieved, sieved fraction, extracted components, other method\} \\
\hline & & & & Definitions: see "matter_solid_preparation" \\
\hline matter_extraterrestrial_method varchar(255) & SU & Whitextra & F & Method of preparation or extraction of the extraterrestrial matter \\
\hline thod] & [m] & & & Note: short synthetic description only. Full description will be done in "processing(s)" \\
\hline
\end{tabular}

- 'CAI': Ca-Al-rich Inclusions (minerals)
- 'presolar grains': presolar grains present in the matrix

For extracted organics
- 'extracted SOM': soluble organic matter (SOM) extracted from the bulk
- 'extracted IOM': insoluble organic matter (IOM) extracted from the bulk
\begin{tabular}{l|lll} 
matter_extraterrestrial_componen blob & U \\
ts_comments
\end{tabular}\(\quad\) MatExtra \(\quad\) F \(\quad--\quad\) Additional comments on the component(s) of the extraterrestrial matter

\section*{Extraterrestrial matter global density}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_compacity [layer/matter_compacity] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & no & Compacity of the extraterrestrial matter (fraction of solid material volume per matter volume unit) \\
\hline & & & & & & \begin{tabular}{l}
Note: compacity = \((1-\) porosity \()\) \\
Note: value of the raw matter before any preparation for sample
\end{tabular} \\
\hline matter_extraterrestrial_compacity _error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & no & Absolute uncertainty on the compacity of the extraterrestrial matter \\
\hline [layer/matter_compacity_error] & & & & & & \\
\hline \begin{tabular}{l}
matter_extraterrestrial_density \\
[layer/matter_density]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & \(\mathrm{g} / \mathrm{cm} 3\) & \begin{tabular}{l}
Density of the extraterrestrial matter \\
- stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3}\), unit
\end{tabular} \\
\hline & & & & & & Note: value of the raw matter before any preparation for sample \\
\hline \begin{tabular}{l}
matter_extraterrestrial_density_er ror \\
[layer/matter_density_error]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & g/cm3 & Absolute uncertainty on the density of the extraterrestrial matter - stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3}\), unit \\
\hline
\end{tabular}

\section*{Extraterrestrial matter global texture}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_shape [matter_shape] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & -- & Description of the macroscopic shape of the extraterrestrial matter, mostly for compact pieces (compact or cemented/sintered granular textures) \\
\hline & & & & & & Note: for loose granular extraterrestrial objects: 'undefined (loose)'. \\
\hline & & & & & & \begin{tabular}{l}
Exemples: \\
- For naturally occurring meteorites: irregular, with faceted surfaces, cone-shaped, shrapnel, with flow features, with regmaglypts, ... \\
- For (semi-)prepared meteorites: thick slab, polished thin section, raw fractured meteorite, flat fractured meteorite (roughness of the order of the grain size), conchoidal fractured meteorite, ...
\end{tabular} \\
\hline \multirow[t]{8}{*}{matter_extraterrestrial_texture [layer/matter_texture]} & \multirow[t]{8}{*}{enum(text)} & \multirow[t]{8}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{8}{*}{MatExtra} & \multirow[t]{8}{*}{F} & \multirow[t]{8}{*}{--} & Macroscopic texture of the extraterrestrial matter (at scale above material grains) \\
\hline & & & & & & OpenEnum: \{muddy, earthy, pulverulent, fluffy fine grained, fine grained, fine grained scoriaceous, scoria, loose fine grained, loose coarse grained, loose granular, sintered granular, cemented granular, mixed granular, compact, compact glassy, compact poor grained, compact fine grained, compact coarse grained, compact lamellar, compact fibrous, compact crystal, compact mixed, single grain, individual grains, aggregated grains, isolated aerosols, aggregated aerosols, clusters, liquid, gaseous, other, unknown \} \\
\hline & & & & & & Definitions: \\
\hline & & & & & & - See "layer_texture" \\
\hline & & & & & & For micrometeorites \\
\hline & & & & & & - 'fluffy fine grained': \\
\hline & & & & & & - 'fine grained': \\
\hline & & & & & & \begin{tabular}{l}
- 'fine grained scoriaceous': \\
- 'scoria':
\end{tabular} \\
\hline \multirow[t]{3}{*}{matter_extraterrestrial_porosity_t
ype
[layer/matter_porosity_type]} & \multirow[t]{3}{*}{enum(text)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Mat} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{--} & Type of porosity of the matter (at scale above material grains) \\
\hline & & & & & & OpenEnum : \{particulate, porous, open pores, closed pores, without pores, \\
\hline & & & & & & other, unknown\} \\
\hline
\end{tabular}

\section*{Matter global grain size distribution and texture}
```

matter_extraterrestrial grain size enum

```
_unit
[sample/matter_grain_size_unit]
enum(text) _unit
[sample/matter_grain_size_unit]
\(\underset{[\text { [£o_m] }}{\mathrm{U}}\) MatExtra F
£o_m]
-- Unit for the extraterrestrial matter and material grain sizes
Enum: \(\{\mathrm{nm}\), micron, mm, cm \(\}\)
Condition: compulsory when "matter_extraterrestrial_grain_size_min" OR "matter_extraterrestrial_grain_size_max" has a value

Note DB: all grain sizes data will be stored in 'mm'
Note: used for "matter_extraterrestrial_grain_size_min/_max" and "matter_extraterrestrial_material_grain_size_min/_max"
Note: the other units are only used in formation and processing conditions ("matter_extraterrestrial_material_processing_xxx") as text. But it is requested to expres all these units in an homogeneous way by choosing one of each of the following units:
- Temperature: \(\left\{\mathrm{K},{ }^{\circ} \mathrm{C}\right\}\)
- Pressure: \{Pa, hPa, mbar, bar, atm, torr \(\}\)
- Time: \(\{\mathrm{s}, \mathrm{min}, \mathrm{h}, \mathrm{d}\}\)
- Energy: \(\{\mathrm{J}, \mathrm{kJ}, \mathrm{eV}, \mathrm{keV}, \mathrm{MeV}, \mathrm{A}, \mathrm{nm}\), micron, cm-1 \(\}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_grain_size _method & \multirow[t]{2}{*}{blob} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{MatExtra} & \multirow[t]{2}{*}{F} & -- & Description of the grain size ( \(\mathrm{min} / \mathrm{max}\) ) definition, and of the method of determination of the grain size distribution \\
\hline [material/matter_grain_size_meth od] & & & & & & Ex: 'sieving between 2 stainless steel sieves with 50 and \(100 \mu \mathrm{~m}\) meshs', 'microscope measurement of section' \\
\hline matter_extraterrestrial_grain_size & List [L4] & [O] & & & & £: Size distribution of the extraterrestrial matter grains \\
\hline \(s\) & & & & & & Note: Used when only a global grain size distribution of the extraterrestrial matter is available, not for each of its materials \\
\hline matter_extraterrestrial_grain_size _median & float & S3 & MatExtra & F & var. & Median size (diameter) of extraterrestrial matter grains \\
\hline SSDM Data Model & & & & & & \\
\hline
\end{tabular}

\section*{[material/matter_grain_size_medi} an]
matter_extraterrestrial_grain_size
_width
[material/matter_grain_size_widt
h]
matter_extraterrestrial_grain_size
_max
matter_extraterrestrial_grain_equ ivalent_diameter _min
[material/matter_grain_size_min]
[material/matter_grain_size_max]
[m] L4

float
float
float
float
\begin{tabular}{ccc} 
S3 & MatExtra & F \\
{\([\mathrm{m}]\)} & L 4 &
\end{tabular}
\(\underset{[\mathrm{m}]}{\mathrm{U}} \quad\) MatExtra F L4 L4

S3

MatExtra F
L4

U
MatExtra F [mc]

Unit: in "matter_extraterrestrial_grain_size_unit"
converted in ' \(m\) ' unit in the database but provided to user in "matter_extraterrestrial_grain_size_unit"

Note: mostly used when only one median size is known for the matter grains
var. Full width at half maximum of the size distribution (diameter) of extraterrestrial matter grains

Unit: in "matter_extraterrestrial_grain_size_unit"
- converted in ' \(m\) ' unit in the database but provided to user in "matter_extraterrestrial_grain_size_unit"
Note: mostly used when only one median size and its distribution is known for the matter grains
var. Smallest size (diameter) of extraterrestrial matter grains of this size range
Unit: in "matter_extraterrestrial_grain_size_unit" (will be 'micron' by default if you did not filled this unit)
- converted in ' \(m\) ' unit in the database but provided to user in "matter_extraterrestrial_grain_size_unit"
var. Largest size (diameter) of extraterrestrial matter grains of this size range
Unit: in "matter_extraterrestrial_grain_size_unit"
- converted in ' \(m\) ' unit in the database \(\bar{b}\) ut provided to user in "matter_extraterrestrial_grain_size_unit"
\(\mu \mathrm{m} \quad\) Equivalent diameter, Deq, of extraterrestrial matter grains Unit: micrometers

Condition: use either 'equivalent diameter' or 'size_min/max'
Note: this equivalent diameter can be either measured or calculated from 'size_min/max':
\(\rightarrow\) when 'size_min/max' have values, then
- \(\operatorname{Deq}=\left(\max \times \min ^{2}\right)^{1 / 3}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_grain_size _fraction [material/matter_grain_size_fracti on] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { MatExtra } \\
\text { L4 }
\end{gathered}
\] & F & no & \begin{tabular}{l}
Mass fraction of extraterrestrial matter grains comprised between size min and size max (diameter) \\
Note: value between 0 and 1
\end{tabular} \\
\hline matter_extraterrestrial_grain_size _fraction_error [material/matter_grain_size_fraction _error] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra
L4 & F & no & Absolute uncertainty on the mass fraction of extraterrestrial matter grains comprised between size min and size max (diameter) \\
\hline ```
matter_extraterrestrial_grain_size
_shape
[material/matter_grain_size_shap
e]
``` & enum(text) & \[
\begin{aligned}
& \mathrm{S} 2 \\
& {[\mathrm{~m}]}
\end{aligned}
\] & \begin{tabular}{l}
MatExtra \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
Dominant shape of the extraterrestrial matter grains (granular matter) or crystals (compact matter) of this size range \\
Enum: \{amorphous, irregular, equant, reniform, globular, spherical, flakes, platy, tabular, lathlike, columnar, acicular, capillary, cubic, cylindrical, hexagonal, octahedral, prismatic, pyramidal, rhombohedral, nuggets, botryoidal, dendritic, spheres aggregate, aggregate, fluid, other, unknown\} \\
Definitions: \\
- cf. "matter_solid_grain_size_shape"
\end{tabular} \\
\hline \begin{tabular}{l}
matter_extraterrestrial_grain_size _distribution \\
[material/matter_grain_size_distri bution]
\end{tabular} & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & -- & \begin{tabular}{l}
Description and parameters of the size distribution of the matter grains \\
Note: see "material_grain_size_distribution"
\end{tabular} \\
\hline matter_extraterrestrial_grain_text ure [material/matter_grain_texture] & openum(text) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & -- & \begin{tabular}{l}
Description of the major grain texture of the extraterrestrial matter \\
OpenEnum: \{clay-like, silt-like, compact, compact with defects, compact with bubbles, compact porous, compact microporous, lamellar, fibrous, compact mixed, complex, other, unknown, ...\} \\
Definitions: \\
- See "matter_solid_grain_texture"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{```
matter_extraterrestrial_grain_co
mpacity
[material/matter_grain_compacity
]
```} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{MatExtra} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{no} & Compacity of the grains of the extraterrestrial matter (fraction of solid volume per grain volume unit) \\
\hline & & & & & & Note: compacity = (1- porosity \()\) \\
\hline matter_extraterrestrial_grain_co mpacity_error [material/matter_grain_compacity _error] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & no & Absolute uncertainty on the compacity of the grains of the extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_grain_den sity \\
[material/matter_grain_density]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & \(\mathrm{g} / \mathrm{cm}^{3}\) & \begin{tabular}{l}
Mean bulk density of the grains of the extraterrestrial matter \\
- stored in the database and provided to user in \({ }^{\mathrm{g}} \mathrm{g} / \mathrm{cm}^{3}\) ' unit
\end{tabular} \\
\hline \begin{tabular}{l}
matter_extraterrestrial_grain_den sity_error \\
[material/matter_grain_density_er ror]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & \(\mathrm{g} / \mathrm{cm}^{3}\) & \begin{tabular}{l}
Absolute uncertainty on the mean bulk density of the grains of the extraterrestrial matter \\
- stored in the database and provided to user in \({ }^{\prime} \mathrm{g} / \mathrm{cm}^{3}\) ' unit
\end{tabular} \\
\hline ```
matter_extraterrestrial_texture_co
mments
[material/matter_texture_commen
ts]
``` & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra & F & -- & Experimentalist additional information or comments about the texture of the extraterrestrial matter
Ex: ... \\
\hline Extraterrestrial matter global oxid & des composition & & & & & Note: Used when only a global composition is available, and not for each of its extraterrestrial object mineral materials \\
\hline matter_extraterrestrial_oxides & List [L5a] & [O] & & & & £: Description of the oxides composition of the mineral materials of the extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_oxide_for mula \\
[material/matter_oxide_formula]
\end{tabular} & \multirow[t]{2}{*}{CS- enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{MatExtra
L5a} & \multirow[t]{2}{*}{F} & -- & \begin{tabular}{l}
Formula of the different oxides composing the the mineral materials of the extraterrestrial matter \\
Enum: see mineral_oxide_formula
\end{tabular} \\
\hline & & & & & & Note: did not distinguish non-natural isotopic species \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { matter_extraterrestrial_H_C_rati } \\
& \text { o } \\
& \text { [matter_H_C_ratio] }
\end{aligned}
\] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{mc}]}
\end{gathered}
\] & MatExtra F & & \begin{tabular}{l}
Elemental \(\mathrm{H} / \mathrm{C}\) ratio of the carbonaceous extraterrestrial matter \\
Note: used in Van Krevelen maturity diagram (H/C versus O/C) http://en.wikipedia.org/wiki/Van_Krevelen_diagram
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { matter_extraterrestrial_O_C_rati } \\
& \text { o } \\
& \text { [matter_O_C_ratio] }
\end{aligned}
\] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{mc}]}
\end{gathered}
\] & MatExtra F & -- & \begin{tabular}{l}
Elemental O/C ratio of the carbonaceous extraterrestrial matter \\
Note: used in Van Krevelen maturity diagram (H/C versus O/C)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { matter_extraterrestrial_N_C_rati } \\
& \text { o } \\
& \text { [matter_N_C_ratio] }
\end{aligned}
\] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{mc}]}
\end{gathered}
\] & MatExtra F & -- & Elemental \(\mathrm{N} / \mathrm{C}\) ratio of the carbonaceous extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_S_C_ratio \\
[matter_S_C_ratio]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{mc}]}
\end{gathered}
\] & MatExtra F & -- & Elemental S/C ratio of the carbonaceous extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_sp2_sp3_r \\
atio \\
[matter_sp2_sp3_ratio]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra F & -- & \(\mathrm{sp} 2 / \mathrm{sp} 3\) ratio of the carbon of the carbonaceous extraterrestrial matter Definition: \\
\hline matter_extraterrestrial_gap_Tauc [matter_gap_Tauc] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra F & -- & \begin{tabular}{l}
Tauc Gap of the carbonaceous extraterrestrial matter \\
Definition: the optical band gap refers to the energy difference (in electron volts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. \\
http://en.wikipedia.org/wiki/Tauc_plot
\end{tabular} \\
\hline \begin{tabular}{l}
matter_extraterrestrial_gap_E04 \\
[matter_gap_E04]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra F & eV & \begin{tabular}{l}
Band gap E04 of the carbonaceous extraterrestrial matter \\
Definition: the band gap E04 is the energy at which the absorption coefficient reaches \(10^{4} \mathrm{~cm}^{-1}\)
\end{tabular} \\
\hline matter_extraterrestrial_compositi on comments & blob & U & MatExtra F & -- & Any additional information or comments on the composition of the carbonaceous extraterrestrial matter \\
\hline
\end{tabular}

Ex: sum of atomic fractions, vitrinite reflectance VR (in oil: \%Ro) of coal carbonaceous extraterrestrial matter, ...

Note: also additional information on impurities not measured

\section*{Extraterrestrial matter composition}

Note: Whatever are the materials that constitute the extraterrestrial matter they will be always defined from the "materials" level (link(s) with "matter_extraterrestrial_material_index") through their "materials", "constituents" and "species", or through other matter(s). Only their type of mixing is described here.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
matter_extraterrestrial_materials_ \\
mixing [+] \\
[matter_materials_mixing]
\end{tabular}} & \multirow[t]{2}{*}{enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 2 \\
{[!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{MatExtra} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{} & \begin{tabular}{l}
How the different materials are mixed in the extraterrestrial matter \\
Enum: \{single material, homogeneous mixing, heterogeneous mixing, grains in fluid, fluid in porous solid, spatial distribution...\}
\end{tabular} \\
\hline & & & & & & Definitions: cf. "layer_materials_mixing" \\
\hline \begin{tabular}{l}
matter_extraterrestrial_materials_ number [+][-xml] \\
[matter_materials_number]
\end{tabular} & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{c}\right]}
\end{gathered}
\] & MatExtra & F & no & \begin{tabular}{l}
Number of different materials mixed in the extraterrestrial matter \\
\(\rightarrow\) calculated from " matter_extraterrestrial_materials" list
\end{tabular} \\
\hline matter_extraterrestrial_matters & List [L6a] & [!] & & & & £: matters constituting this extraterrestrial matte \\
\hline matter_extraterrestrial_matter_in dex [*][-xml] [matter_matter_index] & \[
\begin{gathered}
\operatorname{int}(10) \\
{[\text { Internal link] }}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{B} \\
{[!-\mathrm{g}]}
\end{gathered}
\] & MatExtra
MatXxx & F & -- & \begin{tabular}{l}
ID of the matter constituting the 'extraterrestrial matter' \\
Note \(x \mathrm{ml}\) : in practice the description of the material(s) is done directly under "matter_extraterrestrial" without providing the ID link
\end{tabular} \\
\hline
\end{tabular}
> Same structure as "sample"

extraterrestrial matter are described at the species level.
Note: For mineral solid solutions or n-hydrated minerals
("mineral_classification_level" = \{variable mineral, unique mineral\} or "mineral_hydration_series" = 'true') the modifications of the mineral solid solution parameters (VM) (composition and properties) are described at the species level.
Note: Case of 'glasses' and 'clays/silts': see "matter_solid_material_index"
Note \(x \mathrm{ml}\) : in practice the description of the material(s) is done directly under "matter_extraterrestrial" without providing the ID link

\section*{Precursor materials}

Condition: description of precursor materials is optional.
Note: "material_is_precursor" = 'true'
Note: refer to the same table as "materials" in the sample structure but without the "material arrangement and abundance" bloc
See definitions and notes in "Mineral matter"
\begin{tabular}{lccl}
matter_extraterrestrial_precursor & List \([L 7]\) & {\([\mathrm{O}]\)} & \begin{tabular}{l}
MatExtra \\
PreMater
\end{tabular}
\end{tabular}
[matter_precursor_materials]
> Use exactly the same structure as for "Mineral matter"

\section*{Extraterrestrial matter processings}
\begin{tabular}{lll}
matter_extraterrestrial_processings & List [L8] & MatExtra \\
[matter_processings] & & L8
\end{tabular}
[O] L8

Condition: only when there is processing of materials or parent matter/sample
£: Processing steps of the precursor materials/matters
- Use exactly the same structure as for "Mineral matter"

\section*{Extraterrestrial matter documentation and references}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_extraterrestrial_document ations & List [L9] & [O] & & & & £: Documentations about the extraterrestrial matter \\
\hline \begin{tabular}{l}
matter_extraterrestrial_document ation_name \\
[matter_documentation_name]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra
L9 & F & -- & Name of the documentation describing the extraterrestrial matter Note: this name will appear as the documentation title in the database Ex: 'Certificate of Allende meteorite’ \\
\hline matter_extraterrestrial_document ation_filename [matter_documentation_filename] & varchar(255) & \[
\underset{\left[!\mathrm{o} \_\mathrm{m}\right]}{\mathrm{U}}
\] & \[
\begin{aligned}
& \text { MatExtra } \\
& \mathrm{L} 9
\end{aligned}
\] & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{--} & \begin{tabular}{l}
File name (with extension) of the documentation describing the extraterrestrial matter \\
Condition: Mandatory when "matter_extraterrestrial_documentation_name" \(\neq\) \(\Phi\) \\
File formats: .pdf, .png, .jpg, .gif, .tiff, .txt, ... \\
Note: this file will be imported in the database
\end{tabular} \\
\hline matter_extraterrestrial_links & List [L10] & [O] & & & & £: Web pages describing the extraterrestrial matter and its properties \\
\hline \begin{tabular}{l}
matter_extraterrestrial_link_nam \\
e \\
[matter_link_name]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & MatExtra
L10 & F & -- & \begin{tabular}{l}
Name of the web page describing the extraterrestrial matter and its properties. \\
Ex: 'Museum Histoire Naturelle’, ...
\end{tabular} \\
\hline \multirow[t]{3}{*}{matter_extraterrestrial_link_url [matter_link_url]} & \multirow[t]{3}{*}{CS-varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { MatExtra } \\
\text { L10 }
\end{gathered}
\]} & \multirow[t]{3}{*}{F} & -- & URL address of the web page describing the extraterrestrial matter and its properties \\
\hline & & & & & & Note: useful when the extraterrestrial matter comes from a meteorite database, a stable commercial supplier, ... \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- can also link to various types of measurements made on this matter \\
- can link to a publication by giving its url address, preferably through its DOI. \\
Ex: https://doi.org/10.1002/ejic. 200700067
\end{tabular} \\
\hline
\end{tabular}

\section*{9. Plantetary bodies}

\subsection*{9.1 Definition}

The planetary bodies are the bodies of the solars system: planets, satellites, asteroids, comets, KBO, interplanetary dust, ...
The generic information on these "bodies"is described by a set of key-words.

\subsection*{9.2 Planetary bodies Table}

Root of the table: body
Data type: ‘Body’
Key-word Type Level Table Exp Unit Description

Planetary body import
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
body_import_mode \\
[body_import_mode]
\end{tabular} & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{\left[!!\_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & -- & \begin{tabular}{l}
Mode of import of the "planetary body" data \\
Enum: \{first import, ignore, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline body_xml_filename & varchar(255) & P & ObjPla & (V) & -- & Name of the storage copy of the xml import file of the "body" metadata \\
\hline \[
[-\mathrm{xml}]
\] & [virtual KW] & [!!_vc] & & & & \(\rightarrow\) determined automatically during import (from "body_uid»?) \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline
\end{tabular}

\section*{Planetary body indexes}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
body_index [\({ }^{[* *][-x m l]}\) \\
[body_index]
\end{tabular} & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\mathrm{B} \\
{[!!, \mathrm{g}]}
\end{gathered}
\] & ObjPla \\
\hline \[
\begin{aligned}
& \text { body_uid [**] } \\
& \text { [body_uid] }
\end{aligned}
\] & varchar(255) & \[
\begin{aligned}
& \mathrm{S} 0 / \mathrm{S} 1 \mathrm{~s} \\
& {[!!\text { m }]}
\end{aligned}
\] & ObjPla \\
\hline
\end{tabular}
-- Automatic random but unique number given to new planetary body
-- Unique identifier code given to the planetary body table (to be created)
Nomenclature: Create this code name with 'BODY_' and be very accurately in order to be simple and unique. It should be of the style
'BODY_planetaryFamily_PlanetaryName' where 'planetaryFamily' is the family of planetary body and 'PlanetaryName' is the common name of the planetary body, with all non-basic ASCII characters (é, ù, -, ...), and space removed or transformed in '_' or '-‘.
Note: use UPPERCASES for the 'MissionName', uppercases for the first letter of 'PlanetaryName' and lowercases for the ramining and for the
'planetaryFamily'
Ex:
- 'BODY_planet_Earth',
- 'BODY_satellite_Moon',
- 'BODY_comet_Wild2', ...

\section*{Planetary body description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline body_name [body_name] & varchar(255) & \[
\begin{aligned}
& \text { S0/S1s ObjPla } \\
& {\left[!!\_\mathrm{m}\right]}
\end{aligned}
\] & F & & \begin{tabular}{l}
Full official name of the planetary body \\
Ex.: Europa, Moon, 67P/Chuyrimov-Gerasimenko, 1/Ceres ...
\end{tabular} \\
\hline body_secondary_names & List [L0] & [O] & & & \(£:\) Alternative names used for the planetary body \\
\hline body_secondary_name [body_secondary_name] & varchar(255) & \[
\begin{array}{cc}
\text { S0/S1s } & \text { ObjPla } \\
{[\mathrm{m}]} & \mathrm{L} 0
\end{array}
\] & F & -- & \begin{tabular}{l}
Alternative name used for the planetary body \\
Ex.: ‘Jupiter II' for Europa \\
'1P/1682 Q1' for 1P/Halley's comet \\
'Tempel 2' for 10P/Tempel comet
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- start with a capital letter
\end{tabular} \\
\hline
\end{tabular}

\section*{Planetary body origin}
\begin{tabular}{llllll}
\begin{tabular}{l}
body_discovery_date \\
[body_recovery_year]
\end{tabular} & varchar(255) & \begin{tabular}{l}
S2/Us ObjPla \\
{\(\left[!\_\mathrm{m}\right]\)}
\end{tabular} & F & -- & \begin{tabular}{l}
Date or year of discovery of the planetary body \\
Ex: '2012', '8 January \(1610 '\)
\end{tabular} \\
\begin{tabular}{llll}
body_discoverer \\
[body_discoverer]
\end{tabular} & varchar(255) & \begin{tabular}{c}
S2/Us ObjPla \\
{\([\mathrm{m}]\)}
\end{tabular} & F & -- & \begin{tabular}{l}
Discoverer(s) of the planetary body \\
Ex: 'Galileo Galilei'
\end{tabular}
\end{tabular}

\section*{Planetary body family}
\begin{tabular}{|c|c|c|c|c|}
\hline body_family & enum (text) & \[
\begin{aligned}
& \text { S1/S1s ObjPla } \\
& \text { [!!_m] }
\end{aligned}
\] & F & \begin{tabular}{l}
Family of the planetary body \\
Enum: \{star, planet, dwarf planet, satellite, ring system, asteroid, distant minor planet, comet, interplanetary dust, other, unclassified \} \\
Definitions: \\
- 'star': the sun \\
- 'planet': the 8 planets of the solar system \\
- 'dwarf planet': a dwarf planet is a planetary-mass body that is neither a planet nor a natural satellite. IAU recognizes five dwarf planets: Ceres in the asteroid belt, and Pluto, Haumea, Makemake, and Eris in the outer solar system.[\\
- 'satellite': a natural satellite or moon is an astronomical body that orbits a planet or minor planet, or another small Solar System body (asteroid, TNO, ...). \\
- 'ring system': a ring system is a disc or rings orbiting an astronomical object that is composed of solid material such as dust and moonlets, \\
- 'asteroid': asteroid of the solar system \\
- 'distant minor planet': a minor planet found in the outer Solar System that is not commonly thought of as an "asteroid". Include the populations of centaurs, Neptune trojans, and trans-Neptunian objects. A distant object has a semi-major axis greater than 6 AU (just beyond Jupiter.) \\
- 'comet': \\
- 'interplanetary dust': all type of dust in the interplanetary space, close or far to its source object, or with unknown source 'other': object classified in a family different from the list above. Need to give the family in "body_comment" \\
- 'unclassified': object not yet classified in a family
\end{tabular} \\
\hline body_dynamic_family [body_dynamic_family] & openum(text) & \[
\begin{aligned}
& \text { S1/S1s ObjPla } \\
& {\left[!\_\mathrm{m}\right]}
\end{aligned}
\] & F & \begin{tabular}{l}
Dynamic familly of the planetary body \\
OpenEnum: \{star, planet, inner moon, regular, irregular, planetary ring system, minor planet ring system, near-Earth asteroid, Earth trojan, Mars trojan, inner asteroid belt, middle asteroid belt, outer asteroid belt, Jupiter trojan, centaur, Neptune trojan, classical Kuiper belt, resonant Kuiper belt, scattered disk object, detached object, Jupiter family, Halley-type, long-period,
\end{tabular} \\
\hline
\end{tabular}
asteroidal dust, cometary dust, other dust, other, undefined \}
Constaint: To be chosen in the list depending on "body_family"

\section*{Definitions:}

For family = 'star':
- 'star'

For family = 'planet'
- 'planet'

For family = 'dwarf planet'
- 'middle asteroid belt': for Ceres
- 'resonant Kuiper belt': for Pluto, Haumea,
- 'classical Kuiper belt': for Makemake,
- 'scattered disk objects': for Eris

For family = 'satellite':
- 'inner moon' satellite following a prograde, low-inclination orbit inwards of the large satellites of the parent planet.
- 'regular moon': (or main-group) the large satellites of the parent planet with nearly circular orbits near the plane of the equator of the central object
- 'irregular moon': with elliptical and inclined orbit relative to the plane of the equator of the central object
For family = 'ring system':
- 'planetary ring system': a ring system around a planet is called a planetary ring system (the 4 giant planets)
- 'minor planet ring system': ring system around a distant minor planet (centaurs Chariklo and Chiron, TNO Haumea) Ref: https://en.wikipedia.org/wiki/Ring_system
For family = 'asteroid':
- 'near-Earth asteroid': or NEAs, are asteroids that have orbits that pass close to that of Earth. Asteroids that actually cross Earth's orbital path are known as Earth-crossers.
Notes:
- 'Near-Earth - Apohele': orbit inside of Earth's perihelion distance and thus are contained entirely within the orbit of Earth.
- 'Near-Earth - Aten': asteroids with a semi-major axes of less than Earth's and aphelion greater than 0.983 AU .
- 'Near-Earth - Apollo': asteroids with a semimajor axis greater than Earth's, while having a perihelion distance of less than 1.017 AU.
- 'Near-Earth - Amor': near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it.
- 'Earth trojan': asteroids sharing Earth's orbit and gravitationally locked to it.
- 'Mars trojan': asteroids sharing Mars's orbit and gravitationally locked to it.
Asteroid belt: follow roughly circular orbits between Mars and Jupiter.
- 'inner asteroid belt': inside of the strong Kirkwood gap at 2.50 AU due to the \(3: 1\) Jupiter orbital resonance.
- 'middle asteroid belt': between the 3:1 and 5:2 Jupiter orbital resonances, the latter at 2.82 AU .
- 'outer asteroid belt': between the 5:2 and 2:1 Jupiter orbital resonances.
- 'Jupiter trojan': asteroids sharing Jupiter's orbit and gravitationally locked to it.
For family \(=\) 'distant minor planet' :
- 'centaur': bodies in the outer Solar System between Jupiter and Neptune (\(5.4-30 \mathrm{AU}\))
- 'Neptune trojan': bodies sharing Neptune's orbit and gravitationally locked to it.
- 'classical Kuiper belt': also known as Cubewanos, are in primordial, relatively circular orbits that are not in resonance with Neptune (40.5 47.7 AU).
- 'resonant Kuiper belt': in mean-motion orbital resonance with Neptune, excepted 1:1 resonance of Neptune trojans (include 'Plutinos' (resonance 2:3), 'twotinos' (resonance 1:2), ... sub-families
- 'scattered disk object': with high-inclination, high-eccentricity orbits. Thought to have been scattered by Neptune.
- 'detached object': with both aphelia and perihelia outside the Kuiper belt. with generally highly elliptical, very large orbits of up to a few hundred AU and a perihelion too far from Neptune's orbit.

Note: the last four families are also known collectively as 'transneptunian objects'
For family = 'comet'
- 'Jupiter family’: short-period comets with orbital periods less than 20 years and low inclinations (up to 30 degrees) to the ecliptic
- 'Halley-type': short-period comets with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees.
- 'long-period': Long-period comets have highly eccentric orbits and periods ranging from 200 years to thousands of years
For family = 'interplanetary dust':
- 'asteroidal dust': dust at close proximity of an asteroid
- 'cometary dust': dust at close proximity and in the dust tail of a comet (and in the orbit of a comet)
- 'other dust': dust in the general interplanetary space without clear origin
For family = 'asteroid, distant minor planet, comet, other, unclassified':
- 'other':
- 'undefined':

Note:

\section*{Planetary body satellites and rings}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline body_ring_system [body_ring_system] & boolean & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & -- & \begin{tabular}{l}
Flag telling if the planetary body has a ring system \\
BoolEnum: \{yes, no\} or \(\{\) true, false \(\}\)
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Condition: Mandatory only for "body_family" = \{planet, dwarf planet \(\}\) \\
Note: a planet, a dwarf planet, an asteroid, a TNO... can have a ring system
\end{tabular} \\
\hline body_satellites_number [body_satellite_number] & \(\operatorname{int}(4)\) & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & -- & Number of satellites orbiting around this planetary body Condition: Mandatory only for "body_family" = \{planet, dwarf planet \(\}\) \\
\hline & & & & & & Note: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
body_central_body_uid [*] \\
[body_central_body_uid]
\end{tabular}} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
ObjPla \\
ObjPla
\end{tabular}} & \multirow[t]{2}{*}{F} & -- & Link to the existing UID of the central object around which this planetary body orbits \\
\hline & & & & & & \begin{tabular}{l}
Condition: Mandatory and only for "body_family" \(=\{\) satellite, ring system \(\}\) \\
Note: can orbit around a planet, a dwarf planet, an asteroid, a TNO, ...
\end{tabular} \\
\hline \multirow[t]{2}{*}{body_source_body_uid [*] [body_source_body_uid]} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\]} & ObjPla ObjPla & \multirow[t]{2}{*}{F} & -- & \begin{tabular}{l}
Link to the existing UID of the source object producing this dust 'body' \\
Condition: Mandatory for "body_dynamic_family" = \{asteroidal dust, cometary dust \(\}\)
\end{tabular} \\
\hline & & & & & & Note: can orbit around a planet, a dwarf planet, an asteroid, a TNO, ... \\
\hline
\end{tabular}

\section*{Planetary body types}

- ' \(C\) : dark carbonaceous objects
- 'S': silicaceous (or "stony") objects.
- ' \(X\) ': metallic objects
- 'endmembers': other objects

\section*{Note:}

F
-- Spectral type of the asteroid (Bus-DeMeo classification)
OpenEnum: \{A, B, C, Cb, Cg, Cgh, Ch, D, K, L, O, Q, R, S, Sa, Sq, Sr, Sv, Sw, T, V, Vw, X, Xc, Xe, Xk \}
Condition: Mandatory and only for "body_family" = 'asteroid'

\section*{Definitions:}

Based on Bus-DeMeo 2009 spectral classification (24 classes)
For C-group dark carbonaceous objects:
- A-type
- B-type (2 Pallas)
- C-type (10 Hygiea) the remaining majority of 'standard' C-type asteroids.
- Cb-subtype
- Cg-subtype
- Cgh-subtype
- Ch-subtype

For S-group silicaceous (or "stony") objects:
- S-type (15 Eunomia, 3 Juno)
- Sa-subtype
- Sq-subtype
- Sr-subtype
- Sv-subtype

For X-group:
- X-type
- Xc-subtype
- Xe-subtype
- Xk-subtype

For Endmembers:

body_orbit_semimajor_axis
[body_orbit_semimajor_axis]
body_orbit_eccentricity
body_orbit_inclination_ecliptic
[body_orbit_inclination_ecliptic]
body_orbit_inclination_central_bo dy
[body_orbit_inclination_central_b ody]

\section*{body_orbit_direction}
[body_orbit_direction]
float
float U
float U [!_m]
float U [!o_m] [!o_m]

U

ObjPla
ObjPla F --

ObjPla F deg
Inclination of the orbit of the planetary body relative to the ecliptic Note:

ObjPla F deg Inclination of the orbit of the planetary body relative to the equator of the central object.
Condition: Mandatory only for "body_family" \(=\{\) satellite, ring system \(\}\) Note:

ObjPla F -- Direction of rotation of the orbit of the planetary body relative to the rotation of the central object.
OpenEnum: \{prograde, retrograde\}
Note:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline body_orbit_synchronous [body_orbit_synchronous] & boolean & \[
\begin{gathered}
\mathrm{U} \\
\text { [!o_m] }
\end{gathered}
\] & ObjPla & F & -- & \begin{tabular}{l}
Flag telling if the orbit of the planetary body is synchronous to the rotation of the central object around which it orbits \\
BoolEnum: \{yes, no\} or \{true, false\} \\
Condition: Mandatory only for "body_family" \(=\{\) satellite \(\}\) \\
Definition: a synchronous orbit means that the orbital period of the object is the same as the rotation period of the central object and that the orbit direction is 'prograde' \\
Note: for synchronous
\end{tabular} \\
\hline body_orbit_period [body_orbit_period] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & day & Orbital period of orbit of the planetary body relative to the central object (sun, planet, ...) \\
\hline
\end{tabular}

\section*{Planetary body rotation properties}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{body_rotation_synchronous [body_rotation_synchronous]} & \multirow[t]{4}{*}{boolean} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{4}{*}{ObjPla} & \multirow[t]{4}{*}{F} & -- & Flag telling if the rotation of the planetary body around its axis is synchronous to its orbit \\
\hline & & & & & & BoolEnum: \(\{\) yes, no\} or \(\{\) true, false \(\}\) \\
\hline & & & & & & Definition: a synchronous rotation means that the rotation period of the object is the same as the orbital period and in the same direction \\
\hline & & & & & & Note: not for "family" = 'interplanetary dust' \\
\hline \multirow[t]{2}{*}{body_rotation_obliquity [body_rotation_obliquity]} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{ObjPla} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{deg} & Tilt (called obliquity) of the rotation axis relative to the orbital axis of the planetary body \\
\hline & & & & & & Note: not for "family" = 'interplanetary dust' \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
body_rotation_period \\
[body_rotation_period]
\end{tabular}} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjPla} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{day} & Rotation period of the planetary body around its axis \\
\hline & & & & & & Condition: Mandatory only for "family" = \{planet, dwarf planet, satellite, asteroid\} \\
\hline & & & & & & Note: not for "family" = 'interplanetary dust' \\
\hline
\end{tabular}

\section*{Planetary body physical properties}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline body_dimensions [body_dimensions] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\text { £o_m] }}
\end{gathered}
\] & ObjPla & F & km & \begin{tabular}{l}
Dimensions of the planetary body along its 3 principal axes, with uncertainty \\
Condition: Compulsory only for irregular objects such as satellites, asteroids, distant minor planets, and comets \\
Note: give the dimensions in decreasing order
\[
E x: ~ ‘ 125(+/-5) \times 53(+/-3) \times(22(+/-2) ’
\]
\end{tabular} \\
\hline body_mean_radius [body_mean_radius] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & km & \begin{tabular}{l}
Mean radius of the planetary body \\
Note: \\
- will be either displayed in km, or also in Earth-radius for large objects \\
- Earth mean radius \(=6371.0 \mathrm{~km}\)
\end{tabular} \\
\hline body_mass [body_mass] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla & F & kg & \begin{tabular}{l}
Mass of the planetary body \\
Note: \\
- will be either displayed in kg, or also in Earth-mass for large objects \\
- Earth mass \(=5.97237 \times 10^{24} \mathrm{~kg}\)
\end{tabular} \\
\hline body_mean_density [body_mean_density] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & g/cm3 & Mean density of the planetary body, with uncertainty Note:
\[
E x: \text { ‘2.15 (+/-0.15)’ }
\] \\
\hline
\end{tabular}

\section*{Planetary body surface properties}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline body_surface_gravity [body_surface_gravity] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla & F & \(m / s 2\) & Gravity at the surface of the planetary body \\
\hline ```
body_surface_albedo_geometric_
visual
[body_surface_albedo_geometric_
visual]
``` & varchar(255) & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & -- & \begin{tabular}{l}
Visual geometric albedo (or albedo range or with uncertainty) of the surface of the planetary body \\
Definition: ratio of the actual brightness of the object as seen from the light
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{body_surface_albedo_bond [body_surface_albedo_bond]} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjPla} & \multirow[t]{3}{*}{F} & & Bond albedo (or albedo range or with uncertainty) of the surface of the planetary body \\
\hline & & & & & & \begin{tabular}{l}
Definition: fraction of power in the total electromagnetic radiation incident on an astronomical body that is scattered back out into space. \\
Note:
\end{tabular} \\
\hline & & & & & & Ex: '0.72 (+/-0.05)', '0.65-0.83' \\
\hline \multirow[t]{3}{*}{body_surface_temperature [body_surface_temperature]} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjPla} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{K} & Temperature range of the surface of the planetary body (with K unit) \\
\hline & & & & & & Note: temperature can vary with season, within a day, with latitude and with altitude of the surface \\
\hline & & & & & & Ex: ' 150 K (polar night) - 300 K (mid-day equator)' \\
\hline \multirow[t]{3}{*}{body_surface_pressure [body_surface_pressure]} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjPla} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{bar,
mbar} & Atmospheric pressure (or pressure range) at the surface of the planetary body (with unit) \\
\hline & & & & & & Note: pressure can vary with season (Mars, Pluto, ...) and with altitude of the surface \\
\hline & & & & & & Ex: '6-8 mbar at altitude zero' \\
\hline body_properties_comments [body_properties_comments] & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla & F & -- & Any additional information or comments on the physical properties of the planetary body \\
\hline & & & & & & Note: \\
\hline
\end{tabular}

\section*{Planetary body atmosphere composition}


\section*{Definitions:}
- 'atmosphere': in several parts of the atmosphere
- 'troposphere':
- 'stratosphere':
- 'polar stratosphere': stratosphere over the poles
- 'mesosphere':
- 'thermosphere:
- 'exosphere':
- tropospheric clouds,
- tropospheric aerosols,
- stratospheric aerosols,
- 'jet': within any type of transcient jet coming from the subsurface of te object (geyser, cometary jet, ...)
- 'coma': of a comet or any sublimating body

Note: one or several attributes can be chosen and separated by a coma when a specie or phase is present at different places
\begin{tabular}{lccccc}
\begin{tabular}{l} 
body_composition_atmosphere_co blob \\
mments \\
[body_composition_comments]
\end{tabular} & U & ObjPla & F & -- & \begin{tabular}{l} 
Any additional information or comments on the species or phases indentified \\
in the atmosphere of the planetary body
\end{tabular} \\
\hline Em\(]\) & & & Ex: 'include unknown amount of other hydrocarbons and nitriles'
\end{tabular}

\section*{Planetary body surface composition}

- ' \(\mathrm{CO}_{2}\) clathrate hydrate'
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
body_composition_surface_specie enum(text)
_state....
[body_composition_specie_state]
``` & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & ObjPla L3 & F & -- & \begin{tabular}{l}
State of the specie (gas) or phase (liquid, solid) identified at the (sub)surface of the planetary body_ \\
Enum: \{gas, liquid, solid\}
\end{tabular} \\
\hline \begin{tabular}{l}
body_composition_surface_specie float _mole_fraction \\
[body_composition_specie_mole_ fraction]
\end{tabular} & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
L3
\end{tabular} & F & \% & \begin{tabular}{l}
Mole fraction (in \%) of the specie identified at the (sub)surface of the planetary body \\
Note: value between 0 and 100
\end{tabular} \\
\hline ```
body_composition_surface_specie varchar(255)
_location
[body_composition_specie_locatio
n]
``` & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla L3 & F & -- & \begin{tabular}{l}
Type of location of the mineral/solid/liquid on the (sub)surface of the planetary body \\
FreeList: \{surface, subsurface, crust, mantle, N polar cap, S polar cap, glaciers, seasonal snow, permafrost, seas, lakes, rivers, ...\} \\
Definitions: \\
- surface, \\
- subsurface, \\
- crust, \\
- mantle, \\
- \(N\) polar cap, \\
- Spolar cap, \\
- glaciers, \\
- seasonal snow, \\
- permafrost, \\
- seas, \\
- lakes, \\
- rivers,
\end{tabular} \\
\hline
\end{tabular}

Note: one or several attributes can be chosen and separated by coma when a specie or phase is present at different places
\begin{tabular}{llll}
\begin{tabular}{l} 
body_composition_surface_comm \\
ents \\
[body_composition_comments]
\end{tabular} & \(\mathrm{U} \quad\) ObjPla & \(\mathrm{F} \quad-\mathrm{m}\)
\end{tabular}

\section*{Planetary body references}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline body_links & List [L4] & [O] & & & & £: Web pages describing the planetary body and its properties \\
\hline body_link_name [body_link_name] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
L4
\end{tabular} & F & & \begin{tabular}{l}
Name of the web site describing the planetary body and its properties. \\
Ex: 'Meteoretical Bulletin Database', ...
\end{tabular} \\
\hline body_link_url [body_link_url] & \begin{tabular}{l}
CS- \\
varchar(255)
\end{tabular} & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
URL address of the web page describing the planetary body. \\
Notes: \\
- can link to a publication by giving its url address, preferably through its DOI. \\
Ex: https://doi.org/10.1002/ejic. 200700067
\end{tabular} \\
\hline body_publications & List [L5] & [O] & & & & £: Publications describing the planetary and its properties. \\
\hline \begin{tabular}{l}
body_publication_uid [*] \\
[body_publication_uid]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
Publi \\
L5
\end{tabular} & F & -- & \begin{tabular}{l}
Link to the existing UID of the publication describing the planetary body and its properties. \\
Note: mostly publications describing the planetary body, its composition, properties, ... \\
Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter'
\end{tabular} \\
\hline
\end{tabular}

\section*{10. Natural Objects}

\subsection*{10.1 Definition}

The Objects are the geologic objects from which some natural matters (terrestrials or extraterrestrials) come from (e.g. "meteorites", "micrometeorites", "IDPs", "planetary"...).

The generic information on these "objects"is described by a set of key-words.

\subsection*{10.2 Meteorite objects Table}

Root of the table: object_meteorite
Data type: 'Object'
Key-word Type Level Table Exp Unit Description

\section*{Meteorite object import}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{object_meteorite_import_mode [object_import_mode]} & \multirow[t]{2}{*}{enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{ObjMet} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{--} & \begin{tabular}{l}
Mode of import of the "meteorite object" data \\
Enum: \{first import, ignore, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline object_meteorite_xml_filename [-xml] & \begin{tabular}{l}
varchar(255) \\
[virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{vc}]}
\end{gathered}
\] & ObjMet & (V) & -- & Name of the storage copy of the xml import file of the "object_meteorite" metadata \\
\hline [object_xml_filename] & & & & & & ite uid»?) \\
\hline
\end{tabular}

Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction

\section*{Meteorite object indexes}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
object_meteorite_index [* \\
[object_index]
\end{tabular} & nt(10) & \[
\begin{gathered}
\text { B } \\
{[!!, \mathrm{g}]}
\end{gathered}
\] & ObjMet & F & -- & Automatic random but unique number given to new meteorite object \\
\hline object_meteorite_uid [**] & varchar(255) & S0/S1s & ObjMet & F & -- & Unique identifier code given to the meteorite object table (to be created) \\
\hline [object_uid] & & ! _m] & & & & \begin{tabular}{l}
Nomenclature: Create this code name with 'OBJMET_' and very accurately in order to be simple and unique. It should be of the style \\
'OBJMET_MeteoriteName' where 'MeteoriteName' is the common name of the meteorite object, with all non-basic ASCII characters (é, ù, -, ...), and space removed or transformed in '_'.
\end{tabular} \\
\hline
\end{tabular}

Ex: ‘OBJMET_Cold_Bokkeveld', ‘OBJMET_ALHA77307’, ...

\section*{Meteorite object name}


\section*{Meteorite object origin}

\begin{tabular}{|c|c|c|c|c|c|}
\hline object_meteorite_recovery_mass float [object_mass] & \[
\begin{gathered}
\mathrm{S} 3 / \mathrm{Us} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjMet & F & & Total recovered mass of the meteorite object Unit: g \\
\hline \multicolumn{6}{|l|}{Meteorite object: planetary body} \\
\hline ```
object_meteorite_recovery_body_ varchar(255)
uid [*]
[object_recovery_body_uid]
``` & \[
\underset{\left[!!\_\mathrm{m}\right]}{\mathrm{SS} 2}
\] & \begin{tabular}{l}
QbiadetF \\
Body
\end{tabular} & F & -- -- & \begin{tabular}{l}
Link to the existing UID of the planetary body from which the meteorite originates \\
Default: 'BODY_planet_Earth' \\
Note: \\
- currently only for meteorites collected on Earth \\
- will be possibly extended later for meteorites collected on the Moon or Mars.
\end{tabular} \\
\hline \multirow[t]{5}{*}{```
object_meteorite_recovery_body_ openum(text)
coordinate_system
[object_recovery_body_coordinat
e_system]
```} & \multirow[t]{5}{*}{\[
\underset{\left[!\mathrm{d} _\mathrm{m}\right]}{\mathrm{U}}
\]} & \multirow[t]{5}{*}{ObjMet F} & \multirow[t]{5}{*}{F} & \multirow[t]{5}{*}{--} & Coordinate system on the planetary body of the geographic location of the recovery place of the meteorite \\
\hline & & & & & OpenEnum: \(\{\) WGS84, Mars 2000, Moon 2000, ...\} \\
\hline & & & & & Default: 'WGS84' \\
\hline & & & & & Definitions: see "experiment_body_coordinate_system" \\
\hline & & & & & Notes: currently only 'WGS84' for Earth \\
\hline
\end{tabular}

\section*{Meteorite object: geolocation}

\begin{tabular}{l} 
object_meteorite_recovery_geoloc \\
\begin{tabular}{l} 
ation_country_code \\
[object_recovery_geolocation_cou \\
ntry_code]
\end{tabular} \\
\end{tabular}
\(E x\) : ' 12.12345 ' provides 1 m accuracy
object_meteorite_recovery_geoloc ation_coordinate_longitude [object_recovery_geolocation_coo rdinate_longitude]
float
S3
\(\left[\mathrm{O}!_\mathrm{m}\right]\)\(\underset{\mathrm{L} 0}{ } \mathrm{ObjMet} \quad \mathrm{F} \quad \operatorname{deg}\)
float

Longitude of the geographic location of the recovery place of the meteorite
Format: in E 'decimal degrees' (in the E direction only) in "object_meteorite_recovery_body_coordinate_system"

Note: same as for
"object_meteorite_recovery_geolocation_coordinate_latitude" and even less at high latitude

Ex: ' 12.12 ' provides 100 m accuracy at \(85^{\circ}\) latitude
Altitude of the geographic location of the recovery place of the meteorite
Format: in 'm' in "object_meteorite_recovery_body_coordinate system" Notes:
- from the body reference ellipsoid (planetographic coordinates)
- or from the reference sphere (planetocentric coordinates) (altitude 0)
\begin{tabular}{lccccc}
\begin{tabular}{l} 
object_meteorite_recovery_comm \\
ents \\
{\([\) object_recovery_comments \(]\)}
\end{tabular} & blob & U & ObjMet & F & -- \\
{\([\mathrm{m}]\)}
\end{tabular}\(\quad\)\begin{tabular}{l} 
Additional information or comments about the recovery of the meteorite
\end{tabular}

\section*{Meteorite object type}


```

object_meteorite_group
[object_group - \#Enum]
openum(text) }$$
\begin{array}{l}{\mathrm{ S1/S1s ObjMet F}}\\{[!!_m]}\end{array}
$$\quad

```
chondritic precursor asteroids
- 'differentiated planetary': They are nonchondritic meteorites formed by planetary differentiation of large planetary bodies (Mars, Moon)
- 'unknown': objects that has not been classified

Note: objects that may not be meteorites, including the fusion crusts, should not be described as "object_meteorite"
Note: for breccia and silicate-bearing irons it is the type of the hosting (dominating) component. The type(s) of the other(s) component(s) should be given in "comments"

Meteoritical Bulletin Database: http://www.lpi.usra.edu/meteor/index.php Antarctic Meteorite Classification Database:
https://curator.jsc.nasa.gov/antmet/
Wikipedia: http://en.wikipedia.org/wiki/Chondrite
http://en.wikipedia.org/wiki/Achondrite
http://en.wikipedia.org/wiki/Iron_meteorite
http://en.wikipedia.org/wiki/Stony-iron_meteorite
http://class.meteorites.com.au/
-- Group of the meteorite
OpenEnum: \{carbonaceous chondrite, ordinary chondrite, enstatite chondrite, Kakangari-like chondrite, Rumuruti-like chondrite, ungrouped chondrite, primitive achondrite, differentiated achondrite, enstatite-rich achondrite, stony-iron, iron, ungrouped achondrite, martian, lunar, unknown\}

Definitions: see Krot et al. (2003)
For category = 'chondritic':
- 'carbonaceous chondrite': a major class of chondrites that mostly have \(\mathrm{Mg} / \mathrm{Si}\) ratios near the solar value and oxygen isotope compositions that plot below the terrestrial fractionation line.
- 'ordinary chondrite': a major class of chondrites, distinguished by subsolar \(\mathrm{Mg} / \mathrm{Si}\) and refractory/Si ratios, oxygen isotope compositions that plot above the terrestrial fractionation line, and a large volume percentage of chondrules, with only \(10-15 \mathrm{vol} \%\) fine-grained matrix.
- 'enstatite chondrite': a major class of chondrites that mostly have sub-
solar \(\mathrm{Mg} / \mathrm{Si}\) and refractory/Si ratios, oxygen isotope compositions that plot near the terrestrial fractionation line, and highly reduced mineral assemblages (containing little FeO, Si-bearing metal, and sulfides of elements normally considered lithophile).
- 'Kakangari-like': a grouplet of chondrites with similarities to Kakangari, which do not fit into the major classes of chondrites such as carbonaceous, ordinary, or enstatite.
- 'Rumuruti-like': a group of chondrites that does not clearly belong to any of the major classes of chondrites (ordinary, carbonaceous, enstatite); R chondrites have sub-solar \(\mathrm{Mg} / \mathrm{Si}\) and refractory/Si ratios, oxygen isotope compositions that plot above the terrestrial fractionation line and ordinary chondrites, and highly oxidized mineralogy
- 'ungrouped chondrite': chondrite well-enough characterized to determine that it do not fit into any of the above groups.
For category = 'nonchondritic':
- 'primitive achondrite': a meteorite that has lost its chondritic texture due to heating and partial melting, but still has nearly chondritic composition.
- 'differentiated achondrite': A stony meteorite that lacks chondrules and originated on a differentiated parent body.
- 'enstatite-rich achondrite': an enstatite-rich achondrite that has not yet been classified into one of the 4 achondrite groups
- 'stony-iron': A stony meteorite, mostly pallasite and mesosiderite
- pallasite: A meteorite that is a mixture of metal and silicates (usually olivine grains).
- mesosiderite: A brecciated meteorite containing subequal silicate and metallic components; the silicates are dominantly igneous rock fragments.
- 'iron': A meteorite that is dominantly composed of \(\mathrm{Fe}-\mathrm{Ni}\) metal and that crystallized from a melt.
- 'ungrouped achondrite': an achondrite well-enough characterized to determine that it do not fit into any of the above groups.
For category = 'differentiated planetary':
- 'martian': Martian meteorites are martian rocks that were ejected from
object_meteorite_class [object_class - \(\neq\) Enum]

Mars by impacts and later fell to the Earth as meteorites. Three wellknown types are shergottites (basaltic to lherzolitic igneous rocks, named after the Shergotty, India, fall of 1865), nakhlites (clinopyroxenites or wehrlites, formed as cumulate rocks, and named after the Nakhla, Egypt, fall of 1911), and chassignites (dunitic cumulate rocks named after the Chassigny, France, fall of 1815).
- 'lunar': Lunar meteorites are lunar rocks that were ejected from the Moon by impacts and later fell to the Earth as meteorites. For category = 'unknown':
'unknown': objects that has not been classified;
Note: objects that may not be meteorites, including the fusion crusts, should not be described as "object_meteorite"

Note:
for breccia and silicate-bearing irons it is the group of the hosting (dominating) component. The group(s) of the other(s) component(s) should be given in "comments"

Ref: Classification of meteorites, Krot et al. (2003), in Treatise of Geochemistry, chap 1.05, pp. 1-52 (pdf)
\begin{tabular}{cc} 
openum(text) & \begin{tabular}{c} 
S1b/S1b ObjMet \\
s \\
{\(\left[!_m\right]\)}
\end{tabular}
\end{tabular}

OpenEnum: \(\{\mathrm{CI}, \mathrm{CM}, \mathrm{CR}, \mathrm{CO}, \mathrm{CV}, \mathrm{CVOx}, \mathrm{CVRed}, \mathrm{CK}, \mathrm{CH}, \mathrm{CB}, \mathrm{CBa}, \mathrm{CBb}\), CH/CB, C ungrouped, H, H/L, L, L/LL, LL, EH, EL, K, R, acapulcoite, lodranite, acapulcoite-lodranite, winonaite, angrite, aubrite, brachinite, ureilite, howardite, eucrite, diogenite, pallasite, mesosiderite, IAB, IC, IIAB, IIC, IID, IIE, IIF, IIG, IIIAB, IIICD, IIIE, IIIF, IVA, IVB, shergottite, nacklite, chassignite, orthopyroxenite, augite-rich basalt, basalt, anorthite, basaltanorthite, gabbro, feldspathic breccia, basaltic breccia, ungrouped, not classified, other

Note: To be chosen in a list depending on "object_meteorite_group" For category = 'chondritic':
- 'carbonaceous chondrite': CI, CM, CR, CO, CV, CVOx, CVRed, CK, \(\mathrm{CH}, \mathrm{CB}, \mathrm{CBa}, \mathrm{CBb}, \mathrm{CH} / \mathrm{CB}, \mathrm{C}\) ungrouped, not classified, other
- 'ordinary chondrite': H, H/L, L, L/LL, LL, not classified (not yet, or
not fully classified), other
- 'enstatite chondrite': EH, EL, not classified, other
- 'Kakangari-like': K
- 'Rumuruti-like': R
- 'ungrouped chondrite': not classified
- 'unknown chondrite': fusion crust (piece of fusion crust that became detached from a chondrite meteorite)
For category \(=\) 'nonchondritic':
- 'primitive achondrite': acapulcoite, lodranite, winonaite, acapulcoitelodranite, other (silicate-bearing IAB, IIE and IIICD irons)
- 'differenciated achondrite': angrite, aubrite, brachinite, ureilite, howardite, eucrite, diogenite, other
- 'enstatite achondrite': not classified
- 'stony-iron': pallasite, mesosiderite, not classified, other
- 'iron’: IAB, IC, IIAB, IIC, IID, IIE, IIF, IIG, IIIAB, IIICD, IIIE, IIIF, IVA, IVB, ungrouped (does not fit into any of the above chemical groups)
Note: 'IIICD' a fusionné avec 'IAB'
- 'ungrouped achondrite': other (silicate-bearing IVA iron?)

For category \(=\) 'differentiated planetary'.
- 'martian': shergottite, nakhlite, chassignite, orthopyroxenite, augiterich basalt, other (for the breccias)
Note: les 3 premiers sont parfois regroupé sous le terme 'SNC'
- 'lunar': basalt, anorthite, basalt-anorthite, gabbro, norite, feldspathic breccia, basaltic breccia, other (for the other rock types and breccias: basaltic-gabbroic breccia, troctolitic anorthosite, olivine-bearing gabbro, olivine-bearing gabbronorite)
Definitions:
- All class definitions can be found in the Meteoritical Bulletin Database: https://www.lpi.usra.edu/meteor/metbull.php
- 'ungrouped': a meteorite that belongs to none of the defined classes
- 'C ungrouped': a meteorite that belongs to the general C class but to none of the defined C subclasses
- 'not classified': a meteorite that most probably belongs to one of the defined classes but has not yet been classified
object_meteorite_chondrite_petrol varchar(255)
ogic_type
[object_type \(-\neq\) Enum]
object_meteorite_achondrite_petr varchar(255) S1/S3s ObjMet F ologic_type
[object_type - \(\neq\) Enum] [!o_m]

S1/S3s ObjMet F

Note:
- for 'ungrouped' and 'other': need to write additional information in "object_meteorite_comments"
- for breccia and silicate-bearing irons it is the class of the hosting (dominating) component. The class(es) of the other(s) component(s) should be given in "comments" (also their relative abundance(s), petrologic_type(s), weathering(s), ... if relevant). When (very rarely) there are 2 or more components of similar abundances, then put your main component of interest and the information on the other(s) in "comments".
-- Petrologic type of the chondritic meteorite
FreeList: \(\{1,1 / 2,1-2,2,2.0,3,3.0,3.00,3.05,3.1,3.10,3.15,3.1 / 3.4,3.2\), \(3.3,3.4,3.5,3.6\), sup 3.6, 3.7, 3.8, 3.9, 3/4, 3-4, 3-5, 3-6, 4, 4/5, 5, 5/6, 6, 7, undefined, other, ...\}
Condition: mandatory only when "object_meteorite_category" = 'chondritic'
Note: range of values:
- 'carbonaceous chondrite' \(\mathrm{Cx}: 1\) to 7
- 'ordinary chondrite' H, L, LL: 3 to 7
- 'enstatite chondrite': EH: 3 to 5, EL: 3 to 6
- 'ungrouped chondrite': 1 to 7
- 'Kakangari-like" K: 3
- 'Rumuruti-like" R: 3, 4
- 'undefined': not yet defined petrologic type
- 'other': breccias with several different petrologic types
- any type of range of type can be given (FreeList) such as 3-4, 4/5, ...
-- Petrologic type or chemical group of the achondritic meteorite
OpenEnum: \{MG, sHH, sHL, sLH, sLL, sLM, A, A1, A2, A3, A4, B, B1, B2, B3, B4, C, C2, C3, PMG, PES, ungrouped, undefined, other\}

Condition: mandatory only when "object_meteorite_category" = 'nonchondritic'

For "Class" = 'IAB' [iron meteorite IAB complex \}:
- 'MG’: main group
- 'sHH': high-Au, high-Ni subgroup
- 'sHL': high-Au, low-Ni subgroup
- 'sLH': low-Au, high-Ni subgroup
- 'sLL': low-Au, low-Ni subgroup
- 'sLM': low-Au, medium-Ni subgroup

For "Class" = 'Mesosiderite':
- 'A': petrologic class A (basaltic)
- 'A1': petrologic class A and metamorphic grade 1
- 'A2': petrologic class A and metamorphic grade 2
- 'A3': petrologic class A and metamorphic grade 3
- 'A4': petrologic class A and metamorphic grade 4
- ' B ’: petrologic class B (more ultrmafic)
- 'B1': petrologic class B and metamorphic grade 1
- 'B2': petrologic class B and metamorphic grade 2
- 'B3': petrologic class B and metamorphic grade 3
- 'B4': petrologic class B and metamorphic grade 4
- 'C': petrologic class C (orthopyroxenite)
- 'C2': petrologic class C and metamorphic grade 2
- 'C3': petrologic class C and metamorphic grade 3

For "Class" = 'Pallasite':
- 'PMG': main petrologic/chemical group.
- 'PES': Eagle Station petrologic/chemical group.
- 'Pyroxene': with mm-sized pyroxene (Krot, mais pas dans MetBul)

For all "Class":
- 'ungrouped': does not fit into any of the above chemical groups
- 'undefined': not yet defined petrologic type
- 'other': breccias with several different petrologic types
object_meteorite_shock enum(text) S2/Us ObjMet F
[m]
-- Shock metamorphism stage of the meteorite
Enum: \{S1, S2, S3, S4, S5, S6, S7, unshocked, very low, low, moderate, high, very high, severe, undefined\}
Definitions:


For chondritic or nonchondritic meteorites:
- 'Sl' or 'unshocked': unshocked
- 'S2' or 'very low': very weakly shocked
- 'S3' or 'low': weakly shocked
- 'S4' or 'moderate': moderately shocked
- 'S5' or 'high': strongly shocked
- 'S6' or 'very high': very strongly shocked
- 'S7' or 'severe': shock-melted
- 'undefined': not yet determined shock metamorphism stage

Notes:
- the 'Sn' notation is used for chondritic meteorites while the 'adjective' notation is used for nonchondritic meteorites
- 'S7' is listed but not yet officially attributed to shock-melted meteorites
- shock as observed in olivine and plagioclase for chondrites, extended to orthopyroxene for Enstatite chondrites
- other terms used for nonchondritic meteorites should be translated:
- 'strong', 'strongly shocked', 'highly shocked', => 'high'
- 'extensive shock' => 'very high'
- 'severely shocked' => 'severe'
- when intermediate or multi-stages occurs, put the first in 'object_meteorite_shock' and the whole description in 'object_meteorite_comments'
\[
\text { ex: S2-4, } \overline{\mathrm{S}} 4 / 5, \ldots
\]

Ref: Classification of meteorites, Krot et al. (2003), p. \(8 \& 12\)
object_meteorite_weathering enum(text) \(\begin{gathered}\text { S2/Us } \\ {[\mathrm{m}]}\end{gathered} \mathrm{ObjMet} \mathrm{F}\)

Enum: \(\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{Ae}, \mathrm{Be}, \mathrm{Ce}, \mathrm{W} 0, \mathrm{~W} 1, \mathrm{~W} 2, \mathrm{~W} 3, \mathrm{~W} 4, \mathrm{~W} 5, \mathrm{~W} 6\), minor, low, moderate, high, severe, undefined

\section*{Definitions:}

For hand specimens of Antarctic meteorites:
- ' \(B\) ': moderate rustiness
- ' \(C\) ': severe rustiness
- ' \(D\) ': evaporite minerals visible to the naked eye
- 'Ae': minor rustiness with evaporate minerals
- ' \(B e\) ': moderate rustiness with evaporate minerals
- ' \(C e\) ': severe rustiness with evaporate minerals

For meteorites in polished sections:
- 'WO': no visible oxidation of metal or sulfides
- 'Wl': minor oxide veins and rims around metal and troilite
- 'W2': moderate oxidation of B20-60\% of metal
- 'W3': heavy oxidation of metal and troilite, 60-95\%being replaced
- 'W4': complete oxidation of metal and troilite, but no oxidation of silicates
- 'W5': beginning alteration of mafic silicates, mainly along cracks
- 'W6': massive replacement of silicates by clay minerals and oxides

For nonchondritic meteorites:
- 'minor'.
- 'low':
- 'moderate':
- 'high':
- 'severe':

For all meteorites:
- 'undefined': not yet defined weathering

Notes:
- other terms used for nonchondritic meteorites should be translated:
- 'very low', 'minimal' => 'minor'
- 'strong' => 'high'
- when intermediate or multi-grades occurs, put the first in 'object_meteorite_ weathering' and the whole description in 'object_meteorite_comments'

> ex: A/B, A/Be, B/C, B/Ce, C/D, W0-1, W1-2, W1/2,...

Ref: Classification of meteorites, Krot et al. (2003), p. 8-9
\begin{tabular}{llcll}
\begin{tabular}{l} 
object_meteorite_comments \\
[object_comments]
\end{tabular} & blob & \begin{tabular}{c}
\(U\) \\
{\([\mathrm{~m}]\)}
\end{tabular} & ObjMet & F
\end{tabular} \begin{tabular}{l}
--\begin{tabular}{l} 
Additional information on the meteorite object (information on intermediate \\
classes (CM/CI, CO/CM, CK/CV, ...), on iron old classification (hexahedrite \\
(H), octahedrite (O), ataxite (D)), on 'ungrouped chondrite' or 'other class, on
\end{tabular} \\
\hline
\end{tabular}
'other' petrologic or chemical types), and also for the other type/group/classes present in breccia and silicate-bearing irons, ... (+ relative abundance(s), petrologic_type(s), weathering(s), ...)

\section*{Meteorite object images}



\section*{Meteorite object documentation and references}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_meteorite_links & List [L4] & [O] & & & & \(£:\) Web pages describing the meteorite object and its properties \\
\hline object_meteorite_link_name [object_link_name] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjMet \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
Name of the web site describing the meteorite object and its properties. \\
Ex: 'Meteoretical Bulletin Database', 'Antarctic Meteorites / NASA'.
\end{tabular} \\
\hline object_meteorite_link_url [object_link_url] & CS- & U & \begin{tabular}{l}
ObjMet \\
L4
\end{tabular} & F & -- & URL address of the web page describing the meteorite object. Notes: \\
\hline
\end{tabular}

\section*{varchar(255) \\ [m]}
\begin{tabular}{lcccc} 
object_meteorite_publications & List [L5] & [O] & & \\
& & & & \\
object_meteorite_publication_uid & varchar(255) & U & ObjMet & F \\
{\([*]\)} & {\([\mathrm{m}]\)} & Publi & \\
[object_publication_uid] & & & L5 &
\end{tabular}
- can link to a publication by giving its url address, preferably through its DOI.
Ex: https://doi.org/10.1002/ejic. 200700067
\(£\) : Publications describing the meteorite and its properties.
-- Link to the existing UID of the publication describing the meteorite and its properties.
Note: mostly publications describing the meteorite object, its composition, properties, ...
Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter'

\subsection*{10.3 Micrometeorite objects Table}

Root of the table: object_micromet
Data type: 'Object'
Key-word Type Level Table Exp Unit Description

\section*{Micrometeorite object import}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
object_micromet_import_mode \\
[object_import_mode]
\end{tabular} & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{\left[!!_\mathrm{m}\right]}
\end{gathered}
\] & ObjMM & F & -- & \begin{tabular}{l}
Mode of import of the "micrometeorite object" data \\
Enum: \{first import, ignore, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline object_micromet_xml_filename [-xml] & \begin{tabular}{l}
\(\operatorname{varchar}(255)\) \\
[virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{P} \\
{[!!\text { _vc] }}
\end{gathered}
\] & ObjMM & (V) & -- & Name of the storage copy of the xml import file of the "object_micrometeorite" metadata \\
\hline [object_xml_filename] & & & & & & \(\rightarrow\) determined automatically during import (from "object_micromet_uid" ?) \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline
\end{tabular}

\section*{Micrometeorite object indexes}
object_micromet_index [**][-xml] int(10)
[object_index]
object_micromet_uid [**]
[object_uid]

B ObjMM F -- Automatic random but unique number given to a new micrometeorite object

\section*{[!!_g]}

S0 ObjMM F

Nomenclature: Create this code name with 'OBJMM' and be very accurately in order to be simple and unique. It should be of the style 'OBJMM_(Collection)MicrometeoriteName' where 'Collection' is an acronym for the sampling area, if not already present in 'MicrometeoriteName', and 'MicrometeoriteName' is the common name/number of the micrometeorite object (with all separators removed).

Note: see note in "object_micromet_name"
Ex: Name \(=\) 'Concordia DC 94-100-106' \(=>\) uid \(=\) 'OBJMM_DC94100106'

\section*{Micrometeorite object name}
```

object_micromet_family [-xml] enum (text) S0/S0s ObjMM F -- Family of object
[object_family]
Family of object
Enum: \{micrometeorite\}
Default $=$ 'micrometeorite'

```

\section*{Definitions:}
```

- 'micrometeorite': extraterrestrial dust particles between $10 \mu \mathrm{~m}$ and 2 mm in size collected at Earth's surface (in contrast to IDPs collected in the stratosphere)

```
object_micromet_name
[object_name]
-- Name of the micrometeorite object
Note: It should be typically 'Collection MicrometeoriteName’ where 'Collection' is an acronym for the sampling area, if not already present in 'MicrometeoriteName', and 'MicrometeoriteName' is the common name/number of the micrometeorite object

\section*{Nomenclature: for 'Collection':}
- DC = Concordia
- TAM = Transantarctic Mountains
- ATA = Atacama
- SPWW = South Pole Water Well
- DSS = Deep Sea Sediments
- GL = Greenland
- \(\mathrm{CP}=\) Cap Prudhomme
- ?

Note:
- the different collections of micrometeorites are currently more or less well organized, with not always a clear and unique nomenclature for their names. Frequently they just get an order number.
- the above nomenclature tries to give a unique name by concatenating
the acronym of the collection site with the order number.
Ex: Concordia DC 94-100-106
\begin{tabular}{lccc}
\begin{tabular}{ll} 
object_micromet_secondary_name \\
[object_secondary_name]
\end{tabular} & varchar(255) & \begin{tabular}{c} 
S0/S1s ObjMM \\
{\([\mathrm{m}]\)}
\end{tabular} & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ```
object_micromet_recovery_geoloc
ation_place
[object_recovery_geolocation_plac
e]
``` & \(\operatorname{varchar}(255)\) & \[
\begin{aligned}
& \text { S 1/Us } \\
& {\left[!\_\mathrm{m}\right]}
\end{aligned}
\] & ObjMM \\
\hline \begin{tabular}{l}
object_micromet_recovery_geoloc ation_region \\
[object_recovery_geolocation_regi on]
\end{tabular} & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\text { S1/Us } \\
{[\mathrm{m}]}
\end{gathered}
\] & ObjMM \\
\hline ```
object_micromet_recovery_geoloc
ation_country_code
[object_recovery_geolocation_cou
ntry_code]
``` & enum(text) & \[
\begin{aligned}
& \text { S1/Us } \\
& {\left[!\mathrm{o} _\mathrm{m}\right]}
\end{aligned}
\] & ObjMM \\
\hline ```
object_micromet_recovery_geoloc
ation_type
[object_recovery_geolocation_type
]
``` & enum(text) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & ObjMM \\
\hline object_micromet_recovery_geoloc ation_coordinates [object_recovery_geolocation_coo rdinates] & List [L0] & [!o] & \\
\hline
\end{tabular}
-- Place of recovery on Earth of the micrometeorite
Note: it is the name of geographic area or town of recovery of the micrometeorite
Ex: 'Queen Alexandra range’
-- Region, state, province or county (administrative location) of the recovery place on Earth of the micrometeorite
Constraint: only when "object_micromet_recovery_body_uid" = ‘BODY_planet_Earth'

Ex: 'Murmanskaja Oblast', ‘Sicilia', 'Rhône-Alpes', 'Arizona', ‘Zambezi'
-- 2-digit code of the country of the recovery place on Earth of the micrometeorite Enum: \(\{\mathrm{AQ}, \mathrm{AU}, \mathrm{CH}, \mathrm{CL}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}\)

Label (code): see "laboratory_address_country_code"
Condition: mandatory and only when "object_micromet_recovery_body_uid" = 'BODY_planet_Earth'
Definitions: see "laboratory_address_country_code"
Ex: 'AQ' for Antarctica
-- Type of geographic location of the recovery place of the micrometeorite Enum: \{point, line, box, polygon\}
Condition: absolute mandatory when
"object_micromet_recovery_geolocation_coordinate_latitude" \(\neq \varnothing\)
Definitions: see "experiment_geolocation_type"
£: Geolocation (x,y,z coordinates) on Earth of the recovery place of the micrometeorite
Condition: absolute mandatory when
"object_micromet_recovery_geolocation_type" \(\neq \varnothing\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{object_micromet_recovery_geoloc ation_coordinate_latitude [object_recovery_geolocation_coo rdinate_latitude]} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { S3 } \\
{\left[!!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
ObjMM \\
L0
\end{tabular}} & \multirow[t]{3}{*}{F deg} & Latitude of the geographic location of the recovery place of the micrometeorite Format: in N 'decimal degrees' (negative value for S hemisphere) in WGS84 system \\
\hline & & & & & Note: 3 (100 m) to 5 decimals (1 m accuracy) are enough \\
\hline & & & & & Ex: '12.12345' provides 1 m accuracy \\
\hline \multirow[t]{4}{*}{object_micromet_recovery_geoloc ation_coordinate_longitude [object_recovery_geolocation_coo rdinate_longitude]} & \multirow[t]{4}{*}{float} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { S3 } \\
{[!!\mathrm{o} \text { m }]}
\end{gathered}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
ObjMM \\
L0
\end{tabular}} & \multirow[t]{4}{*}{F deg} & Longitude of the geographic location of the recovery place of the micrometeorite \\
\hline & & & & & Format: in E 'decimal degrees' (in the E direction only) in WGS84 system \\
\hline & & & & & \begin{tabular}{l}
Note: same as for \\
"object_micromet_recovery_geolocation_coordinate_latitude" and even less at high latitude
\end{tabular} \\
\hline & & & & & Ex: '12.12' provides 100 m accuracy at \(85^{\circ}\) latitude \\
\hline \multirow[t]{4}{*}{object_micromet_recovery_geoloc ation_coordinate_altitude [object_recovery_geolocation_coo rdinate_altitude]} & \multirow[t]{4}{*}{float} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{ObjMM
L0} & \multirow[t]{4}{*}{F m} & Altitude of the geographic location of the recovery place of the micrometeorite \\
\hline & & & & & Format: in 'm' in WGS84 system \\
\hline & & & & & Notes: \\
\hline & & & & & \begin{tabular}{l}
- from the body reference ellipsoid (planetographic coordinates) \\
- or from the reference sphere (planetocentric coordinates) (altitude 0)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
object_micromet_recovery_comme
nts
[object_recovery_comments]
``` & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjMM & F & & \begin{tabular}{l}
Additional information or comments about the recovery of the micrometeorite \\
Ex: ‘collected jointly by ANSMET (US) and NIPR (Japan)', 'location accurate at \(+/-1 \mathrm{~km}\) ', ‘, ‘coordinates accurate at \(+/-0.1^{\circ}\),
\end{tabular} \\
\hline
\end{tabular}

\section*{Micrometeorite object characteristics}
object_micromet_sampling_metho varchar(255) U ObjMM F -- Method to sample the micrometeorite (melting of snow, magnetic extraction...)

object_micromet_class [object_class - \(\neq\) Enum]
openum (text) S1/S1s ObjMM F [!!_m]
- 'unmelted': dominated by a fine-grained porous groundmass of micronsized mineral grains and are similar to the fine-grained matrices of chondritic matrices. Have broadly chondritic compositions.
-- Class of the micrometeorite
OpenEnum: \{cosmic spherule, scoriaceous, mixed, fine-grained, coarsegrained, refractory, ultracarbonaceous \}

\section*{Definitions:}

For group = 'melted':
- 'cosmic spherule': spherical to subspherical particles formed as molten droplets during atmospheric entry
For group = 'partially melted':
- 'scoriaceous': dominated by a mesostasis of microporphyritic olivine, usually with crystal sizes \(<1 \mu \mathrm{~m}\), within an interstitial silicate glass phase. Often contain relict minerals and relict matrix areas.
- 'mixed': composite particles partially melted and including selvages of fine-grained matrix
For group = 'unmelted':
- 'fine-grained': dominated by a fine-grained porous groundmass of micron-sized mineral grains
- 'coarse-grained': dominated by anhydrous silicates with grain-sizes larger than several microns, often with glassy mesostasis
- 'refractory': unmelted MMs containing refractory minerals that are likely to be fragments of refractory inclusions. Contain isolated grains of spinel, perovskite, melilite, fassaite, and hibonite.
- 'ultracarbonaceous': contain higher abundances of carbon than CI chondrites, with heterogeneous compositions of silicates suggesting they are unequilibrated particles.

Ref: The classification of micrometeorites. Genge et al. (2008) MAPS, 43(3) 497-515 (pdf)
-- Type of the micrometeorite
OpenEnum: \(\{\) S-type, G-type, I-type, C1, C2, C3, FgF, FgC, chondritic

CgMMs, achondritic CgMMs , single crystal CgMMs , porous, compact, hydrated\}
Constraint: only when "object_micromet_class" \(=\{\) cosmic spherule, finegrained, coarse-grained, refractory\}

\section*{Definitions:}

For class \(=\) 'cosmic spherule': Cosmic Spherule are subdivided into several chemical subtypes reflecting their principle mineralogy:
- 'S-type': silicate-type spherules, the most common. Have broadly chondritic compositions.
- 'G-type': spherules typically dominated by magnetite dendrites within a mesostasis of silicate glass with major element compositions intermediate between \(S\) - and I-types
- 'I-type': iron-rich spherules dominated by FeO with minor amounts of other oxides.
For class = 'fine-grained':
- 'Cl': compact FgMMs with low apparent porosities that are chemically homogeneous over scales of \(10 \mu \mathrm{~m}\)
- ' \(C 2\) ': compact FgMMs with low porosities that are chemically heterogeneous in particular in their \(\mathrm{Fe} / \mathrm{Mg}, \mathrm{Fe} / \mathrm{Si}\) over scales of 10 \(\mu \mathrm{m}\)
- 'C3':porous FgMMs (porosity up to \(50 \%\) by volume) that are dominated by subhedral magnesian olivine and pyroxene grains
- ' \(F g F\) ': unmelted micrometeorites with a fine-grained porous groundmass presenting textures similar to chondritic porous IDPs (//C3)
- ' \(F g C\) ': Fine-grained compact MMs, have a smooth compact texture (generally \(\mathrm{C} 1, \mathrm{C} 2\) ) - in contrast to the fluffy particles
For class \(=\) 'coarse-grained' :
- 'chondritic CgMMs': coarse grained micrometeorites with igneous textures, dominated by pyroxene and/or olivine within a glassy mesostatis which can contain accessory metal, sulphide, and/or iron oxides. Have broadly chondritic mineral assemblages similar to chondrules or primitive achondrites.
- 'achondritic CgMMs': very rare coarse-grained micrometeorites
with non-chondritic, non-refractory compositions and with textures and mineralogies suggesting derivation from differentiated parent body
- 'single crystal \(C g M M s\) ': fragment of single crystals of olivine and pyroxene For class = 'refractory':
- 'porous': porous particles dominated by refractory minerals
- 'compact': compact particles dominated by refractory minerals
- 'hydrated': dominated by refractory minerals surrounded by Fe-rich phyllosilicates (or their thermal decomposition products)

Notes:
- to be chosen in a list depending on "object_micromet_class"
- no "type" for classes \(=\{\) scoriaceous, mixed, ultracarbonaceous \(\}\)
-- Sub-type of the micrometeorite
OpenEnum: \{CAT, glass, cryptocrystalline, barred olivine, porphyritic olivine, coarse-grained, porphyritic olivine and/or pyroxene, granular olivine and/or pyroxene, radiate pyroxene, type I/type II \}

Constraint: only when "object_micromet_type"= \{S-type, chondritic CgMMs \}
Note: only for types 'S-type' and 'chondritic CgMMs'

\section*{Definitions}

For "type" = 'S-type': subdivided into several subclasses depending on their quench textures
- ' \(C A T\) ': spherules with barred olivine texture, that lack Fe, have high \(\mathrm{Mg} / \mathrm{Si}\) ratios (>1.7) and are enriched in \(\mathrm{Ca}, \mathrm{Al}\), and Ti .
- 'glass': spherule lacking olivine microphenocrysts, usually spherical, can be highly vesiculated, some contain FeNi beads, consist almost entirely of glass
- 'cryptocrystalline': spherule dominated by submicron crystallites and can have significant submicron magnetite.
- 'barred olivine': spherule dominated by parallel growth olivine within glass
- 'porphyritic olivine': spherule dominated by olivine
\begin{tabular}{lllllll}
\begin{tabular}{l} 
object_micromet_comments \\
[object_comments]
\end{tabular} & blob & \begin{tabular}{c}
U \\
{\([\mathrm{m}]\)}
\end{tabular} & ObjMM & F & -- & Additional information on the micrometeorite object
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [object_image_caption] & & & L1 & & & Ex: from NASA Catalog, or from another source: researcher, ... Note \\
\hline \multicolumn{7}{|l|}{Micrometeorite global oxides composition} \\
\hline object_micromet_oxides & List [L2] & [O] & & & & £: Description of the oxide composition of the mineral materials of the meteorite object \\
\hline object_micromet_oxide_formula [object_oxide_formula] & CS- enum(text) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjMM \\
L2
\end{tabular} & F & -- & \begin{tabular}{l}
Formula of the different oxides composing the micrometeorite object \\
Enum: see mineral_oxide_formula \\
Note: did not distinguish non-natural isotopic species
\end{tabular} \\
\hline \begin{tabular}{l}
object_micromet_oxide_mass_frac tion \\
[object_oxide_mass_fraction]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { ObjMM } \\
\text { L2 }
\end{gathered}
\] & F & \% & Mass fraction (in \%) of each type of oxide composing the micrometeorite Note: value between 0 and 1 \\
\hline \[
\begin{aligned}
& \text { object_micromet_oxides_comment } \\
& \text { s } \\
& \text { [object_oxides_comments] }
\end{aligned}
\] & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjMM & F & -- & \begin{tabular}{l}
Any additional information (sum of oxides ...) or comments on the oxides composition of the micrometeorite object \\
Note: also additional information on impurities not measured by oxides
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Micrometeorite object documentation et references} \\
\hline object_micromet_links & List [L4] & [O] & & & & £: Web pages describing the micrometeorite collection, object and properties \\
\hline object_micromet_link_name [object_link_name] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjMM
L4 & F & -- & Name of the web site describing micrometeorite collection: sampling area and method \\
\hline & & & & & & Ex: 'Meteoritical Bulletin Database', ... \\
\hline object_micromet_link_url [object_link_url] & CS-varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { ObjMM } \\
\text { L4 }
\end{gathered}
\] & F & -- & \begin{tabular}{l}
URL address of the web page describing the micrometeorite collection \\
Ex: https://www.lpi.usra.edu/meteor/metbull.php?sea=Allende\&code=2278 Notes: \\
- can link to a publication by giving its url address, preferably through its
\end{tabular} \\
\hline
\end{tabular}

DOI.
Ex: https://doi.org/10.1002/ejic. 200700067


\subsection*{10.4 IDPs objects Table}

Root of the table: object_idp
Data type: ‘Object’
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{IDP object import} \\
\hline \multirow[t]{3}{*}{object_idp_import_mode [object_import_mode]} & \multirow[t]{3}{*}{enum(text)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjIDP} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{--} & Mode of import of the "IDP object" data \\
\hline & & & & & & Enum: \{first import, ignore, draft, no change, correction\} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline \multirow[t]{3}{*}{```
object_idp_xml_filename
[-]
[object_xml_filename]
```} & \multirow[t]{3}{*}{\begin{tabular}{l}
varchar(255) \\
[virtual KW]
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[!!\text { vc] }}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjIDP} & \multirow[t]{3}{*}{(V)} & \multirow[t]{3}{*}{--} & Name of the storage copy of the xml import file of the "object_IDP" metadata \\
\hline & & & & & & \(\rightarrow\) determined automatically during import (from "object_idp_uid»?) \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline
\end{tabular}

\section*{IDP object indexes}

Note: see "object_idp_name"
Ex: 'OBJIDP_L2021D7', 'OBJIDP_L2055Clust2B3'

\section*{IDP object name}
\begin{tabular}{|c|c|c|c|c|c|}
\hline object_idp_family [-xml] [object_family] & enum (text) & \[
\begin{aligned}
& \text { S0/S0s ObjIDP } \\
& {[!!\text { c] }}
\end{aligned}
\] & F & -- & \begin{tabular}{l}
Family of object \\
Enum: \{idp\} \\
Default = 'idp' \\
Definitions: \\
- 'idp' (Interplanetary Dust Particles): extraterrestrial dust particles collected in Earth's stratosphere (in opposition to micrometeorites recovered on Earth's surface and whose size range is typically slightly higher).
\end{tabular} \\
\hline & & & & & Note: the word "IDP" only refers to dust sampled by high-altitude planes and orbital stations \\
\hline object_idp_name [object_name] & varchar(255) & \begin{tabular}{l}
S0/S1s ObjIDP \\
[!!_m]
\end{tabular} & F & -- & \begin{tabular}{l}
Name of the IDP object \\
Definition for NASA: \\
\(\Rightarrow\) NASA: 'name of collector'-'name of particle': ex: ‘Lxxxx Dyy’ \\
- 'name of collector': letter (L, U, W) + number (4): Lxxxx \\
- 'name of the particle': letter + number (1 or 2) : 'Dyy'
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Note: there is a more complex way to name particles from clusters Exemple: \\
'L2021 D7’: collector L2021, particle D7
\end{tabular} \\
\hline object_idp_secondary_name [object_secondary_name] & varchar(255) & \[
\begin{aligned}
& \text { S0/S1s ObjIDP } \\
& {[\mathrm{m}]}
\end{aligned}
\] & F & -- & \begin{tabular}{l}
Alternative name(s) used for the IDP \\
Notes: \\
- for example, the community working on presolar grains are used to give nicknames to the IDPs they are working on \\
- start with a capital letter \\
- separate each name by a semicolon
\end{tabular} \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{IDP object collection} \\
\hline \multirow[t]{3}{*}{object_idp_collector} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { S1/S2s } \\
& \text { [!!_m] }
\end{aligned}
\]} & \multirow[t]{3}{*}{ObjIDP} & \multirow[t]{3}{*}{F} & & \begin{tabular}{l}
Name of the collector of the IDPs \\
Definition for NASA: \\
- 'name of collector': letter (L, U, W) + number (4): LXxxxx or Uxxxx or Wxxxx
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- can be directly deduced from the IDP name - if unknow, then write 'unknown'
\end{tabular} \\
\hline & & & & & & Exemple: 'L2021' for L2021 D7 \\
\hline \multirow[t]{2}{*}{object_idp_collection_period [object_meteor_recovery_year]} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S2/Us } \\
& {\left[!\_\mathrm{m}\right]}
\end{aligned}
\]} & \multirow[t]{2}{*}{ObjIDP} & \multirow[t]{2}{*}{F} & -- & Periods when the stratospheric IDP collectors were flown Note: value from the 'introduction' of the NASA Cosmic dust Catalog' of the collector campain \\
\hline & & & & & & Exemple: 'between June 30 and July 30, 2008' (L2071) \\
\hline \multirow[t]{3}{*}{object_idp_collection_duration} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{ObjIDP} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{hour} & \begin{tabular}{l}
Effective duration of collection of the IDPs \\
- Unit: hour
\end{tabular} \\
\hline & & & & & & Note: value from the 'introduction' of the NASA Cosmic dust Catalog' of the collector campain \\
\hline & & & & & & Exemple: '50' for "50 hours of flight time" (L2071) \\
\hline \multirow[t]{2}{*}{object_idp_collection_location} & \multirow[t]{2}{*}{\(\operatorname{varchar}(255)\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S2/Us } \\
& {\left[!\_\mathrm{m}\right]}
\end{aligned}
\]} & \multirow[t]{2}{*}{ObjIDP} & \multirow[t]{2}{*}{F} & -- & Geographic area where the IDP collectors were flown Note: value from the 'introduction' of the NASA Cosmic dust Catalog' of the collector campain \\
\hline & & & & & & \begin{tabular}{l}
Exemple: \\
in cosmic dust catalog vol. 18: \\
- 'over the Eastern coast of the USA, the Great Lakes, and Canada' (L2071) \\
- 'off the California coast' (L2076)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_idp_targetted_collection & boolean & \[
\begin{aligned}
& \text { S3/Us } \\
& \text { [!_m] }
\end{aligned}
\] & ObjIDP & F & & \begin{tabular}{l}
Flag telling if the IDP collection was targetted \\
BoolEnum: \{yes, no\} or \{true, false \}
\end{tabular} \\
\hline & & & & & & Note: some collectors have been flown at specific times designed to coincide with the passage of the Earth through the dust trails of specific comets, in the hopes of collecting enhanced quantities of cometary dust over background extraterrestrial materials \\
\hline object_idp_collection_target & varchar(255) & \[
\begin{gathered}
\text { S1/S1b } \\
\text { [!o_m] }
\end{gathered}
\] & ObjIDP & F & -- & \begin{tabular}{l}
Name of the target (comet, ...) of the IDP collection \\
Condition: mandatory when "object_idp_targetted_collection" = 'yes' \\
Ex: ‘Tempel-Tuttle’; ‘Grigg-Skjellerup’
\end{tabular} \\
\hline object_idp_collection_comments [object_ recovery_comments] & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjIDP & F & -- & Additional information or comments about the collection of the IDP Ex: 'collected jointly by ANSMET (US) and NIPR (Japan)' \\
\hline IDP object classification & & & & & & \\
\hline object_idp_provider & varchar(255) & \[
\begin{aligned}
& \mathrm{S} 2 / \mathrm{S} 2 \\
& {[!\mathrm{m}]}
\end{aligned}
\] & ObjIDP & F & -- & \begin{tabular}{l}
Provider of the IDP object \\
Note: currently only 'NASA/Johnson Space Center Cosmic Dust Program'
\end{tabular} \\
\hline object_idp_pre_type & openum (text) & \[
\begin{aligned}
& \mathrm{S} 1 / \mathrm{S} 2 \\
& {\left[!\_\mathrm{m}\right]}
\end{aligned}
\] & ObjIDP & F & -- & Pre-classification type of the IDP object given by the provider OpenEnum: \{AOS, C, TCA, TCN, other, unknown \} \\
\hline & & & & & & \begin{tabular}{l}
Nomenclature: \\
- 'AOS': Aluminum Oxide Sphere \\
- ' \(C\) ': cosmic dust \\
- 'TCA': terrestrial contamination (artificial or man-made) \\
- ' \(T C N\) ': terrestrial contamination (natural) \\
- 'unknown': unknown or uncertain identification \\
- 'other': none of the above pre-types. Provide information in "object_idp_comments"
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Definition: \\
- this nomenclature is given as in "catalog format' of each NASA Cosmic Dust catalog: https://www-curator.jsc.nasa.gov/dust
\end{tabular} \\
\hline
\end{tabular}

IDP object images
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_idp_images & List [L1] & [O] & & & & £: Pictures of the IDP object \\
\hline object_idp_image_filename [object_image] & varchar(255) & \[
\begin{aligned}
& \mathrm{P} / \mathrm{U} \\
& {[\mathrm{~m}]}
\end{aligned}
\] & \begin{tabular}{l}
ObjIDP \\
L1
\end{tabular} & F & -- & \begin{tabular}{l}
File name (with extension) of picture of the IDP object \\
Image formats: .png, .jpg, (.gif) ... \\
Note: \\
it can be the MEB image of the IDP object as provided by NASA. But this image can be accessed directly through the catalog (see "object_idp_catalogs") \\
- it can be also an image recorded by researchers
\end{tabular} \\
\hline object_idp_image_caption [object_image_caption] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjIDP \\
L1
\end{tabular} & F & -- & \begin{tabular}{l}
Caption on the picture of the IDP \\
Ex: from NASA Catalog, or from another source: researcher, ... \\
Note: the origin and credits of the image should be specified (ex: from NASA Catalog, or from another source: researcher, ...)
\end{tabular} \\
\hline
\end{tabular}

\section*{IDP global oxides composition}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_idp_oxides & List [L2] & [O] & & & & £: Description of the oxides composition of the mineral materials of the IDP object \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{object_idp_oxide_formula CS-enum(text) [object_oxide_formula]}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \[
\begin{gathered}
\text { ObjIDP } \\
\text { L2 }
\end{gathered}
\] & F & -- & Formula of the different oxides composing the IDP object Enum: see mineral_oxide_formula \\
\hline & & & & & & Note: did not distinguish non-natural isotopic species \\
\hline object_idp_oxide_mass_fraction [object_oxide_mass_fraction] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { ObjIDP } \\
\text { L2 }
\end{gathered}
\] & F & \% & Mass fraction (in \%) of each type of oxide composing the IDP object \\
\hline object_idp_oxides_comments [object_oxides_comments] & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjIDP & F & -- & Any additional information (sum of oxides ...) or comments on the oxides composition of the IDP object \\
\hline
\end{tabular}

\section*{IDP optical properties}
\begin{tabular}{|c|c|c|c|c|c|}
\hline object_idp_color & varchar(255) & \[
\begin{gathered}
\text { S2/Us } \\
{[\mathrm{m}]}
\end{gathered}
\] & ObjIDP & F & \begin{tabular}{l}
Color nuance of the IDP object \\
Note: this information is given as 'Color' \{AM, BK, BL, BR, BZ, CL, CS, GN, GR, OR, RD, RU, SI, WH, YL\} in the NASA Cosmic Dust catalog and can combine several. \\
Ex: 'pale pinkish - green, pink, blue' \\
Equivalence table between NASA 'color' and SSDM "object_idp_color":
\[
\begin{array}{ll}
- & \mathrm{BK}=\text { = black } \\
- & \mathrm{BL}=\text { blue } \\
- & \mathrm{BR}=\text { brown } \\
- & \mathrm{BZ}=\text { bronze } \\
- & \mathrm{CL}=\text { colorless ? } \\
- & \mathrm{CS}=\text { ? } \\
- & \mathrm{GN}=\text { green } \\
- & \mathrm{GR}=\text { gray } \\
- & \mathrm{OR}=\text { orange } \\
- & \mathrm{RD}=\text { red } \\
- & \mathrm{RU}=? \\
- & \mathrm{SI}=\text { silver } \\
- & \mathrm{WH}=\text { white } \\
- & \mathrm{YL}=\text { yellow }
\end{array}
\]
\end{tabular} \\
\hline object_idp_diaphaneity & enum(text) & \[
\begin{gathered}
\text { S2/Us } \\
{[\mathrm{m}]}
\end{gathered}
\] & ObjIDP & F & \begin{tabular}{l}
Capacity of the IDP object to transmit light \\
Enum: \{transparent, transparent to translucent, transparent to opaque, translucent, translucent to transparent, translucent to opaque, opaque, opaque to transparent, opaque to translucent, various, unknown\} Notes:
\end{tabular} \\
\hline
\end{tabular} translucent (TL), opaque (O) and combinations for intermediate: \(\mathrm{O} / \mathrm{T}, \mathrm{T} / \mathrm{O}, \mathrm{O} / \mathrm{TL}, \mathrm{TL} / \mathrm{O}, \mathrm{T} / \mathrm{TL}, \mathrm{TL} / \mathrm{T}\}\) in the NASA Cosmic Dust catalog
- 'various': used mostly for clusters when various types of shapes are present.

Description of how and how much the surface of the IDP object reflects light.

Enum: \{dull, dull to submetallic, dull to metallic, dull to subvitreous, dull to vitreous, submetallic, submetallic to metallic, submetallic to subvitreous, submetallic to vitreous, metallic, metallic to vitreous, subvitreous, subvitreous to vitreous, vitreous, pearly, pearly to subvitreous, resinous, resinous to metallic, resinous to vitreous, other, various, unknown\}
Definitions: see "mineral_luster" for most of them
- ‘dull':
- 'subvitreous':

Notes:
- this information is given as 'Luster' \{Dull (D), Metallic (M), Submetallic (SM), Subvitreous (SV), and Vitreous (V), Pearly (P), Resinous (R) and some combinations for intermediate cases: D/SM, D/M, D/SV, D/V, SM/M, SM/SV, SM/V M/V, SV/V, P/SV, R/M, R/V \} in the NASA Cosmic Dust catalog.
- to reduce the high number of combinations, the opposite combinations have been merged, e.g. 'metallic to dull' (M/D) \(=\) 'dull to metallic' (D/M)
- a few rare combinations (4 cases each) are not included in the list but can be associated to the closest description \(\{\mathrm{M} / \mathrm{SV}=>\mathrm{M} / \mathrm{V}\), \(\mathrm{P} / \mathrm{V}=\mathrm{P} / \mathrm{SV}, \mathrm{R} / \mathrm{SV}=>\mathrm{R} / \mathrm{V}\}\)
- a few other very rare combinations (1-2 cases each) are not included: (D/P, D/R, O?/SV, P/D, R/D, R/SM, SM/P \(\}=>\) 'other'

\section*{IDP object documentations et references}

\subsection*{10.5 Planetary objects Table}

Root of the table: object_planetary
Data type: ‘Object’
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{Planetary object import} \\
\hline \multirow[t]{3}{*}{object_planetary_import_mode [object_import_mode]} & enum(text) & P & ObjPla & F & -- & Mode of import of the "planetary object" data \\
\hline & & [!!_m] & & & & Enum: \{first import, ignore, draft, no change, correction\} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
object_planetary_xml_filename \\
[-xml] \\
[object_xml_filename]
\end{tabular}} & \begin{tabular}{l}
\(\operatorname{varchar}(255)\) \\
[virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{P} \\
{[!!\text { _vc] }}
\end{gathered}
\] & ObjPla & (V) & & Name of the storage copy of the xml import file of the "object_planetary" metadata \\
\hline & & & & & & \(\rightarrow\) determined automatically during import (from "object_planetary_uid"?) \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline
\end{tabular}

\section*{Planetary object indexes}

- ‘OBJPLA_APOLLO17_soil74240’
- 'OBJPLA_Stardust_comatail'
- 'OBJPLA_Hayabusa2_ChamberA'

\section*{Planetary object family, name and parent}
object_planetary_family \(\quad\) enum (text) \begin{tabular}{c}
S0/S1bs \\
{\(\left[!!\_\right.\)m \(]\)}
\end{tabular}\(\quad\) ObjPla \(\quad\) F
-- Family of planetary object
OpenEnum: \{atmospheric gas, aerosols, snow-frost, ice, soil, sand, rock, crust, internal crust, planetary dust, interplanetary dust, other, unknown \}

\section*{Definitions:}
- 'atmospheric gas': gas from the atmosphere of the body
- 'aerosols': aerosol particles collected in the atmosphere of a planetary body
- 'snow-frost': surface snow or frost
- 'ice': compact ice from surface or subsurface
- 'soil': loose soil sample (fine dust particles) collected at the surface of a planetary body. It can be mineral and/or organic,

Ex: Lunar soil, Ryugu soil, ...
- 'sand': loose particles with diameter between \(\sim 0.1\) and 4 mm (includes the 'granules': 2-4 mm)
- 'rock': compact mineral sample. Includes the peebles (4-65mm), cobbles (\(65-250 \mathrm{~mm}\)) and boulders
- 'crust': top surface cemented crust (mineral or organic)
- 'internal crust': subsurface cemented crust (mineral or organic)
- 'planetary dust': dust particles collected around a planetary body

Ex: Stardust
- 'interplanetary dust': dust particles collected in the interplanetary medium
- 'other': any planetary object material not belonging to one of the above categories. Describe in "object_planetary_comments"
- 'unknown': unknown planetary object material

\section*{Note:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_name [object_name] & varchar(255) & \[
\begin{aligned}
& \text { S0/S1s } \\
& {\left[!!\_\mathrm{m}\right]}
\end{aligned}
\] & ObjPla & F & -- & Name of the planetary object including the name of the mission, of the planetary body and of the sampling area or sampled object \\
\hline & & & & & & Note: distinct planetary objects have to be created for each sampling sites on a planetary body \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'Apollo 17 - Lunar trench soil 74240’ \\
- 'Stardust - 81P/Wild - coma tail' \\
- 'Hayabusa-2 - Ryugu - Chamber C'
\end{tabular} \\
\hline object_planetary_secondary_name [object_secondary_name] & varchar(255) & \[
\underset{[\mathrm{m}]}{\mathrm{S} 0 / \mathrm{S} 1 \mathrm{~s}}
\] & ObjPla & F & -- & \begin{tabular}{l}
Alternative name(s) of the planetary object \\
Notes: \\
- it can be from an alternative name used for the mission, sampled body and/or sampling area or sampled object. \\
- if several names, separate each name by a semicolon
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'Apollo 17 - Lunar sample 74240 to 74249,74284 to \(74287 ’\) \\
- 'Stardust - Wild2 - coma tail' \\
- 'Hayabusa-2 - Ryugu - TD2'
\end{tabular} \\
\hline object_planetary_parent_object_ui d [*] & varchar(255) & \[
\begin{gathered}
\text { S2/S1i } \\
{\left[\$ \mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
ObjPla
\end{tabular} & F & -- & Link to the existing UID of the parent object used to create this one by some processing \\
\hline & & & & & & Recommendation: Compulsory/Strongly recommended when already exist in the database \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- this parent object should be already in the database \\
- main processing are mechanical: sieving, cutting, crushing \\
- this processing should have been done by the sample-return facility and the resultant "planetary object" should be in the catalog of the samplereturn curation facility (i.e. on the catalogs).
\end{tabular} \\
\hline & & & & & & Ex: 'Lunar soil 78221' (sieved < 1mm) with 'Lunar soil 78220 ' as parent \\
\hline
\end{tabular}

\section*{Planetary object: planetary body}
object_planetary_recovery_body_ varchar(255) S0/\$0s Whipi\&la F F -- -- Link to the existing UID of the planetary body from which the planetary object uid [*]
[object_recovery_body_uid] originates
Note:
- currently only for Moon (soil), comet Wild2 (dust), asteroids Itokawa and Ryugu (soil)
- May be also used for some field sampling campaigns on Earth

Ex:
- 'BODY_Satellite_Moon'
- 'BODY_asteroid_Ryugu'
- 'BODY_planet_Mars'
object_planetary_recovery_body_ openum(text) S3 ObjPla coordinate_system
[object_recovery_body_coordinate _system]
-- Coordinate system on the planetary body of the geographic location of the recovery place of the planetary object
OpenEnum: \(\{\) WGS84, Mars 2000, Moon 2000, unknown, ...\}
Condition: mandatory when
"object_planetary_recovery_body_uid"."body_family" = \{planet, dwarf planet, satellite \(\}\)
Definitions: see "experiment_body_coordinate_system"
Notes:
- Currently useful only for Moon
- No yet available coordinate systems for asteroids Itokawa and Ryugu
- currently only 'WGS84' for Earth

\section*{Planetary object: geolocation}

object_planetary_recovery_geoloc ation_region
[object_recovery_geolocation_regi
on]
object_planetary_recovery_geoloc ation_country_code
[object_recovery_geolocation_cou ntry_code]
object_planetary_recovery_geoloc ation_type
[object_recovery_geolocation_type
]
object_planetary_recovery_geoloc
List [L0]
[!o]
ation_coordinates

F
-- Administrative region, state, province or county on Earth of the recovery place on Earth of the planetary object
Condition: mandatory and only when "object_planetary_recovery_body_uid" = 'BODY_planet_Earth'

Ex: 'Murmanskaja Oblast', 'Sicilia', 'Rhône-Alpes', 'Arizona’, 'Zambezi’
-- 2-digit code of the country of the recovery place on Earth of the planetary object
Enum: \(\{\mathrm{AQ}, \mathrm{AU}, \mathrm{CH}, \mathrm{CL}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}\)
Label (code): see "laboratory_address_country_code"
Condition: mandatory and only when "object_planetary_recovery_body_uid" = 'BODY_planet_Earth'
Ex: 'AQ' for Antarctica
-- Type of geographic location of the recovery place of the planetary object
Enum: \{point, line, box, polygon\}
Condition: mandatory when
"object_planetary_recovery_body_uid"."body_family" = \{planet, dwarf planet, satellite \(\}\)
Definitions: see "experiment_geolocation_type"
£: Geolocation (\(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinates) on the planetary body of the recovery place of the planetary object

Condition: mandatory when
"object_planetary_recovery_body_uid"."body_family" = \{planet, dwarf planet, satellite \(\}\)
Conditions: on the number of long/lat couples: see
"experiment_geolocation_coordinates"
Note: for Lunar missions: http://lroc.sese.asu.edu/posts/938
object_planetary_recovery_geoloc ation_coordinate_latitude
[object_recovery_geolocation_coo rdinate_latitude]
object_planetary_recovery_geoloc ation_coordinate_longitude
[object_recovery_geolocation_coo rdinate_longitude]
\begin{tabular}{lccccc}
object_planetary_recovery_geoloc & float & \begin{tabular}{c}
S2 \\
ation_coordinate_altitude
\end{tabular} & ObjPla & F & m \\
\begin{tabular}{l}
[object_recovery_geolocation_coo \\
rdinate_altitude]
\end{tabular} & & L0 & \\
\hline
\end{tabular}
float
float
\begin{tabular}{cc}
S 2 & ObjPl \\
{\(\left[!\mathrm{o} \_\mathrm{m}\right]\)} & L 0
\end{tabular}

L0 [!o_m]

ObjPla

L0

F deg

F deg
L object
Format: in E 'decimal degrees' (in the E direction only) in
"object_planetary_recovery_body_coordinate_system"
Condition: mandatory when
"object_planetary_recovery_body_uid"."body_family" = \{planet, dwarf planet, satellite\}
Note: 3 (100 m) to 5 decimals (1 m accuracy) are enough for Earth, 2 to 4 for Moon, and even less at high latitude.
\(E x\) : ' 12.12 ' provides 100 m accuracy at \(85^{\circ}\) latitude
Altitude of the geographic location of the recovery place of the planetary object
Format: in 'm' in "object_planetary_recovery_body_coordinate_system" Notes:
- from the body reference ellipsoid (planetographic coordinates)
- or from the reference sphere (planetocentric coordinates) (altitude 0)
object_planetary_recovery_comm ents
[object_recovery_comments]

\section*{Planetary object: sample return mission}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_mission_name & varchar(255) & \[
\begin{aligned}
& \text { SS0 } \\
& {[!!\mathrm{m}]}
\end{aligned}
\] & MQbidlaF & & & Name of the sample return mission that collected the planetary object Note: \\
\hline & & & & & & List of missions: ‘Apollo 11', ‘Apollo 12', ‘Apollo 14', ‘Apollo 15', ‘Apollo 16', 'Apollo 17' (Moon), 'Luna 16', 'Luna 20', 'Luna 24' (Moon), 'Stardust' (1P/Wild), 'Hayabusa' (25143 Itokawa) 'Hayabusa2' (162173 Ryugu), 'OSIRIS-REx' (101955 Bennu), 'Chang'e 5'’ (Moon), [‘Chang'e 6' (Moon), 'MMX' (Phobos), 'Mars Sample Return' (Mars), Tianwen-3' (Mars), 'Chandrayaan-6" (Moon)] \\
\hline \multirow[t]{3}{*}{object_planetary_mission_type} & \multirow[t]{3}{*}{openum(text)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} \$ / \mathrm{S} 1 \mathrm{bs} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{MObiplaF} & \multirow[t]{3}{*}{F --} & -- & Type of the mission (or part of the mission) that collected the planetary object OpenEnum: \{spacecraft, lander, rover, hopper, drone, balloon, penetrator, human lander-rover, other, ...\} \\
\hline & & & & & & \begin{tabular}{l}
Definitions: \\
- 'spacecraft': spacecraft flying over or orbiting around the body \\
- 'lander': static robotic lander on the surface \\
- 'rover': rolling robotic lander on the surface \\
- 'hopper': hopping lander on the surface \\
- 'drone': drone flying over the surface \\
- 'balloon': balloon flying over the surface \\
- 'penetrator': penetrator in the subsurface \\
- 'human lander-rover': mission with human to collect samples \\
- 'other': planetary object not described by one of the above types
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
- For Hayabusa-2: 'spacecraft'?
\end{tabular} \\
\hline object_planetary_mission_agency & varchar(255) & \[
\begin{gathered}
\mathrm{S} 1 / \mathrm{S} 2 \mathrm{~s} \\
{[!\mathrm{m}]}
\end{gathered}
\] & ObjPla & F & -- & Acronym(s) of the main space agency(ies) who controlled the sample return mission \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
if several acronyms, separate each acronym by a semicolon
\[
E x: \text { 'NASA', 'ESA; NASA', 'JAXA' }
\]
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [object_recovery_year] & & [!_m] & & & DD & \\
\hline object_planetary_collection_date_ end & date & \[
\begin{gathered}
\text { S2/Us } \\
{[\mathrm{m}]}
\end{gathered}
\] & ObjPla & F & \[
\begin{aligned}
& \text { YYYY- } \\
& \text { MM- } \\
& \text { DD }
\end{aligned}
\] & Ending date of the planetary object collection \\
\hline object_planetary_collection_meth od & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla & F & & \begin{tabular}{l}
Description of the collection method of the planetary object \\
Ex: \\
- 'Capture of particles with an aerogel sample collector in the coma of Wild 2' \\
- 'Capture of ejected soil particles by a catcher following the firing of a bullet to the surface and the touch-down of the sampler.' For Hayabusa2
\end{tabular} \\
\hline \multirow[t]{2}{*}{object_planetary_collection_contai ner} & \multirow[t]{2}{*}{\(\operatorname{varchar}(255)\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{ObjPla} & \multirow[t]{2}{*}{F} & & Description of the composition of the collection container where the samples were stored during the flight back to Earth and during storage on Earth? \\
\hline & & & & & & \(E x\) : 'The dust is stored inside an aluminum container sealed by Teflon' \\
\hline \multirow[t]{2}{*}{object_planetary_collection_altera tion} & \multirow[t]{2}{*}{\(\operatorname{varchar}(255)\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{ObjPla} & \multirow[t]{2}{*}{F} & & Comments on possible alteration of the material induced by the sample collection method \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'deep impact of projectile, possible loss of volatile elements due to heating at the impact point.'
\end{tabular} \\
\hline \multirow[t]{2}{*}{object_planetary_collection_conta mination} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{ObjPla} & \multirow[t]{2}{*}{F} & & Comments on possible contamination due to the collection method, the medium or the storage of the sample \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'dust collected and stored in aerogel, possible mix with fine-grained particles'
\end{tabular} \\
\hline ```
object_planetary_collection_com
ments
[object_recovery_comments]
``` & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & ObjPla & F & & Comments of the collection instrument, process, date... \\
\hline
\end{tabular}

\section*{Planetary object amount}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_ mass & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & & \begin{tabular}{l}
Total mass of the planetary object collected \\
Condition: Mandatory at least one of the three among "object_planetary_particle_number", "_mass" or "_volume"
\end{tabular} \\
\hline object_planetary_ volume & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & & Total volume of the planetary object collected Condition: see above \\
\hline object_planetary_ particle_number & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & ObjPla & F & -- & Number of individual particles that were collected Condition: see above \\
\hline \multicolumn{7}{|l|}{Planetary object characteristics} \\
\hline object_planetary_description & blob & \[
\begin{aligned}
& \mathrm{S} 2 / \mathrm{S} 2 \\
& {[!\mathrm{m}]}
\end{aligned}
\] & ObjPla & F & -- & Description of the planetary object \\
\hline object_planetary_state & enum (text) & \[
\begin{aligned}
& \mathrm{S} 1 / \mathrm{S} 2 \\
& {[!\mathrm{m}]}
\end{aligned}
\] & ObjPla & F & -- & \begin{tabular}{l}
Physical state of the planetary object in the conditions of the recovery place \\
Enum: \{compact, granular, sintered, core, particulate, liquid, gas \} \\
Definitions: \\
- 'compact': single large pieces (rocks, ice, ...) \\
- 'granular': collection of numerous small particles (soil, sand, snow) \\
- 'sintered': collected as a sintered material (crust, internal crust) \\
- 'core': collected as a core, with a manual or robotic drill (rock, ice, snow crust, internal crust) \\
- 'particulate': collected as individual particles (aerosols, planetary dust, interplanetary dust) \\
- 'liquid': collected as a liquid \\
- 'gas': collected as a gas (atmospheric gas, ...)
\end{tabular} \\
\hline & & & & & & Notes: \\
\hline object_planetary_composition_typ e & enum(text) & \[
\begin{gathered}
\text { S1/S1s } \\
{[!\mathrm{m}]}
\end{gathered}
\] & ObjPla & F & -- & Main type of composition of the planetary object \\
\hline
\end{tabular}
\begin{tabular}{llcllll} 
object_planetary_composition & blob & \begin{tabular}{c}
U \\
{\([\mathrm{m}]\)}
\end{tabular} & ObjPla & F & -- & Information on the composition of the planetary object \\
& & & & & \\
\begin{tabular}{lllll} 
object_planetary_comments \\
[object_comments]
\end{tabular} & blob & U & ObjPla & F & -- & Additional information on the planetary object
\end{tabular}

\section*{Planetary object: Lunar classification}






\section*{Planetary object: dust particle characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_dust_particle_ty pe & enum & \[
\begin{gathered}
\mathrm{S} 2 / \mathrm{S} 2 \mathrm{~s} \\
{[!\mathrm{m}]}
\end{gathered}
\] & ObjPla & F & -- & \begin{tabular}{l}
Type of particles for aerosols, planetary and interplanetary dust objects Enum: \{single particles, particles clusters, pieces, mixed, other\} \\
Condition: Mandatory only for "object_planetary_family" \(=\{\) aerosols, planetary dust, interplanetary dust \(\}\) \\
Definitions: \\
- 'single particles': the planetary object is only made of single particles \\
- 'particles clusters': the planetary object is only made of particles clusters \\
- 'pieces': \\
- 'mixed': mix of dust particle types of the above categories \\
- 'other': any dust particle not belonging to one of the above categories. Describe in "object_planetary_comments"
\end{tabular} \\
\hline object_planetary_dust_comments & blob & U & ObjPla & F & -- & Additional information on the dust particles: shape, size, color, \\
\hline
\end{tabular}

\section*{Planetary object images}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_images & List [L2] & [O] & & & & \(£\) : Pictures of the planetary object, collector or collection area \\
\hline object_planetary_image_filename [object_image] & varchar(255) & \[
\begin{aligned}
& \mathrm{P} / \mathrm{U} \\
& {[\mathrm{~m}]}
\end{aligned}
\] & ObjPla & \multirow[t]{5}{*}{F} & -- & File name(s) (with extension) of picture(s) of the planetary object, collector or collection area \\
\hline & & & \multirow[t]{4}{*}{L2} & & & Condition: mandatory when "object_planetary_image_caption" \(\neq\{\Phi\), NULL \(\}\) \\
\hline & & & & & & Image formats: .png, .jpg, .gif ... \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
- it can be the MEB image of the planetary object. \\
- it can be also an image recorded by researchers
\end{tabular} \\
\hline & & & & & & Note DB: this file will be imported in the database \\
\hline object_planetary_image_caption & \multirow[t]{2}{*}{varchar(255)} & U & ObjPla & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{} & Caption(s) on the picture(s) of the planetary object, collector or collection area \\
\hline & & [m] & L2 & & & Note: the origin and credits of the image should be specified (ex: from NASA Catalog, or from another source: researcher, ...) \\
\hline
\end{tabular}

\section*{Planetary object documentation, links and references}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_documentations & List [L3] & [O] & & & & £: Documentations about the planetary object \\
\hline \begin{tabular}{l}
object_planetary_documentation_ name \\
[matter_documentation_name]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { ObjPla } \\
\text { L3 }
\end{gathered}
\] & F & -- & \begin{tabular}{l}
Name of the documentation describing the planetary object \\
Note: this name will appear as the documentation title in the interface \\
Ex: 'composition of lunar soil 78220 '
\end{tabular} \\
\hline object_planetary_documentation_f ilename [matter_documentation_filename] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { ObjPla } \\
\text { L3 }
\end{gathered}
\] & F & -- & \begin{tabular}{l}
File name (with extension) of the documentation describing the planetary object \\
Condition: Mandatory when "object_planetary_documentation_name" \(\neq \Phi\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline object_planetary_links & List [L4] & [O] & & & & £: Web pages describing the planetary object, collection and properties \\
\hline object_planetary_link_name [object_link_name] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
Name of the web site describing the planetary object and collection \\
Note: in particular it can be the direct link to the sample description at NASA or other agency curation web sites.
\end{tabular} \\
\hline object_planetary_link_url [object_link_url] & CS-varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
ObjPla \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
URL address of the web page \\
Condition: mandatory when "object_planetary_link_name" \(\neq\{\Phi, \mathrm{NULL}\}\)
\end{tabular} \\
\hline object_planetary_catalogs & List [L5] & [O] & & & & £: Catalog describing the planetary object, collection and properties \\
\hline \multirow[t]{2}{*}{object_planetary_catalog_uid [*] [object_catalog_uid]} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \begin{tabular}{l}
ObjPla \\
Publi
\end{tabular} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{--} & Link to the existing UID of the planetary object catalog publication Note: \\
\hline & & & L5 & & & Note xml: The pdf files of the catalog should be ingested in SSHADE as a "publication" prior the planetary object (to get an UID), but when it is available on the web, better to link to it with "object_planetary_link_url" \\
\hline object_planetary_publications & List [L6] & [O] & & & & £: Publications describing the planetary object and its properties \\
\hline \multirow[t]{3}{*}{```
object_planetary_publication_uid
[*]
[object_publication_uid]
```} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & ObjPla & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{--} & Link to the existing UID of the publication \\
\hline & & & Publi & & & Notes: \\
\hline & & & L6 & & & \begin{tabular}{l}
- scientific publication providing general information on the planetary object type, composition and properties \\
- these papers should be in the bibliography database, with "publication_content" = 'planetary sciences'
\end{tabular} \\
\hline
\end{tabular}

\section*{11. SAMPLE}

\subsection*{11.1 Introduction}

The sample data model is the most complex part of the SSDM because it needs to describe the many different types of solid samples used in solid spectroscopy down to the atomic level, through a complete description of each of its layers, of the materials (homogeneous collection of grains) constituting these layers, and of the constituents (minerals, molecular solids, ionic solids, liquids...) making up these materials, and then of the species (molecules, atoms) that compose the constituents. The mineral constiuents and molecular species are then described in term of atoms.
For complex solids mostly a global description in terms of atoms is possible when an elemental analysis has been performed. But we also let the possibility to partly describe these solids in terms of chemical functions.

Amounts or mixtures of material(s) that is collected in the field (natural) of synthesized by chemical or physical processing (synthetic) are called 'matters" (see ***). These matters are generally used a number of times within different samples and are described as material/constituent/species with additional information on the matter in specific keywords, including information on their origin. They can be directly used in sample as (set of) materials.

\section*{SAMPLE description}

Figure 4: Sample structure from layers to atoms. The matter is a naturalor synthetic set of materials. It may be linked with a natural object.

\subsection*{11.2 Description}

At each level of the sample description there are (see Figures 5a,b):
- parameters describing qualitatively how the lower levels are organized in this level in a relation " this level \(n\) with \(m\) levels \(n-1\) ": e.g. organization of layers in the sample, mixing of materials in each layer, organization of constituents in each material, of species in each constituent, and of atoms in each species) and
quantitatively (number of layers of the sample, number and list of materials of each layer, of constituents of each material, of species of each constituent, of atoms of each species or constituent).
- parameters describing how the current level is organized in the upper level in a relation "this sub-level \(n\) - 1 in its level \(n\) ": e.g. layer order, type and thickness in the sample, material abundance and type (simple or matter) in its layer, constituent arrangement and abundance in its material, species state and abundance in its constituent, and atom abundance in its species).
- parameters specific to each level (its physical characteristics, state, texture, formation conditions, ...).

In some more details:

\section*{Sample}
* A solid Sample can have multiple layers added one on each other (films, granular layers,..).
- The sample has a "name" and possible "provider" or "parent sample". It is described by some macroscopic "physical characteristics" and by environment parameters (thermal, pressure, fluid, mechanical stress and/or irradiation) that can provide the state or can affect the sample prior to the experiment. The sample is then described in terms of its "layers organization".

\section*{Layers}
* Each Layer of a sample may have one or multiple materials mixed at grain level.
- Each layer is defined by its "order" in the sample, by its "type", by "physical characteristics", and by the "formation conditions" of the layer. Finaly the "mixing of materials" that constitute the layer is specified.

\section*{Materials}
* The Materials of each layer are homogeneous collections of bulk pieces of solids such as "grains" (but can also be a single material such as a compact film or slice, a rock, ...) that can each contains one or several different constituents (crystals, molecular phases, ...).
* When a material is composed of an homogeneous collection of solid pieces (grains, ...) but each with complex composition that cannot be expressed in term of simple constituents (too complexes or too numerous), then it is called a "complex matter", described in a next step.
- Each material constituting each layer is described in terms of "name and references", material "type and family", "abundances" in the layer, and "texture". In the case of chemically or physically processed synthetic materials we can provide some details on "formation conditions" such as "precursor materials, mixing and processing".
Finaly, for simple materials, the qualitative "organization of constituents" that constitutes the material is given.

\section*{Materials-Constituents-Species description}

Material type + orga.
material arrangement
- material family
material origin
```

Material abundance
mass + error
mass fraction +error

```

\section*{Physical characteristics}
- grain size distribution

\section*{- grain texture}
bulk density + error

Constituent type + orga - family
- arrangement

Species type + orga.
- family
- compound species state
Species abundance
- mass/mole + error
- mass/mole fraction +er.
Molecule name + identifier
- iupac name
- inchi, CAS, ...
Molecule composition
- structural formula
- atom list + number
- isotopic composition

Figures 5a,b: "Sample to Species" organization of Keywords (only major KWs)

\section*{Constituents}
* The bulk Constituents of a simple homogeneous material (natural or synthetic) are either mineral or/and molecular phases organized at sub-grain level (multiphases poly-crystal, coated grain, with adsorption ...) that are composed of fundamental species (molecules, mineral, atoms) organized at molecular or at atomic levels.
* For the description of the complex matters, we define "complex constituents" to represent a single or a few clearly different complex constituents, composing their grains. These "complex constituents" are composed of either too complexes or too numerous species and can only be characterized by global elemental composition (atoms) and/or (partial) chemical (chemical functions) composition.

A constituent is thus either:
- a molecular phase composed of one or more species (molecules, isotopic species, atoms, ions, ...) that can be organized in different ways in the constituent: pure solid (one species), homogeneous molecular mixture, isotopic mixture, molecular compound (hydrate, clathrate hydrate, simple polymer, ...),
- a molecular phase with molecules, ions or atoms adsorbed on its surface or absorbed in its volume. This type of constituent is thus composed of two or more molecular species.
- a single mineral phase (natural or synthetic). To simplify our nomenclature we will also call 'species" all the pure fundamental mineral phases (see below).
- a single mineral phase with molecules, ions or atoms adsorbed on its surface or absorbed in its volume. This type of constituent is composed of one or more molecule/atom species and one mineral "species".
- the whole grain, or a clearly different part of a grain, with complex composition(s) of a complex matter (cf complex constituent definition)
- a complex constituent of a complex "matter" (cf above) with molecules, ions or atoms adsorbed on its surface or absorbed in its volume.
- The different constituents composing each material are described in term of constituent "family and organization", "abundances" in the material, "state and texture" as well as "species organization" in the constituent.

\section*{Species}
* Each simple homogeneous constituent is composed of simple fundamental species: molecular, mineral and/or atomic.
* Complex constituents from complex matters can only be described with atomic species and/or chemical functions (functional groups).
- The different Species composing each simple or complex constituent are described in term of species "type and state", as well as "abundances" in the constituent.

We can also define "generic samples" for spectral data coming from the compilation of several measurements made on a series of samples (that we may not want to put all in the database). For such samples, generally made of one single constituent or a single material, the common parameters (composition, temperature, ...) are entered in the respective keywords, and the variable parameters are listed in "sample_comments".

There is also the possibility to define "simulated samples", for which we can simulate different types of spectra (absorption, reflection, ...), from the complete definition of their layers, materials, constituents and species in radiative transfer models using the optical constants of the constituents. It is useful, for example, to provide reflectance spectra of a surface (with different grain sizes) when only optical constants are available. These simulations will be linked to the optical constants spectrum used (as "parent spectrum")

\section*{Precursor materials}

\section*{Processings}

\subsection*{11.3 Sample Table}

Root of the table: sample
Data type: 'Sample’
Key-word Type Level Table Exp Unit Description

\section*{Sample import mode and indexes}
sample_import_mode enum(text)
P
\([!!\mathrm{m}]\) Sampl (V)
-- Mode of import of the "sample" metadata
Enum: \{first import, ignore, draft, no change, correction\}

\section*{Definitions:}

There are 2 levels of import:
- 'first import': during first import of the metadata
- 'use existing': use an existing table specified by its UID. Need only to give this UID and some keyword values (not used for sample)
There are 3 levels of 'no-correction':
- 'ignore': fully ignore this metadata table.
- 'draft': used for draft (not ready to be imported). Exactly same as 'ignore' but duplicated for practical reasons
- 'no change': when there is no change in this table (for correction in other(s)) but it already exist in the database (checked)
- There are 1 level of correction:
- 'correction': used for data already imported in the database when values of metadata or links are corrected/added
Special case:
- 'inherited': takes the "import_mode" value of the table above in the structure (so only for "layer_import_mode", "matter_import_mode", "material_import_mode", "constituent_import_mode", and "specie_import_mode" \(=>\) takes the value of "sample_import_mode").
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_xml_filename [-xml] & \begin{tabular}{l}
varchar(255) \\
[virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{vc}]}
\end{gathered}
\] & Sampl & (V) & -- & \begin{tabular}{l}
Name of the storage copy of the xml import file of the sample metadata \\
Note: determined automatically during export/(import) \\
\(\rightarrow\) calculated using "sample_uid" ou "_index"? \\
Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction
\end{tabular} \\
\hline sample_index [**][-xml] & \(\operatorname{int}(11)\) & \[
\begin{gathered}
\mathrm{B} \\
{\left[!!\_\mathrm{g}\right]}
\end{gathered}
\] & Sampl & F & -- & Automatic incremental unique number (ID) given to new sample \\
\hline sample_uid [**] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
Unique identifier code (UID) given to the sample table (to be created) \\
Nomenclature: This code name should start with 'SAMPLE_' and be very accurately formatted in order to be simple and unique \\
It should be of the style 'SAMPLE_AB_yyyymmdd_123...' where 'AB' is initial of people preparing the import, 'yyyymmdd' is the full date of the day, and ' \(123 . .\). ' should be at the end and alphanumeric (only with '_'), up to 6 characters. \\
Ex: ‘SAMPLE_BS_20181006_059', ‘SAMPLE_OB_20000101_01', 'SAMPLE_KD_20170712_X50A' \\
Notes: \\
- The post-fix '123...' may just be an incremental order number for that day, or may give a short description of the varying parameter of the sample. \\
Ex: 'SAMPLE_KD_20170712_X50A'
\end{tabular} \\
\hline sample_owner_databases & List [L0] & [!!] & & & & £: databases which own this sample and manage its information \\
\hline \begin{tabular}{l}
sample_owner_database_uid [*] \\
[matter_owner_database_uid]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{S} 1 \\
{\left[!!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Sampl DatBas \\
L0
\end{tabular} & F & -- & \begin{tabular}{l}
Link to the existing UID of the database which owns and manages this sample information \\
Condition: at least one database \\
Note: For samples from experiments from external laboratories, not managed by a partner database, we will create specific database(s) (ex: 'DB_external')
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample name and origin}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_name & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
Name of sample given by experimentalist \\
Note: \\
- It should contain explicit info on the sample or main constituting materials: name(s) and some typical properties of the sample (thickness, ...). \\
- It is used as the title of the sample in the sample structure bloc of the SSHADE interface
\end{tabular} \\
\hline \begin{tabular}{l}
sample_date \\
[matter_date]
\end{tabular} & date & \[
\begin{gathered}
\mathrm{S} 1 \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & Sampl & F & YYYY-MMDD & Date of creation of the sample, or of end of its processing(s) in the case of a sample generated by processing another one (parent sample). \\
\hline \begin{tabular}{l}
sample_provider \\
[matter_provider]
\end{tabular} & varchar(255) & \[
\begin{array}{r}
\text { SS1b } \\
{[\mathrm{m}]}
\end{array}
\] & Mȧnepl F & F & -- -- & \begin{tabular}{l}
Provider name and laboratory/institute of the sample (or part of it) \\
Notes: \\
- individual + laboratory name, industrial/commercial company, ... \\
- you can put your own lab when home made \\
- 'sample_experimentalist' will give link to the major/regular external sample providers (not mandatory to add 'experimentalist' from labs
\end{tabular} \\
\hline
\end{tabular}
outside SSHADE partners)
- if one (or more) of the sample material(s) is provided by an external individual/lab, then list it(them) together with the material name, but not mandatory when this material is already described as a matter (which already contain 'provider').

Ex:
- 'Mathieu Gounelle, MNHM (siderite pellet) [whole sample provided]
- 'IPAG' [home made]
- 'Nathalie Carasco, LATMOS (tholins material)' [one of the sample material provided, but not described as a matter]
- Flag telling if the sample is 'generic': virtual sample representing a series of samples
BoolEnum: \(\{\) yes, no \(\}\) or \(\{\) true, false \(\}\)
Definition: A 'generic sample' is a virtual sample synthetizing the properties (common or variable) of the whole series of samples which have been used to generate a spectrum product (absorption coefficient, optical constants, ...)
Note:
- used in particular for absorption coefficients or optical constants spectra, ie. when a simple (only one layer and mostly one material) virtual sample is used to represent a series of very similar samples either with just different thicknesses or recorded over different wavelength ranges, ..
- When using a "generic sample" for a series of samples the parameter that changes should be left blanc (e.g. the different layer thicknesses + uncertainties) and their values or range of values should be noted in "layer_comments".
- When the spectrum is a compilation of different wavelength ranges, the variables "instrument_spectral_range_min/_max" (list) should be used to specify its full valid spectral range. "spectrum_analysis" should be used to explain how the whole spectrum has been assembled.
sample_original_samples
sample_original_sample_uid \([*]\)

\section*{current experiment}

Condition: compulsory to provide (when exist in the database) only the parent of the first sample of the experiment
\(\Rightarrow\) calculated recursively for all samples of the experiment linked with
"spectrum_chronologically_ordered"='yes' or using
"sample_previous_sample_uid", when it exist
Constraint: only when "sample_is_generic" = \{no, false \(\}\)
Notes:
- this parent sample can be the initial sample of the last experiment that created this one by some processing during or after the last experiment
- Not for a 'generic sample'. In the case of 'generic sample' (for high level spectral products: absorption coefficient, optical constants, ...) the 'set of samples' used to produce it are not truly 'parent samples' as defined above. However they generic sample is linked to them through the 'parent spectra' of the optical constants spectrum
("spectrum_parent_spectra/spectrum_uid") and their associated sample ("spectrum_sample_uid").

Ex: a granular sample sieved to a specific grain size range gives a daughter sample from the parent unsieved sample.

\section*{Note:}
- can only be void or with the UID of Earth 'BODY planet_Earth'
- calculated but can be also put manually in the xml

\begin{tabular}{|c|c|c|c|c|c|}
\hline Natural solid matter: geolocation & & [!o] & & & Note: special case for natural terrestrial sample (at least one "material_origin"= 'natural terrestrial'), but without matter \\
\hline sample_geolocation_place [matter_geolocation_place] & varchar(255) & \[
\begin{gathered}
\$ 1 \mathrm{~b} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & NsaraplF & F -- -- & Geologic source and geographic location on Earth of the natural sample (geologic type, place and area names) \\
\hline & & & & & Condition: mandatory when sample_geolocation_region" or "sample_geolocation_country_code" or "sample_geolocation_type" \(\neq \varnothing\) \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- only and compulsory for natural terrestrial sample when a 'natural terrestrial' material is described but without 'natural terrestrial' matter
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample physical characteristics}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_thickness_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~cm}]}
\end{gathered}
\] & Sampl & F & & \begin{tabular}{l}
Absolute uncertainty on sample thickness \\
Unit: in "sample_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "sample_size_unit" \\
\(\rightarrow\) Calculated from the sum of the "layer_thickness_error" of all layers only if no value is given \\
Note: except special cases (see"sample_thickness") always provide the thickness error information in 'layer_thickness_error'. \\
Note: For "generic samples" with varying sample thickness the list of errors of the thicknesses covered by the generic sample may be given in \\
"sample_comments" or "layer_comments"
\end{tabular} \\
\hline sample_diameter & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Sampl & F & var. & \begin{tabular}{l}
Sample diameter or minimum lateral dimension \\
Unit: in "sample_size_unit" \\
- converted in ' \(\bar{m}\) ' unit in the database but provided to user in "sample_size_unit"
\end{tabular} \\
\hline sample_volume & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Sampl & F & var. & \begin{tabular}{l}
Sample volume \\
Unit: in cubic "sample_size_unit": \(\mathrm{nm}^{3}, \mu \mathrm{~m}^{3}, \mathrm{~mm}^{3}, \mathrm{~cm}^{3}\) or \(\mathrm{m}^{3}\) - converted in ' \(\mathrm{m} \wedge\) ' ' unit in the database but provided to user in
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_mass & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~cm}]}
\end{gathered}
\] & Sampl & F & g & \begin{tabular}{l}
Total mass of the sample \\
- stored in the database and provided to user in ' \(g\) ' unit \\
\(\rightarrow\) Calculated from the sum of layer masses ("layer_mass") only if no value is given
\end{tabular} \\
\hline & & & & & & Note: For "generic samples" the list of masses could be given in "layer_comments" \\
\hline sample_mass_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~cm}]}
\end{gathered}
\] & Sampl & F & g & \begin{tabular}{l}
Absolute uncertainty on total mass of the sample \\
- stored in the database and provided to user in ' g ' unit \\
\(\rightarrow\) Calculated from the sum of layer mass errors ("layer_mass_error") only if no value is given
\end{tabular} \\
\hline & & & & & & Note: For "generic samples" the list of mass errors may be given in "layer_comments" \\
\hline sample_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
Experimentalist comments about this sample (ex: origin, shape, size, ...). \\
Note: For "generic samples" it should tell the variable parameter(s), such as thicknesses, or masses.
\end{tabular} \\
\hline Sample substrate & & & & & & \\
\hline sample_substrate_material & \[
\begin{aligned}
& \text { varchar(255) } \\
& \text { CS }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{m}]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
name or composition of sample substrate materials \\
Note: put 'NULL' if no substrate
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Ex: 'MgF2', 'Saphire', ‘Si', ... \\
Ex: for meteorites (for FIB, or ultra-microtomed samples): ‘TEM grid', 'gold foil', 'glass slide', ‘diamond', 'Teflon', ‘epoxy resin', 'ZnS', 'KBr', ‘Ge', ..
\end{tabular} \\
\hline sample_substrate_comments & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
Additional information on substrate \\
Note: Number, type, configuration, thickness of windows, surface cleaning and treatment, or cell configuration (closed cell, simulation chamber, window
\end{tabular} \\
\hline
\end{tabular}
separation, ...)
Ex: ' 2 windows 2 mm thick parallel in closed cell'
\(E x\) : 'below (sample substrate): aluminum plate, above: saphire window without sample contact'

\section*{Sample environment parameters}

Note: For environment variables affecting the composition and phase of the sample it is compulsory to define a new sample (with processing of parent sample) (see "experiment variables sample").

For the other sample changes (T, P, compaction/sintering, sputtering, textural/structural evolutions without phase change, minor chemical evolutions, ...) it is possible to change some of the environment variables (parameters marked ' \(V\) ') during an experiment but it is necessary to provide at least some comments in "sample_changes" explaining which changes are observed/expected.
sample_parameters_environment \(\quad\) : temperature, pressure, fluid, stress and irradiation parameters

Note: better to keep the same for the whole experiment

\section*{Sample parameters environment: Temperature}

This bloc describes the temperature conditions of the sample

\author{
sample_temperature \\ [!!_m] \\ \[
[\mathrm{V}: \mathrm{O}]
\]
}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_temperature_time_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & Sampl & V & var. & \begin{tabular}{l}
Absolute uncertainty on total duration of the stage at this temperature after sample formation \\
Unit: in "sample_time_unit" \\
- converted in 's' unit in the database but provided to user in "sample_time_unit"
\end{tabular} \\
\hline & & & & & & Variable: during an experiment ("Spectrum") \\
\hline & & & & & & Note: before (and during) spectrum recording \\
\hline \multirow[t]{4}{*}{sample_temperature_max} & \multirow[t]{4}{*}{float} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[!\mathrm{m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{Sampl} & \multirow[t]{4}{*}{V} & \multirow[t]{4}{*}{var.} & \begin{tabular}{l}
Maximum temperature reached by the sample after sample formation \\
Unit: in "sample_temperature_unit" \\
- converted in ' K ' unit in the database and provided to user in ' K '
\end{tabular} \\
\hline & & & & & & Note: this maximum temperature is the highest that the sample reached during one of the steps of processing of the final sample (annealing, ...) but before the experiment (max of "sample_processing_temperature" of the processing steps). It can be just the final temperature after sample formation. \\
\hline & & & & & & Variable: during an experiment ("Spectrum") \\
\hline & & & & & & \begin{tabular}{l}
Note: before spectrum recording \\
Note: this maximum temperature is the highest that has been reached either before the experiment or during one previous spectrum measurement of the experiment (max of "sample_temperature_value" of the previous spectra) including the current one, or possibly between 2 spectrum measurements (heating step then cooling before recording) of this experiment.
\end{tabular} \\
\hline \multirow[t]{3}{*}{sample_temperature_max_error} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Sampl} & \multirow[t]{3}{*}{Vc} & \multirow[t]{3}{*}{var.} & Absolute uncertainty on maximum temperature reached by the sample after sample formation \\
\hline & & & & & & \begin{tabular}{l}
Unit: in "sample_temperature_unit" \\
- converted in ' K ' unit in the database and provided to user in ' K '
\end{tabular} \\
\hline & & & & & & Variable: during an experiment ("Spectrum") \\
\hline
\end{tabular}

\begin{tabular}{ccc}
sample_fluid_temperature & float & S3 \\
& [!o_m] \\
& {\([\mathrm{V}:\)} \\
& \(!\mathrm{o}\) m \(]\)
\end{tabular}

\section*{ambient air, purged air, vacuum, other\}}

\section*{Definitions:}
- 'atomic gas': gas made of atoms (in particular rare gases)
- 'plasma: electrically neutral medium of unbound positive and negative species (i.e. the overall charge of a plasma is roughly zero).
- 'molecular gas': gas made of molecules
- 'molecular liquid': liquid made of molecules
- 'liquid solution': liquid made of several species, one being the solvent of the others
- 'ambient air': air with \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{CO}_{2}\)
- 'purged air': air with \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{CO}_{2}\) removed, as in purged spectrometers.
- 'vacuит': primary or secondary vacuum
- 'other': when type is none of the above. Give information in "sample_fluid_comments"
Notes:
- 'ambient air' and 'vacuum' are used to tell that measurement condition of the sample was in air or under vacuum (whatever level).
- 'purgend air' corresponds to typical conditions in a purged instrument (air with \(\mathrm{H}_{2} \mathrm{O}\) and/or \(\mathrm{CO}_{2}\) removed)
Variable: during an experiment ("Spectrum")
Note: during spectrum recording
var. Temperature of the fluid (gas or liquid) in contact with the sample after sample formation
Condition: Mandatory when "sample_fluid_type" = \{atomic gas, plasma, molecular gas, molecular liquid, liquid solution, ambient air, purged air\}

Unit: in "sample_temperature_unit"
- converted in ' K ' unit in the database and provided to user in ' K '

Variable: during an experiment ("Spectrum")
Condition: same as above

\section*{Variable: during an experiment ("Spectrum")}

Note: before (and during) spectrum recording

\section*{Sample parameters environment: Fluid composition}

Note: these parameters should be changed during an experiment only if they induce minor chemical composition and phase changes of the sample (but rare cases!)
Note: adsorption experiments use the 'fluid' parameters to define the T, P and gas molecules environment but define the adsorbed phase at the constituent/species levels (one sample per T,P,gas conditions because they modifiy the composition of the sample).

Condition: one of the two blocs mandatory when:
"sample_fluid_type" = \{atomic gas, plasma, molecular gas, molecular liquid, liquid solution \(\}\)
Variable: during an experiment ("Spectrum")
Note xml: when fluid composition change, it should be fully redefined
£: Gas or liquid molecules, or fluid matters, in contact with the sample after sample formation

Condition: bloc compulsory when the fluid is a matter
Variable: during an experiment ("Spectrum")
Note: during spectrum recording
\begin{tabular}{lccc}
sample_fluid_composition_matter varchar(255) & S2/S1i & Sampl \\
_uid [*] & {\([!!\mathrm{o}\) m \(]\)} & Matter & (V) \\
& {\([\mathrm{V}:\)} & & \\
& \(\left.!\mathrm{o} \_\mathrm{m}\right]\) & L3a
\end{tabular}
-- Link to the existing UID of the fluid matter (gas or liquid) in contact with the sample

Condition: absolute mandatory when "sample fluid type" = \{atomic gas, plasma, molecular gas, molecular liquid, liquid solution\}
AND
when "sample_fluid_composition_specie_uid" \(=\Phi\)
Notes:
- used instead of "specie" for liquid solutions such as acids, bases or electrolytes. They are described by "fluid matters" using "liquid phases"

sample_fluid_composition_specie varchar(255) _uid [*]
```

sample_fluid_composition_specie float
_mole_fraction [+]

```
sample_fluid_composition_specie float _mole_fraction_error [+]

S2/S1i Sampl (V) [!!o_m] Molec [V: !o_m] L3b

L3b

U Sampl (Vc
no Absolute uncertainty on mole fraction of the gas or liquid species in contact with the sample

Variable: during an experiment ("Spectrum")
Note: during spectrum recording
-- Experimentalist comments about the fluid composition and environment of the sample after sample formation.

Variable: during an experiment ("Spectrum")
Note: before (and during) spectrum recording
Note: for additional information during experiment

\section*{Sample parameters environment: Mechanical pressure}
sample_pressure
sample_pressure_unit
sample_pressure_value
sample_pressure_error
float
float

This bloc describes the mechanical pressure applied to the sample
[!_m]
[V: O]
enum(text)
U
[!o_m]
[V: m]
Sampl (V)
\(\left[!\mathrm{o} \_\mathrm{m}\right]\)
\([\mathrm{V}: \mathrm{m}]\)

S3 [m] [V: m]

Sampl V+
var. Effective mechanical pressure applied to the sample after sample formation
Unit: in "sample_pressure_unit"
- converted in ' Pa ' unit in the database and provided to user in ' Pa ' (will be tools to convert in bar and multiple of Pa and bar)

Note:
Variable: during an experiment ("Spectrum")
Note: during spectrum recording

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_pressure_max_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}][\mathrm{V}:} \\
\mathrm{m}]
\end{gathered}
\] & Sampl & Vc & var. & \begin{tabular}{l}
Absolute uncertainty on maximum mechanical pressure applied to the sample after sample formation \\
Unit: in "sample_pressure_unit" \\
- converted in 'Pa' unit in the database and provided to user in ' Pa ' \\
Variable: during an experiment ("Spectrum") \\
Note: before spectrum recording
\end{tabular} \\
\hline sample_pressure_max_time & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}][\mathrm{V}:} \\
\mathrm{m}]
\end{gathered}
\] & Sampl & V & var. & \begin{tabular}{l}
Total duration of the mechanical pressuring or stress stage at maximum pressure after sample formation \\
Unit: in "sample_time_unit" \\
- converted in 's' unit in the database but provided to user in "sample_time_unit"
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note: if this maximum pressure is the current pressure then this time can be estimated either at beginning or at mid-time of spectrum recording (tell in comments). \\
Variable: during an experiment ("Spectrum") \\
Note: before spectrum recording
\end{tabular} \\
\hline sample_pressure_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}][\mathrm{V}:} \\
\mathrm{m}]
\end{gathered}
\] & Sampl & \[
\begin{aligned}
& \mathrm{V}+ \\
& \mathrm{Aj}
\end{aligned}
\] & -- & \begin{tabular}{l}
Comments about the pressure environment and history of the sample after sample formation. \\
Ex: Errors on P max, pressurisation time, ... \\
Variable: during an experiment ("Spectrum")
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample parameters environment: Mechanical stress of the sample}
\begin{tabular}{llll}
& & {\([\mathrm{O}]\)} & \\
sample_stress & {\([\mathrm{V}: \mathrm{O}]\)} \\
sample_stress_type & enum(text \()\) & S 1 b & Sampl \\
& {\([\mathrm{m}]\)} & & \\
& & {\([\mathrm{V}: \mathrm{m}]\)}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_stress_unit & enum(text) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & Sampl & (V) & -- & \begin{tabular}{l}
Unit of stress \\
Enum: \(\{\mathrm{Pa}, \mathrm{hPa}, \mathrm{MPa}, \mathrm{GPa}, \mathrm{bar}\}\) \\
Condition: mandatory when "sample_stress_value" \(\neq\{\emptyset\), NULL \(\}\) \\
Note \(D B\) : all pressure data will be stored in ' Pa ' \\
Note: used for "sample_stress_value/_error" \\
Variable: during an experiment ("Spectrum") \\
Note: better to keep the same for the whole experiment
\end{tabular} \\
\hline sample_stress_value & float & \[
\begin{gathered}
\text { S3 } \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\text { !o_m] }
\end{gathered}
\] & Sampl & V & var. & \begin{tabular}{l}
Average stress \(\tau\) applied to the sample (Force / Area) after sample formation Unit: in "sample_stress_unit" \\
Condition: mandatory when "sample_stress_type" \(\neq \Phi\) \\
Variable: during an experiment ("Spectrum") \\
Condition: same as above \\
Note: during spectrum recording
\end{tabular} \\
\hline sample_stress_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & Sampl & Vc & var. & \begin{tabular}{l}
Absolute uncertainty on the average stress \(\tau\) applied to the sample (Force / Area) after sample formation \\
Unit: in "sample_stress_unit"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ccc}
sample_stress_comments & blob & U \\
& [m] \(]\) & Aj \\
{\([\mathrm{V}: \mathrm{m}]\)} & & Ac \\
& &
\end{tabular}

Sample parameters environment: irradiation
\begin{tabular}{lll}
sample_irradiations & List [L4] & {\([\mathrm{O}]\)} \\
{\([\mathrm{V}: £ 0]\)}
\end{tabular}

Variable: during an experiment ("Spectrum")
Note: during spectrum recording
-- Experimentalist comments about the stress environment and history of the sample after sample formation
\(E x\) : orientation of the force(s) relative to sample geometry, duration of the stress, ...

Variable: during an experiment ("Spectrum")
Note: during spectrum recording
Note: for additional information during experiment
£: Irradiations of the sample after sample formation and before any spectrum recording
Condition: Optional bloc - Mandatory active below when
"sample_irradiation_particle_family" \(\neq\) 'NULL'
Note: one of the following combinaison of KW is necessary to define the fluence (dose):
- "irradiation_particle_flux" \& "irradiation_time",
- "irradiation particle_fluence"
- "irradiation_radiant_flux" \& "irradiation_time"
- "irradiation_radiant_fluence"

Variable: during an experiment ("Spectrum")
Condition: this bloc is compulsory when a Raman or fluorescence instrument is used (see "instrument_type") to describe the energy deposited by laser irradiation. However for experiments with irradiation and with Raman measurement, the information on the Raman irradiation should be put in "sample_irradiation_comments"
Note: before and/or during spectrum recording.
Note xml: When an <irradiation> bloc is filled in 'variable', it will be added as
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_irradiation_source & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}:} \\
\text { £o_m] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Sampl } \\
\text { L4 }
\end{gathered}
\] & V & & \begin{tabular}{l}
Type of source of irradiation or bombardment of the sample \\
Free List: \{ X generator, VUV lamp, H2 lamp, Hg lamp, Ar lamp, Ar+ laser, Ar+ laser Raman, , Ar+ WaveTrain laser Raman, He-Ne laser Raman, \(\mathrm{Nd}:\) YAG laser Raman, synchrotron radiation, ions accelerator, particle gun,...\} \\
Note: wavelengths of Raman lasers \\
- He-Ne laser: 632.8 nm \\
- Ar+ laser: \(647.1 \mathrm{~nm}, 514.5 \mathrm{~nm}, 457.9 \mathrm{~nm}\) \\
- Art laser "WaveTrain": 244nm (=frequency doubled) \\
- Nd:YAG laser: 532 nm \\
Variable: during an experiment ("Spectrum") \\
Condition: compulsory for Raman and Fluorescence spectroscopies \(=\{\mathrm{xxx}\) laser Raman \} \\
Note: before and/or during spectrum recording.
\end{tabular} \\
\hline sample_irradiation_filter & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & V & -- & \begin{tabular}{l}
Any filter (optical, electric, magnetic, ...) applied to the irradiation or bombardment source. \\
Variable: during an experiment ("Spectrum") \\
Note: before and/or during spectrum recording.
\end{tabular} \\
\hline sample_irradiation_chronology [-xml]: in xml "Sample" & enum(text) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{c}\right]} \\
{\left[\mathrm{V}:!\mathrm{E}_{0}{ }_{2}\right.} \\
\mathrm{m}]
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & V & -- & \begin{tabular}{l}
Tell the relative chronology between the irradiation of the sample and spectrum recording \\
Enum: \{before spectrum, (before and during spectrum, during spectrum) \} \\
Condition: Default \(=\{\) before spectrum \(\}\) when \\
"sample_irradiation_particle_family" \(=\) 'NULL' \\
Definitions: \\
- 'before spectrum': after sample preparation but before any spectrum recording. \\
- 'before and during spectrum': after sample preparation and during
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline sample_irradiation_time & float & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{o} \mathrm{~m}]} \\
{[\mathrm{V}:} \\
\text { £!o_m] }
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & V var. & \begin{tabular}{l}
Total irradiation or bombardment time of the sample after sample formation Unit: in "time_unit" \\
- converted in ' \(s\) ' unit in the database but provided to user in "sample_irradiation_time_unit" \\
Condition \#1: mandatory when "sample_irradiation_particle_family" \(\neq\) 'NULL' \\
Condition \#2: Mandatory when "sample_irradiation_particle_flux" OR "sample_irradiation_radiant_flux" \(\neq\{\varnothing\), NULL \(\}\) \\
Variable: during an experiment ("Spectrum") \\
Conditions: same as in sample \\
Condition: Compulsory for Raman and Fluorescence spectroscopies \(=\) \{photons \(\}\) \\
Time before end of spectrum recording \\
Note: \\
before and/or during spectrum recording. \\
if irradiation continue during spectrum recording \\
("sample_irradiation_chronology" = 'before and during spectrum' or 'during spectrum') then this time can be estimated either at beginning or at mid-time of spectrum recording (tell in comments). \\
- for Raman laser irradiation it is the total laser irradiation time at the measurement spot. If measurement spot change then the irradiation time is reset.
\end{tabular} \\
\hline sample_irradiation_time_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & Vc var. & \begin{tabular}{l}
Absolute uncertainty on the total irradiation or bombardment time of the sample after sample formation \\
Unit: in "time_unit" \\
- converted in ' \(s\) ' unit in the database but provided to user in "sample_time_unit" \\
Note: only if "sample_irradiation_time" has a value \(\neq\{\varnothing\), NULL \(\}\) \\
Variable: during an experiment ("Spectrum") \\
Uncertainty on time before end of spectrum recording
\end{tabular} \\
\hline
\end{tabular}
```

Irradiation: Particle
sample_irradiation_particle
sample_irradiation_particle_famil enum(text)
y
S1b Sampl V -- Family of particle used to irradiate or bombard the sample

[££do_	L4
$\begin{aligned} & \mathrm{m}] \\ & {[\mathrm{V}:} \end{aligned}$	
££o m]	

Enum: \{photons, fundamental particles, atoms and molecules, condensed matter\}
Default $=$ 'NULL'
Condition: absolute compulsory to fill this KW when this optional bloc is used.
Note: It triggers the 'mandatory' status of several others KW in the optional bloc.

```

\section*{Definitions:}
```

- 'photons': any type of photon or electromagnetic wave (from gamma to radio frequencies)
- 'fundamental particles': any type of fundamental particles (except photon): electrons, protons, neutrons, $\ldots$
- 'atoms and molecules': atoms, atomic ions, molecules, molecular ions, radicals, ...
- 'condensed matter': any type of liquid or solid matter (molecular or mineral) in form of particles of any size. Include also molecule clusters
- 'Raman laser': particular case of instrument source (laser) for spectral measurements (Raman, fluorescence, ...) that can induce changes in the sample

```

\section*{Variable: during an experiment ("Spectrum")}
```

Conditions: same as in sample
Condition: Compulsory for Raman and Fluorescence spectroscopies $=$ \{photons $\}$

```

Note: before and/or during spectrum recording.
\begin{tabular}{ccc}
S1b & Sampl & V \\
{\([!\mathrm{o}\) m \(]\)} & L4 & \\
{\([\mathrm{V}:\)} & & \\
£!o_m] & &
\end{tabular}

Type of irradiation (photons of all energies) or particle bombardment (ions, electrons, ...) of the sample

Enum: \{gamma photons, X photons, VUV photons, UV photons, Vis photons, NIR photons, MIR photons, micro-waves, electrons, protons, neutrons, atoms, atomic ions, molecules, molecular ions, molecule clusters, solid material, liquid material \(\}\)

Condition: mandatory when "sample_irradiation_particle_family" \(\neq\) 'NULL'

\section*{Definitions:}
- 'gamma photons': photons in the 0.1-10 pm wavelength range (10-0.1 MeV)
- 'X photons': photons in the \(0.01-10 \mathrm{~nm}\) wavelength range (100-0.12 keV)
- 'VUV photons': photons in the 10-200 nm wavelength range (120-6 eV)
- 'UV photons': photons in the 200-400 nm wavelength range \((6-3 \mathrm{eV})\)
- 'Vis photons': photons in the 400-800 nm wavelength range (3-1.5 eV)
- 'NIR photons': photons in the \(800-3000 \mathrm{~nm}\) wavelength range (1.50.4 eV)
- 'MIR photons': photons in the 3-50 \(\mu \mathrm{m}\) wavelength range (0.4-0.025 eV)
- 'micro-waves': photons in the 1-10 mm wavelength range
- 'electrons':
- 'protons':
- 'neutrons':
- 'particles':
- 'atoms':
- 'atomic ions':
- 'molecules':
- 'molecular ions':
- 'molecule clusters':
- 'solid material':
- 'liquid material':
\begin{tabular}{|c|c|c|c|c|c|}
\hline sample_irradiation_particle_uid varchar(255) [*] & \[
\begin{gathered}
\mathrm{S} 2 \\
\text { [!o_m] }
\end{gathered}
\] & Sampl & V & -- & Link to the existing UID of the ion, atom, molecule or molecular ion used to bombard the sample \\
\hline & \[
\begin{aligned}
& {[\mathrm{V}:} \\
& \text { !o_m] }
\end{aligned}
\] & \begin{tabular}{l}
Molec \\
L4
\end{tabular} & & & Condition: Mandatory when "sample_irradiation_particle_type" \(=\{\) atoms, atomic ions, molecules, molecular ions \(\}\) \\
\hline & & & & & Variable: during an experiment ("Spectrum") \\
\hline & & & & & Conditions: same as in sample \\
\hline & & & & & Note: before and/or during spectrum recording. \\
\hline sample_irradiation_particle_energ enum(text) & U & Sampl & V & -- & Unit of energy of the particles (for irradiation processing) \\
\hline y_unit & \[
\begin{gathered}
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:}
\end{gathered}
\] & & & & Enum: \(\{\mathrm{J}, \mathrm{kJ}, \mathrm{eV}, \mathrm{keV}, \mathrm{MeV}\), angstrom, nm , micron, \(\mathrm{cm}-1\}\) \\
\hline & !o_m] & & & & Condition: mandatory when "sample_irradiation_particle_energy" \(\neq\{\varnothing\), NULL\} \\
\hline & & & & & Constraint: "sample_irradiation_particle_energy_unit" \(=\{\) angstrom, nm, micron, \(\mathrm{cm}-1\}\) only when "sample_irradiation_particle_family" \(=\) \{photons \(\}\) \\
\hline & & & & & Note DB: all irradiation energy data will be stored in 'J' \\
\hline & & & & & Note: energy in \{angstrom, nm, micron, \(\mathrm{cm}-1\}\) are only for photons, i.e., for "sample_irradiation_particle_type" \(=\) \{gamma photons, X photons, VUV photons, UV photons, Vis photons, NIR photons, MIR photons\} \\
\hline & & & & & \begin{tabular}{l}
Note: used for "sample_irradiation_particle_energy", \\
"sample_irradiation_radiant_flux"," sample_irradiation_radiant_fluence"
\end{tabular} \\
\hline & & & & & Variable: during an experiment ("Spectrum") \\
\hline & & & & & Conditions: same as in sample \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline sample_irradiation_particle_energ float y & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\text { £!o_m] }
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & & var. & \begin{tabular}{l}
Energy of the particles (photons, ions, electrons, ...) at the sample surface \\
Unit: "sample_irradiation_particle_energy_unit \(\left(\cdot\right.\).particle \(\left.{ }^{-1}\right)\) " \\
converted in 'J.particle \({ }^{-1}\), unit in the database but provided to user in "sample_irradiation_particle_energy_unit".particle \({ }^{-1}\) \\
Condition: mandatory when "sample_irradiation_particle_family" \(=\) 'NULL' \\
Note: give the average irradiation energy when there is a broad energy spectrum. Energy distribution to be described in \\
"sample_irradiation_particle_energy_distribution" \\
Variable: during an experiment ("Spectrum") \\
Conditions: same as in sample \\
Condition: Compulsory for Raman and Fluorescence spectroscopies \\
Note: before and/or during spectrum recording.
\end{tabular} \\
\hline sample_irradiation_particle_energ vachar(255) y_distribution & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & V & -- & \begin{tabular}{l}
Description of energy distribution of the particles (photons, ions, electrons, ...) at the sample surface \\
Variable: during an experiment ("Spectrum") \\
Note: before and/or during spectrum recording.
\end{tabular} \\
\hline sample_irradiation_particle_flux float & \[
\begin{gathered}
\text { S3 } \\
\text { [!o_mc] } \\
{\left[\begin{array}{c}
\text { [V: } \\
\text { !o_mc] }
\end{array}\right.}
\end{gathered}
\] & \begin{tabular}{l}
Sampl \\
L4
\end{tabular} & V & \[
\begin{gathered}
\mathrm{part} / \mathrm{s} / \mathrm{m} \\
2
\end{gathered}
\] & \begin{tabular}{l}
Irradiation or bombardment flux in number of particles (photons, ions, electrons, ...) per unit time and unit surface of the sample \\
Unit: particle \(\cdot \mathrm{s}^{-1} \cdot \mathrm{~m}^{-2}\) \\
Condition \#1: mandatory when "sample_irradiation_particle_family" \(\neq\) 'NULL' \\
Condition \#2: Mandatory when "sample_irradiation_particle_fluence" = \{ , \\
NULL\} \\
AND when "sample_irradiation_radiant_fluence" = \(\{0, \mathrm{NULL}\}\) \\
AND when "sample_irradiation_radiant_flux" \(=\{\varnothing\), NULL \(\}\) OR \\
"sample_irradiation_time" \(=\{\varnothing, N U L L\}\) \\
when "sample_irradiation_particle_flux" = ' \(\varnothing\) ', calculated by:
\end{tabular} \\
\hline
\end{tabular}
sample_irradiation_particle_flux_ float error
sample_irradiation_particle_fluen float ce
\(\Rightarrow\) "sample_irradiation_particle_flux" =
"sample_irradiation_radiant_flux" /
"sample_irradiation_particle_energy"
Variable: during an experiment ("Spectrum")
Conditions and calculations: same as in sample
Note: before and/or during spectrum recording.
\(\begin{array}{cccc}\mathrm{U} & \text { Sampl } & \mathrm{Vc} \text { part/s/m Absolute uncertainty on the irradiation or bombardment flux in number of } \\ {[\mathrm{m}]} & \mathrm{L} 4 & 2 & \text { particles (photons, ions, electrons, ...) per unit time and unit surface of the }\end{array}\) sample

Unit: particle \(\cdot \mathrm{s}^{-1} \cdot \mathrm{~m}^{-2}\)
Note: only if "sample_irradiation_particle_flux" has a value \(\neq\{\varnothing\), NULL \(\}\)
Variable: during an experiment ("Spectrum")
Note: before and/or during spectrum recording.
S3 Sampl V part/m2 Total particle fluence (dose: in number of particles per unit surface) of [!o_mc] L4 irradiation or bombardment received by the sample surface.

Unit: particle • \(\mathrm{m}^{-2}\)
Condition \#1: mandatory when "sample_irradiation_particle_family" \(\neq\) 'NULL'
Condition \#2: Mandatory when "sample_irradiation_particle_flux" \(=\{\varnothing\),
NULL \(\}\) OR "sample_irradiation_time" \(=\{\varnothing\), NULL \(\}\)
AND when "sample_-irradiation_radiant_fluence" \(=\{\varnothing\), NULL \(\}\)
AND when "sample_irradiation_radiant_flux" \(=\{\emptyset\), NULL \(\}\) OR
"sample_irradiation_time" \(=\left\{\right.\) Ø, \(^{-}\)NULL \(\}\)
\(\rightarrow\) when " particle_flux" and "_time" \(\neq\{\varnothing\), NULL \(\}\), calculated by: \(\Rightarrow\) "sample_irradiation_particle_fluence" \(=\)
"sample_irradiation_particle_flux" * "sample_irradiation_time"
\(\Rightarrow\) when "_radiant_flux" and "particle_energy" and "_time" \(\neq\{\varnothing\), NULL \(\}\), calculated by:
\(\Rightarrow\) "sample irradiation particle fluence" \(=\)
```

sample_irradiation_particle_fluen float ce_error

```
\begin{tabular}{ccc}
U & Sampl & Vc \\
[o_mc] & L4 & \\
[V: & & \\
o_mc] & &
\end{tabular}
"sample_irradiation_radiant_flux" * "sample_irradiation_time" /
"sample_irradiation_particle_energy"
Variable: during an experiment ("Spectrum")
Dose before end of spectrum recording
Conditions and calculations: same as in sample
Note:
before and/or during spectrum recording.
- if irradiation continue during spectrum recording then this dose can be estimated either at beginning or at mid-time of spectrum recording (tell in comments).
- for Raman laser irradiation it is the total laser irradiation dose at the measurement spot. If measurement spot change then the irradiation dose is reset. bombardment received by the sample surface.
Unit: particle \(\cdot \mathrm{m}^{-2}\)
Note: only if "sample_irradiation_particle_fluence" has a value \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) when "_particle_flux_error" and (or) "_time_error" are \(\neq\{\varnothing\), NULL \(\}\), calculated by:
\(\Rightarrow\) "sample_irradiation_particle_fluence_error" =
"sample_irradiation_particle_fluence"*
("sample_irradiation_particle_flux_error"/
"sample_irradiation_particle_flux" +
"sample_irradiation_time_error"/ "sample_irradiation_time")
\(\rightarrow\) when "_radiant_flux" and "_particle_energy" and "_time" are \(\neq\{\varnothing\),
NULL\}, calculated by:
\(\Rightarrow\) "sample_irradiation_particle_fluence_error" =
"sample_irradiation_particle_fluence"*
("sample_irradiation_radiant_flux_error"/
"sample_irradiation_radiant_flux" +
"sample_irradiation_time_error"/ "sample_irradiation_time")
Variable: during an experiment ("Spectrum")
Uncertainty on dose before end of spectrum recording
Calculations: same as in sample
Note: before and/or during spectrum recording.

\section*{Irradiation: Radiance}
sample_irradiation_radiant
sample_irradiation_radiant_flux_u enum(text) nit
\[
\begin{aligned}
& \text { U Sampl (V) -- Unit of radiant flux (irradiance) } \\
& \text { [!o_m] } \\
& \text { Enum: }\{J . s-1 . m-2, \text { J.s-1.mm-2, J.s-1.micron-2, eV.s-1.m-2, eV.s-1.mm-2, } \\
& \text { eV.s-1.micron-2, keV.s-1.m-2, MeV.s-1.m-2, erg.s-1.m-2, erg.s-1.mm-2, } \\
& \text { erg.s-1.micron-2\} } \\
& \text { Condition: mandatory when "sample_irradiation_radiant_flux" } \neq\{\varnothing \text {, NULL }\} \\
& \text { - all radiant flux per unit surface data will be stored in 'J.s }{ }^{-1} . \mathrm{m}^{-2} \text {, } \text { (W. } \mathrm{m}^{-2} \text {) } \\
& \text { Equivalences with particle energy unit: } \\
& \text { - 'J' } \Rightarrow \text { 'J.s-1.m-2' } \\
& \text { - 'kJ' => 'J.s-1.m-2' and multiply "sample_irradiation_radiant_flux" } \\
& \text { by } 1 \mathrm{e} 3 \\
& \text { - 'eV' => 'eV.s-1.m-2' } \\
& \text { - 'keV' => 'keV.s-1.m-2' } \\
& \text { - ' } \mathrm{MeV}^{\prime}=>\text { 'MeV.s-1.m-2' } \\
& \text { - 'cm-1' => 'J.s-1.m-2' and multiply "sample_irradiation_radiant_flux" } \\
& \text { by } 1.9864 \mathrm{e}-23 \\
& \text { Notes: } \\
& \text { - used for "sample_irradiation_radiant_flux/_error" } \\
& \text { - } \quad 1 \mathrm{~J} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~m}^{-2}=1 \mathrm{~W} \cdot \mathrm{~m}^{-2}=10^{-12} \mathrm{~J} \cdot \mathrm{~s}^{-1} \cdot \mu \mathrm{~m}^{-2} \\
& \text { - } \quad 1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J} \\
& \text { - } 1 \mathrm{eV}=1239.8419 \mathrm{~nm}=8065.5443 \mathrm{~cm}^{-1} \\
& \text { - } \quad 1 \mathrm{erg}=10-7 \mathrm{~J}=0.62415 \mathrm{MeV}=6.2415 \times 10^{11} \mathrm{eV} \\
& \text { - } \quad 1 \mu \mathrm{~m}=1.9864 \times 10^{-23} \mathrm{~J}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline sample_irradiation_radiant_flux float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[!\mathrm{omc}]} \\
{[\mathrm{V}:} \\
\text { £o_mc] }
\end{gathered}
\] & Sampl L4 & & & \begin{tabular}{l}
Radiant flux (irradiance: energy per unit time and unit surface) of irradiation or bombardment of the sample surface \\
Unit: "sample_irradiation_radiant_flux_unit" \\
- converted in the database and provided to user in ' \(\mathrm{J} . \mathrm{s}^{-1} \cdot \mathrm{~m}^{-2}\), \(\left(\mathrm{W} \cdot \mathrm{m}^{-2}\right)\) unit \\
Condition \#1: mandatory when "sample_irradiation_particle_family" \(=\) 'NULL' \\
Condition \#2: Mandatory when "sample_irradiation_radiant_fluence" = \{ , NULL\} \\
AND when "sample_irradiation_particle_fluence" \(=\{\varnothing, N U L L\}\) \\
AND when "sample_irradiation_particle_flux" \(=\{\emptyset\), NULL \(\}\) OR \\
"sample_irradiation_time" \(=\{\) Ø, NULL \(\}\) \\
\(\rightarrow\) when "sample_irradiation_radiant_flux" = ' \(\varnothing\) ', calculated by: \\
\(\Rightarrow\) "sample_irradiation_radiant_flux" \(=\) \\
"sample_irradiation_particle_flux" * \\
"sample_irradiation_particle_energy"
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Variable: during an experiment ("Spectrum") \\
Condition: Compulsory for Raman and Fluorescence spectroscopies OR "sample_irradiation_radiant_fluence" \\
Note: before and/or during spectrum recording.
\end{tabular} \\
\hline sample_irradiation_radiant_flux_e float rror & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & Sampl
L4 & Vc & var. & \begin{tabular}{l}
Absolute uncertainty on the radiant flux (irradiance) of irradiation or bombardment of the sample surface \\
Unit: "sample_irradiation_radiant_flux_unit" \\
- converted in the database and provided to user in ' \(\mathrm{J} \cdot \mathrm{s}^{-1} \cdot \mathrm{~m}^{-2}\), \(\left(\mathrm{W} \cdot \mathrm{m}^{-2}\right)\) unit \\
when "sample_irradiation_radiant_flux_error" = ' \(\varnothing\) ', calculated by: "sample_irradiation_radiant_flux_error" \(=\)
\end{tabular} \\
\hline
\end{tabular}
sample_irradiation_radiant_fluenc float e
"sample_irradiation_radiant_flux" *
"sample_irradiation_particle_energy" *
"sample_irradiation_particle_flux_error"/
"sample_irradiation_particle_flux"
Note: only if "sample_irradiation_radiant_flux" has a value \(\neq\{\varnothing\), NULL \(\}\)
Variable: during an experiment ("Spectrum")
Note: before and/or during spectrum recording.
\begin{tabular}{lcc}
\begin{tabular}{cc}
S3 & Sampl \\
[!o_mc] & V \\
[V: & \\
£o_mc] & \\
&
\end{tabular} \\
& &
\end{tabular}

Total radiant fluence (radiant dose or radiant exposure: energy per unit surface) of irradiation or bombardment received by the sample surface.

Unit: "radiant_flux_unit" • s : i.e. \{J.m-2, J.mm-2, J.micron-2, eV.m-2, eV.mm-2, eV.micron-2, keV.m-2, MeV.m-2, erg.m-2, erg.mm-2, erg.micron-

2\}
- converted in the database and provided to user in 'J.m. \({ }^{-2}\), unit

Condition \#1: Mandatory when "sample_irradiation_particle_family" \(\neq\) 'NULL' Condition \#2: Mandatory when "sample__irradiation_radiant_flux" \(=\{\varnothing\),
NULL \(\}\) OR "sample_irradiation_time" \(=\{\emptyset\), NULL \(\}\)
AND when "sample irradiation particle fluence" \(=\{\varnothing\), NULL \(\}\)
AND when "sample_irradiation_particle_flux" \(=\{\varnothing\), NULL \(\}\) OR
"sample_irradiation_time" \(=\{\varnothing\), NULL \(\}\)
\(\rightarrow\) when "_radiant_flux" and "_time" \(\neq\{\varnothing\), NULL \(\}\), calculated by:
\(\Rightarrow\) "sample_irradiation_radiant_fluence" =
"sample_irradiation_radiant_flux"* "sample_irradiation_time"
\(\rightarrow\) when " particle_flux" and "_particle_energy" and "_time" \(\neq\{\varnothing\), NULL \(\}\), calculated by:
\(\Rightarrow\) "sample_irradiation_radiant_fluence" =
"sample_irradiation_particle_flux" *
"sample_irradiation_particle_energy" * "sample_irradiation_time"
Variable: during an experiment ("Spectrum")
Condition: Compulsory for Raman and Fluorescence spectroscopies OR
sample_irradiation_radiant_fluenc float e_error
\begin{tabular}{ccc}
U & Sampl & Vc \\
{\([\mathrm{mc}]\)} \\
{\([\mathrm{V}: \mathrm{mc}]\)}
\end{tabular} \(\mathrm{L4} \quad \mathrm{l}\)
"sample_irradiation_radiant_fluence"
Note:
- before and/or during spectrum recording.
- if irradiation continue during spectrum recording then this energy dose can be estimated either at beginning or at mid-time of spectrum recording (tell in comments).
- for Raman laser irradiation it is the total laser irradiation energy dose at the measurement spot. If measurement spot change then the irradiation energy dose is reset.

Absolute uncertainty on the total radiant fluence (radiant dose or radiant exposure) of irradiation or bombardment received by the sample surface.

Unit: "radiant_flux_unit" • s : i.e. \{J.m-2, J.mm-2, J.micron-2, eV.m-2, eV.mm-2, eV.micron-2, keV.m-2, MeV.m-2, erg.m-2, erg.mm-2, erg.micron2\}
- converted in the database and provided to user in ' \({ }^{\prime} . \mathrm{m}^{-2}\), unit

Note: only if "sample_irradiation_radiant_fluence" has a value \(\neq\{\) Ø, NULL \(\}\)
\(\Rightarrow\) when "_radiant_flux_error" and (or) "_time_error" are \(\neq\{\varnothing\), NULL \(\}\), calculated by:
\(\Rightarrow\) "sample_irradiation_radiant_fluence_error" =
"sample_irradiation_radiant_fluence" *
("sample_irradiation_radiant_flux_error"/
"sample_irradiation_radiant_flux" + "sample_irradiation_time_error"/
"sample_irradiation_time")
\(\rightarrow\) when "_particle_flux" and "_particle_energy" and "_time" are \(=\{\emptyset\),
NULL\}, calculated by:
\(\Rightarrow\) "sample_irradiation_radiant_fluence_error" =
"sample irradiation radiant fluence" *
("sample_irradiation_particle_flux_error"/
"sample_irradiation_particle_flux" + "sample_irradiation_time_error"/ "sample_irradiation_time")

Variable: during an experiment ("Spectrum")

Uncertainty on energy dose before end of spectrum recording
Note: before and/or during spectrum recording.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_irradiation_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & Sampl
L4 & V
\[
\mathrm{Aj}
\] & -- & \begin{tabular}{l}
Experimentalist comments about the irradiation conditions of the sample during spectrum recording. \\
Variable: during an experiment ("Spectrum") \\
Notes: \\
- for additional information of irradiation before and/or during spectrum recording. \\
- for experiments with irradiation and with Raman measurement, provide here the information on Raman irradiation: "source", "particle_energy", "radiant_flux" \& "time", or "radiant_fluence"
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample documentation}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_documentations & List [L5a] & [O] & & & & £: Documentations about the sample \\
\hline \begin{tabular}{l}
sample_documentation_name \\
[matter_documentation_name]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Sampl L5a & F & -- & \begin{tabular}{l}
Name of the documentation describing the sample \\
Note: this name will appear as the documentation title in the database \\
\(E x\) : 'Elemental composition of the smectite sample'
\end{tabular} \\
\hline sample_documentation_filename [matter_documentation_filename] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & Sampl L5a & F & -- & \begin{tabular}{l}
File name (with extension) of the documentation describing the sample \\
Condition: Mandatory when "sample_documentation_name" \(\neq \Phi\) \\
File formats: .pdf, .png, .jpg, .gif, .tiff, .txt, ... \\
Note: this file will be imported in the database. \\
Note xml: this file should be zipped with the xml file
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample publications}
sample_publications List [L5b] [O] £: Publications describing the sample and its processings
\begin{tabular}{llllll}
\begin{tabular}{l}
sample_publication_uid [*] \\
[matter_publication_uid]
\end{tabular} & varchar(255) & \begin{tabular}{c}
S2 \\
{\([\mathrm{m}]\)}
\end{tabular} & \begin{tabular}{c}
Sampl \\
Publi
\end{tabular} & F & -- \\
& & \begin{tabular}{l}
Link to the existing UID of the publication describing the sample and its \\
processings
\end{tabular} \\
L5b
\end{tabular}

\section*{Sample layers organization}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sample_layers_number [+][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\_\mathrm{c}\right]}
\end{gathered}
\] & Sampl & F & no & Number of layers added to make the sample \(\Rightarrow\) calculated from "sample_layer_index" list \\
\hline sample_layer_addition [+] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & Sampl & F & -- & \begin{tabular}{l}
Any information on how the layers are added one over the other at the material level in the sample. \\
Condition: Mandatory when "sample_layers_number" > ' 1 ' \\
Ex: 'plane parallel', 'irregularly in thickness'...
\end{tabular} \\
\hline sample_layers & List [L6] & [!!] & & & & £: Layers constituting the sample. \\
\hline sample_layer_index [*§][-xml] & \begin{tabular}{l}
\[
\operatorname{int}(11)
\] \\
[Internal Links]
\end{tabular} & \[
\begin{gathered}
\mathrm{B} \\
{[!-\mathrm{g}]}
\end{gathered}
\] & Sampl Layer & F & -- & \begin{tabular}{l}
Internal link to the ID of the layer constituting the sample. \\
Note: determined automatically during import
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline sample_precursor_materials [matter_precursor_materials] & List [L7] & [O] & \\
\hline sample_precursor_material_index & \(\operatorname{int}(11)\) & B & Sampl \\
\hline [*§][-xml] & [Internal Links] & [!.g] & PreMater \\
\hline \(\neg\) Same structure as "materials" but without the "material & & & L7 \\
\hline
\end{tabular}
\(£:\) Precursors of the sample.
-- Internal link to the ID of the precursor of the sample.
Note: a precursor material is a "simple material" described through the material/constituent(s) and specie(s) structure. When the precursor material is a "matter" then no need to describe it here because it can be linked directly as a matter (with its "matter_uid") in the processings with "matter_processing_precursor_matter_uid"
Note \(x m l\) : in practice the description of the precursor material(s) is done directly under the "sample" structure without providing the ID link

Note: determined automatically during import
\begin{tabular}{llccc}
sample_processings & List [L8] & [O] & & \\
sample_processing_index [*§][-- & \(\operatorname{int}(11)\) & B & Sampl & F \\
xml] & [Internal Links] & [!_g] & Process & \\
& & & L8 &
\end{tabular}
\(£:\) Processings of the sample.
-- Internal link to the ID of the processing of the sample.
Note: determined automatically during import

\subsection*{11.4 Layer Table}

Root of the table: layer
Data type: in 'Sample'
Key-word Type Level Table Exp Unit Description

\section*{Layer import mode and index}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline layer_import_mode & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{\left[!!\_\mathrm{m}\right]}
\end{gathered}
\] & Layer & (V) & -- & \begin{tabular}{l}
Mode of import of the "Layer" metadata \\
Enum: \{first import, inherited, ignore, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Default \(=\) 'first import' \\
Definitions: see "sample_import_mode"
\end{tabular} \\
\hline layer_index [**][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\mathrm{B} \\
{\left[!!\_\mathrm{g}\right]}
\end{gathered}
\] & Layer & F & -- & Automatic random but unique number (ID) given to new layer \\
\hline layer_uid [**] [-xml] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 0 / \mathrm{S} 1 \mathrm{~s} \\
{\left[!!\_\mathrm{cm}\right]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Unique identifier code (UID) given to the layer table (automatically created) \\
Note: This code name should start with 'LAYER_' and be very accurately formatted in order to be simple and unique
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
\(E x\) : It should be of the style 'LAYER_n_AB_yyyymmdd_123...' where ' \(n\) ' is 'layer_order', 'AB' is the initials of people preparing the import, 'yyyymmdd' is the full date of the day, and ' \(123 . .\). ' is alphanumeric (only with '_'), and up to 6 characters. \\
\(\Rightarrow\) calculated from 'sample_uid' and 'layer_order'
\end{tabular} \\
\hline & & & & & & Note: except when "layer_import_mode" = 'use existing' where it is necessary to fill it manualy with the used layer. \\
\hline & & & & & & \begin{tabular}{l}
Ex: "sample_uid" = 'SAMPLE_BS_20120912_001' \\
=> "layer_uid" for layer \#1 = 'LAYER_1_BS_20120912_001'
\end{tabular} \\
\hline
\end{tabular}

\section*{Layer name and organization in sample}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline layer_name & varchar(255) & \[
\begin{gathered}
\mathrm{S} 0 / \mathrm{S} 1 \mathrm{~s} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Name of layer given by the experimentalist \\
Note: \\
- It should contain explicit info on the layer and constituting materials: name and some typical properties of the layer (type, thickness, formation, ...). \\
- It is used as the title of the layer in the sample structure bloc of the SSHADE interface \\
- mostly useful when there are several layers to distinguish them (include what makes the difference) \\
- when only one layer, it can be the same as sample name
\end{tabular} \\
\hline layer_order & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\mathrm{U} \\
{[!!\mathrm{m}]}
\end{gathered}
\] & Layer & F & no & \begin{tabular}{l}
Position of the layer into the sample (bottom to top: from 1 to N) \\
Note: the order of the layers is defined as the first layer being in contact of the substrate if there is a single substrate. For samples between 2 substrates (closed cell windows, anvil cells, ...) we consider that the top of the sample is the side that receive the measurement light, and the first layer (bottom) is thus the last layer that receive light.
\end{tabular} \\
\hline layer_type & enum(text) & \[
\begin{gathered}
\mathrm{S} 0 / \mathrm{S} 0 \mathrm{~s} \\
{[!\mathrm{m}]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Type of layer \\
Enum: \{granular, compact raw, compact, crystal, pellet, single grain, grains,
\end{tabular} \\
\hline
\end{tabular} aerosols, clusters, fluid, various, other, unknown \}

\section*{Definitions:}
- a 'compact' layer is a layer with mostly closed porosity or no porosity, i.e. fluids cannot penetrate them, or only weakly. A compact solid has generaly a compacity larger than \(80-90 \%\).
- a 'granular' layer is made of individual grains in close contact but more or less aggregated and sintered
- 'grain(s)' and 'aerosols' are individual or only partly aggregated particles (small aggregats)
- 'granular': layer constituted of individual grains, in simple contact or
with various degree of sintering (open porosity)
- 'compact raw': raw piece of compact material of any type of shape
- 'compact': compact layer with (roughly) flat faces (closed porosity, if any)
- 'crystal': layer made of a single mono or polycrystal
- 'pellet': special type of compact layer (few mm thick) specifically made of a transparent material (\(\mathrm{KBr}, \ldots\)) as a "matrix sample holder" of dispersed solid inclusions.
- 'single grain': one single individual grain
- 'grains': only a few grains, individual or aggregated
- 'aerosols': layer constituted of individual or aggregated grains in fluid (or vacuum), without contact
- 'clusters': layer constituted of molecular or atomic clusters in vacuum (or fluid), without contact
- 'fluid': layer of gas or liquid (that can interpenetrate other non-compact layers)
- 'various': used in generic samples when the different samples have different types of layers (Ex: 'compact film' and 'compact slab')
- 'other': not a type described in the list, will be defined in "comments"
- 'unknown': unknown layer type

Note: a 'compact' raw piece, film or slab is a layer with mostly closed porosity or no porosity, i.e. fluids cannot penetrate them, or only weakly. A compact solid has generaly a compacity larger than \(80-90 \%\).

\section*{Layer physical characteristics in sample}
layer thickness float
float
var. Layer thickness
Unit: in "sample_size_unit"
- converted in ' \(\bar{m}\) ' unit in the database but provided to user in "sample_size_unit"
Condition: Mandatory when "sample is generic" = 'false'
Exception: 'infinite' (or 'INFINITE', 'Infinite') is the special value to deal
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(l a y e r \_t h i c k n e s s \_\)error} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
\text { [!o_m] }
\end{gathered}
\]} & \multirow[t]{3}{*}{Layer} & \multirow[t]{3}{*}{F} & & \begin{tabular}{l}
Absolute uncertainty on layer thickness \\
Unit: in "sample_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "sample_size_unit"
\end{tabular} \\
\hline & & & & & & Condition: Mandatory when "sample_is_generic" = 'false' \\
\hline & & & & & & Note: only if "layer_thickness" has a value \(=\{\) Ø, NULL \(\}\) \\
\hline \multirow[t]{2}{*}{layer_mass} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~cm}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Layer} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{g} & \begin{tabular}{l}
Total mass of the layer \\
- stored in the database and provided to user in ' g ' unit
\end{tabular} \\
\hline & & & & & & \(\rightarrow\) Calculated from the sum of material masses ("material_mass") only if no value is given \\
\hline \multirow[t]{2}{*}{layer_mass_error} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~cm}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Layer} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{g} & \begin{tabular}{l}
Absolute uncertainty on total mass of the layer \\
- stored in the database and provided to user in ' \(g\) ' unit
\end{tabular} \\
\hline & & & & & & \(\rightarrow\) Calculated from the sum of material mass errors ("material_mass_error") only if no value is given \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
layer_texture \\
[layer/matter_texture]
\end{tabular}} & \multirow[t]{4}{*}{enum(text)} & \multirow[t]{4}{*}{\[
\underset{\substack{\mathrm{S} 1 / \mathrm{S} 1 \mathrm{~s} \\[!\mathrm{m}]}}{ }
\]} & \multirow[t]{4}{*}{Layer} & \multirow[t]{4}{*}{F} & \multirow[t]{4}{*}{--} & Macroscopic texture of the layer (at scale above material grains): \\
\hline & & & & & & OpenEnum: \{muddy, earthy, pulverulent, loose fine grained, loose coarse grained, loose granular, sintered granular, cemented granular, mixed granular, compact, compact glassy, compact poor grained, compact fine grained, compact coarse grained, compact lamellar, compact fibrous, compact crystal, compact mixed, single grain, individual grains, aggregated grains, isolated aerosols, aggregated aerosols, clusters, liquid, gaseous, other, unknown\} \\
\hline & & & & & & \begin{tabular}{l}
Definitions: \\
Type \(=\) 'granular' '
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
- 'muddy': wet earthy or pulverulent powder \\
- 'earthy': Dull, clay-like texture (\(<2 \mu \mathrm{~m}\)) with no visible crystalline affinities
\end{tabular} \\
\hline
\end{tabular}
- 'pulverulent': very fines grains (\(<50 \mu \mathrm{~m}\)) without, or with very weak aggregation
- 'loose fine grained’ fine grains (\(<1 \mathrm{~mm}\)) without, or with very weak mechanical links between grains (large open porosity)
- 'loose coarse grained' coarse grains (> 1 mm) without, or with very weak mechanical links between grains (large open porosity)
- 'loose granular': undefined grain sizes, without, or with very weak mechanical links between grains (large open porosity)
- 'sintered granular': grains moderately to strongly linked together without another material between them (open porosity)
- 'cemented granular': grains with a material (itself or another) linking them to form a quasi-compact medium
- 'mixed granular': mixture of two or more of the above texture

Type = "compact": 'compact raw', 'compact' or 'pellet':
- 'compact': simply compact (no knowledge about granularity)
- 'compact glassy': compact layer without visible grains (looking vitreous or amorphous)
- 'compact poor grained': compact layer with very fine grains (< \(50 \mu \mathrm{~m}\))
- 'compact fine grained': compact layer with fine grains (<1 mm)
- 'compact coarse grained': compact layer with coarse grains (> 1 mm)
- 'compact lamellar': distinctly foliated (2D) fine-grained forms.
- 'compact fibrous': distinctly fibrous (1D) fine-grained forms.
- 'compact crystal': compact layer with a single, or a few, monocrystal(s)
- 'compact mixed': at least 2 different compact textures are present

Type \(=\) 'single grain':
- 'single grain': a single individual grain (its texture will be described in 'material_grain_texture')
Type \(=\) 'grains' '
- 'individual grains': a few isolated grains
- 'aggregated grains': a few aggregated grains

Type = 'aerosols':
- 'isolated aerosols': individual aerosols particles in suspension in fluid
- 'aggregated aerosols': aggregated aerosols particles in suspension in fluid (gas, liquid, ...)
\begin{tabular}{llll}
\begin{tabular}{l}
layer_porosity_type \\
[layer/matter_porosity_type]
\end{tabular} & enum(text) & \begin{tabular}{c}
S1/S2s \\
[!_m]
\end{tabular} & Layer
\end{tabular} F

Type = 'clusters':
- 'clusters': molecular or atomic clusters in jet or vacuum Type \(=\) 'fluid':
- ‘liquid’: liquid
- 'gaseous': gas

Type \(=\) other types:
- 'other': not one described in the list, will be defined in "comments"
- 'unknown': unknown layer texture

Note: a molecular film, a molecular slab or a rock are considered here as one type of 'compact' layer

Type of porosity of the layer (at scale above material grains)
OpenEnum: \{particulate, porous, open pores, closed pores, without pores, other, unknown

\section*{Definitions:}
- 'particulate': discontinuous layer with only little matter (mostly 'porosity'!), such as individual or aggregated particules, grains or aerosols
- 'porous': non-consolidated or consolidated layer with porosity, but of mixed or unknown type (closed and/or open)
- 'open pores': non-consolidated or consolidated layer with mostly open porosity, i.e. fluids can penetrate them.
- 'closed pores': consolidated layer with mostly closed porosity, i.e. fluids cannot penetrate them, or only weakly.
- 'without pores': consolidated layer with mostly no porosity, i.e. fluids cannot be included in them, or only weakly. Also for liquids without bubble.
- 'other': not one of the cases described above, will be defined in "comments"
- 'unknown': unknown layer texture

Note: a molecular film, a molecular slab or a rock are considered here as one type of 'compact' layer
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline layer_compacity [layer/matter_compacity] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & no & Compacity of the layer (fraction of solid material volume per unit layer volume) \\
\hline & & & & & & Note: compacity = (1- porosity \()\) \\
\hline \begin{tabular}{l}
layer_compacity_error \\
[layer/matter_compacity_error]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & no & \begin{tabular}{l}
Absolute uncertainty on the compacity of the layer \\
Note: compacity_error = porosity error
\end{tabular} \\
\hline \begin{tabular}{l}
layer_density \\
[layer/matter_density]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & \(\mathrm{g} / \mathrm{cm} 3\) & \begin{tabular}{l}
Density of the layer \\
- stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3 \text { 3 }}\), unit
\end{tabular} \\
\hline \begin{tabular}{l}
layer_density_error \\
[layer/matter_density_error]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & \(\mathrm{g} / \mathrm{cm} 3\) & \begin{tabular}{l}
Absolute uncertainty on the density of the layer \\
- stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3}\) ' unit
\end{tabular} \\
\hline layer_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Experimentalist comments about this layer \\
Ex: for pellet fabrication, for grain squeezing in diamond cell, for aerosols,... homogeneity of the layer thickness, ... List of thicknesses, masses and errors for "generic_sample", ...
\end{tabular} \\
\hline Layer formation conditions & & & & & & \\
\hline layer_formation_mode & varchar(255) & \[
\begin{gathered}
\text { S1/S1bs } \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Mode of formation of the layer \\
FreeList: \{processing of parent sample, single gas deposition, gas mixture deposition, gases codeposition, EBPVD, CVD, PECVD, ion-beam sputtering, gas flow sputtering, fractionated sublimation, crystal growth from liquid, crystal growth from fluid, solid-solid phase transition, aerosols in flux, aggregates in jet, liquid condensation, natural deposition, manual deposition, pressing grains, pressing granular material, pressing compact material, mechanical slabing, laser slabing, simulated surface, simulated aerosols,...\} \\
Definitions: \\
- 'processing of parent sample': processing a sample already formed \\
- 'gas deposition': gas phase molecules condensing on a substrate (single gas, gas mixture, co-deposition, ...)
\end{tabular} \\
\hline
\end{tabular}
- 'EBPVD: Electron Beam Physical Vapor Deposition: form of physical vapor deposition in which a target anode is bombarded with an electron beam that causes atoms from the target to transform into the gaseous phase and precipitate into a thin layer of solid on the anode.
- 'ion-beam sputtering' PVD (IBS-PVD)
- 'gas flow sputtering' PVD (GFS ??-PVD)
cf. http://en.wikipedia.org/wiki/Sputter_deposition\#Ion-
beam sputtering
- 'CVD': Chemical Vapor Deposition: one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit
- 'PECVD': Plasma-Enhanced Chemical Vapor Deposition: CVD process that utilize plasma to enhance chemical reaction rates of the precursors
- 'ion-beam sputtering': sputtering of an initial sample by a beam of energetic ions
- 'gas flow sputtering': sputtering of an initial sample by a flux of gas
- 'fractionated sublimation': formation by differential sublimation of a multiphase mixture, such as ice-dust.
- 'crystal growth from fluid': crystal growth from fluid phase (liquid or gas)
- 'solid-solid phase transition': solid phase obtained by reversible or irreversible phase transition of another phase
Ex: beta- \(\mathrm{N}_{2}\) to alpha- \(\mathrm{N}_{2}\) transition, Ia \(\mathrm{H}_{2} \mathrm{O}\) to Ih \(\mathrm{H}_{2} \mathrm{O}, \ldots\)
- 'aerosols in flux':
- 'aggregates in jet': aggregates formed in jet expansion
- 'liquid condensation': liquid layer grown by gas condensation
- 'natural deposition': as deposited in nature (e.g. snow)
- 'manual deposition': deposited by hand
- 'pressing grains': grain(s) pressed between windows generaly leading ot its/their crushing
- 'pressing granular material': pellet formed by pressing granular material(s) under mechanical pressure
- 'pressing compact material': compact material deformed under mechanical pressure

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline layer_formation_pressure & float & \[
\begin{aligned}
& \mathrm{S} 21 \\
& {[\mathrm{~m}]}
\end{aligned}
\] & Layer & F & & \begin{tabular}{l}
Mechanical pressure applied on the layer during formation \\
Unit: in "sample_pressure_unit" \\
converted in ' Pa ' unit in the database and provided to user in ' Pa ' \\
Note: This formation pressure duplicates (but in 'float' format in order to make it searchable) the value given in "sample_processing_process" when "sample/matter_processing_chronology" = 'during layer formation'
\end{tabular} \\
\hline \multirow[t]{2}{*}{layer_formation_pressure_error} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Layer} & \multirow[t]{2}{*}{F} & var. & Absolute uncertainty on the mechanical pressure applied on the layer during formation \\
\hline & & & & & & \begin{tabular}{l}
Unit: in "sample_pressure_unit" \\
- converted in ' Pa ' unit in the database and provided to user in ' Pa '
\end{tabular} \\
\hline layer_formation_fluid_pressure & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & var. & \begin{tabular}{l}
Pressure of the fluid surrounding the layer during formation \\
Unit: in "sample_fluid_pressure_unit" converted in ' Pa ' unit in the database and provided to user in ' Pa '
\end{tabular} \\
\hline & & & & & & Note: This formation fluid pressure duplicates (but in 'float' format in order to make it searchable) the value given in "sample_processing_process" when "sample/matter_processing_chronology" = 'during layer formation' \\
\hline layer_formation_fluid_pressure_e rror & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & var. & Absolute uncertainty on the pressure of the fluid surrounding the layer during formation \\
\hline & & & & & & Unit: in "sample_fluid_pressure_unit" converted in ' Pa ' unit in the database and provided to user in ' Pa ' \\
\hline layer_formation_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Layer & F & -- & \begin{tabular}{l}
Experimentalist additional information about the formation stage of this layer \\
Ex: type of gas (pure, mixture, co-deposited, ...), position of deposition tubes, details on PVD and CVD deposition processes, type of fluid (gas, liquid), method of sqeezing grain (diamond cell, ...), ..., variations and error in the formation rate number, ...
\end{tabular} \\
\hline
\end{tabular}

\section*{Layer materials mixing}

\begin{tabular}{llcll}
\hline layer_materials & List \([\) L2 \(]\) & {\([!]\)} & & \\
layer_material_index \([* \$][-\mathrm{xml}]\) & \(\operatorname{varchar(255)}\) & B & Layer & F \\
& {\([\) Internal link \(]\)} & {\(\left[!\_\mathrm{g}\right]\)} & Mater &
\end{tabular}

L2

Note: these matters are those constituting the layer in the sample before measurement, i.e. the eventual layer and sample processings should not have modified their composition and state.
Note: ID determined automatically during import
Note \(x \mathrm{ml}\) : in practice the description of the matters(s) are done directly under
"layer" without ID link
£: Materials constituting the layer
-- Internal link to the ID of the different materials constituting the layer
Note: with "material is precursor" \(=\) 'false'
Note: these materials are those constituting the layer in the sample before measurement, i.e. the final materials after all the listed layer and sample processings.

Note: ID determined automatically during import
Note xml: in practice the description of the material(s) are done directly under "layer" without ID link

\subsection*{11.5 Matter Table}

Root of the table: matter
Data type: in 'Sample'

\section*{Matter arrangement and abundance in the layer}
matter_arrangement \(\quad\) varchar(256) \(\quad \mathrm{U} \quad\) Matter Farchar(256Relative arrangement of the material grains Mfatey matter within the layer --
- related to "layer_materials_mixing" who describes the mode of mixing (of the grains) of the different materials in the layer.
- mostly useful for materials with "layer_materials_mixing"='spatial distribution'. An image showing the spatial heterogeneity can be provided in "sample_images"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_mass [+] & float & \[
\begin{gathered}
\mathrm{U} \\
\text { [!o_m] }
\end{gathered}
\] & Matter & F & & \begin{tabular}{l}
Total mass of the matter in the layer \\
Condition: mandatory for one of "material_mass" or "material_mass_fraction" \\
- stored in the database and provided to user in ' g ' unit
\end{tabular} \\
\hline matter_mass_error [+] & float & \[
\begin{gathered}
\mathrm{U} \\
\text { [!o_m] }
\end{gathered}
\] & Matter & F & g & Absolute uncertainty on total mass of the matter in the layer Condition: mandatory when "matter_mass" \(\neq\{\varnothing\), NULL \(\}\) - stored in the database and provided to user in ' g ' unit \\
\hline matter_mass_fraction [+] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{mc}\right]}
\end{gathered}
\] & Matter
L1 & F & no & \begin{tabular}{l}
Mass fraction of the matter in the layer \\
Condition: mandatory for one of "material_mass" or "material_mass_fraction" \\
\(\rightarrow\) if no value is given, then calculated from the material masses ("material_mass") and matter masses ("matter_mass") of all the materials and matters in layer.
```

    \(\Rightarrow\) "matter_mass_fraction" = "matter_mass" / [ \(\sum\) layer("material_mass") +
        \(\sum_{\text {layer ("matter_mass")] }}\)
    ```
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note: value between 0 and 1 . \\
Note: a warning will be issued during import if the mass fraction of one matter is not present or cannot be calculated
\end{tabular} \\
\hline matter_mass_fraction_error [+] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{mc}\right]}
\end{gathered}
\] & Matter & F & no & \begin{tabular}{l}
Absolute uncertainty in mass fraction of the matter in the layer \\
Condition: mandatory when "matter_mass_fraction" \(\neq\{\varnothing\), NULL \(\}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_material_masses [-xml] & List [L1] & [O_c] & & & & £: Masses of all the matter's materials in the layer \\
\hline matter_material_uid [*] [-xml] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 0 \mathrm{~m} / \mathrm{S} 1 \\
\text { /S1i } \\
{\left[\mathrm{o} \_\mathrm{c}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Matter \\
Mater \\
L1
\end{tabular} & F & -- & Link to the existing UID of the material in the matter \\
\hline \multirow[t]{2}{*}{matter_material_mass [-xml]} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[\mathrm{o} \_\mathrm{c}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Matter L1} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{g} & \begin{tabular}{l}
Mass of the matter's material in the layer \\
Condition: calculated when "matter_mass" \(\neq \varnothing\) \\
- stored in the database and provided to user in ' g ' unit \\
\(\Rightarrow\) "matter_material_mass" = "matter_xxx_material_mass_fraction" *
\end{tabular} \\
\hline & & & & & & Note: determine the mass in the layer of each of the materials of the matter using the "matter_xxx_material_mass_fraction" of the materials in the matter (mineral, carbonaceous, ...) and the "matter_mass" of the matter in the layer. \\
\hline \multirow[t]{2}{*}{matter_material_mass_error [xml]} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[\mathrm{o} \_\mathrm{c}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Matter \\
L1
\end{tabular}} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{g} & Absolute uncertainty on the mass of the matter's material in the layer Condition: calculated when "matter_mass" \(\neq \varnothing\) AND "matter_mass_error" \(\neq\) \(\emptyset\) \\
\hline & & & & & & \begin{tabular}{l}
- stored in the database and provided to user in ' g ' unit \\
\(\Rightarrow\) "matter_material_mass_error" = "matter_material_mass" * \\
("matter_xxx_material_mass_fraction_error"/ \\
"matter_xxx_material_mass_fraction" + "matter_mass_error"/
\end{tabular} \\
\hline
\end{tabular}
matter_material_mass_fraction [- float
\(\mathrm{xml}]\)
matter_material_mass_fraction_er float ror [-xml]
"matter_mass")

Note: determine the error of the mass in the layer of each of these materials of the matter using the "matter_xxx_material_mass_fraction" and "_error" of the materials in the matter (mineral, carbonaceous, ...) and the "matter_mass_error" of the matter in the layer.
\begin{tabular}{ccc}
U & Matter & F \\
{\(\left[!\right.\) o_c \(^{2}\)} & L1 &
\end{tabular}
U Matter F

Mass fraction of the matter's material in the layer
Condition: when "matter_mass_fraction" \(\neq \varnothing\)
- stored in the database and provided to user in ' g ' unit
\(\rightarrow\) calculated by:
\(\Rightarrow\) "matter_material_mass fraction" \(=\)
"matter_xxx_material_mass_fraction" * "matter_mass_fraction"
Note: value between 0 and 1 .
Note: determine the mass fraction in the layer of each of the materials of the matter using the "matter_xxx_material_mass_fraction" of the materials in the matter (mineral, carbonaceous, ...) and the "matter mass fraction" of the matter in the layer.

Absolute uncertainty on the mass fraction of the matter's material in the layer
Condition: when "matter mass fraction" \(\neq \varnothing\) AND
"matter_mass_fraction_error" \(\neq \varnothing\)
- stored in the database and provided to user in ' g ' unit
\(\rightarrow\) calculated by:
```

| "matter_material_mass_fraction_error" =
"matter material mass fraction"*
("matter_x_xx material_mass fraction error"/
"matter_xxx_material_mass_fraction" + "matter_mass_fraction_error"
/ "matter_mass_fraction")

```

Note: determine the error of the mass fraction in the layer of each of these materials of the matter using the "matter_xxx_material_mass_fraction" and
"_error" of the materials in the matter (mineral, carbonaceous, ...) and the "matter_mass_fraction" and "_error" of the matter in the layer.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline matter_abundance_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Matter & F & & Additional information or comments about the abundance of this matter Note: other type of comments can possibly be added as it will be the only place to put comments on the matter Ex: ... \\
\hline matter_additional_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & -- & \begin{tabular}{l}
Experimentalist additional information or comments about this matter \\
Note: used in particular to describe small changes relative to the matter description, but that did not need creation of a derived matter. \\
\(E x\) : matter storage conditions, changes in density by slight compression, ...
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.6 Material Table}

Root of the table: material
Data type: in 'Sample'
Note: not for precursor materials

material_relevance
\([-\mathrm{xml}\) dans precursor \(]\)\(\quad\) enum(text) \(\quad\)\begin{tabular}{c}
S1b \\
{\(\left[!\_\mathrm{m}\right]\)}
\end{tabular}\(\quad\) Const \(\quad\) F
the initials of the person preparing the import, 'yyyymmdd' is the full date of the day, and ' \(123 \ldots\)...' should be at the end and alphanumeric (only with '_'), up to 6 characters.

\section*{Ex: 'MATERIAL_BS_20181006_059', 'MATERIAL_OB_20000101_01' 'MATERIAL_KD_20170712_X50A'}

Notes:
- The post-fix ' 123 ...' may just be an incremental order number for that day, or may give a short description of the varying parameter of the material.
Ex: 'MATERIAL_KD_20170712_X50A'
[-xml dans precursor]
enum(text) S1b Const F [!_m]
.
ance of the material in the layar
Enum: \{main - major, main - minor, impurity, product, precursor, unknown\}

\section*{Definitions:}
- 'main - major': essential material of the sample/layer before the beginning of an experiment (and prior any processing of the sample)

Note: 'major' refers both to a 'major abundance contribution' of a material and to a 'major spectroscopic contribution' of a minor abundance material
- 'main - minor': minor material of the sample/layer before the beginning of an experiment (and prior any processing of the sample)

Note: 'minor' refers to a material with both a 'minor abundance
contribution' and a 'minor spectroscopic contribution'.
- 'impurity': material not wanted in the nominal composition of the sample/layer but present in samples or matters.
- 'product': material produced in the sample/layer subjected to a processing during the experiment
- 'precursor': precursor material used for synthetic sample/layer formation, or pre-processing of natural matters.

Note: they are flagged 'precursor' only in the precursor material description. If some amount of this material remain in the sample after formation they are thus flagged 'main - minor' or 'impurity'
in the sample description, depending if they are wanted or
unwanted,
- 'unknown': if origin of the material is not clear: 'impurity' or 'product'?
Note: complex materials in synthetic samples are set as 'product' only if they are formed during the experiment.
Precursor material
Enum: \{precursor\}
Default \(=\{\) precursor \(\}\) when "material_is_precursor" \(=\{\) yes, true \(\}\)

\section*{Material arrangement and abundance in the layer}

Condition: also needed when "material_import_mode" = 'use existing'
Note: not for precursor materials
Note: When the abundance info is fully known at the species or constituent level, then give it at the lowest possible level. The values (and errors) at the material
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{level will then be calculated during import where values are missing (but filled values are kept). Provide abundances (absolute and/or fractional) for materials only when values are known only at this level or more accurately than the sum of the lower levels.} \\
\hline \multirow[t]{4}{*}{material_arrangement} & \multirow[t]{4}{*}{varchar(256)} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{Mater} & \multirow[t]{4}{*}{Farchar(256} & 6Relative arrangement of the meterial grains Mithein the layer F -- \\
\hline & & & & & Note: related to "layer_mater[mł_mixing" who describes the mode of mixing (of the grains) of the different materials in the layer. \\
\hline & & & & & Note: mostly useful for materials with "layer_materials_mixing"='heterogeneous spatial mixing' or 'spatial distribution'. An image showing the spatial heterogeneity can be provided in "sample_images" \\
\hline & & & & & Ex: 'gradient of abundances of olivine and pyroxene along one axis of the sample', 'spatial distribution of abundances of olivine and pyroxene given in "sample_image"='map-abundances_olivine-pyroxene-materials' \\
\hline \multirow[t]{5}{*}{material_mass [+]} & \multirow[t]{5}{*}{float} & \multirow[t]{5}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{mc}\right]}
\end{gathered}
\]} & \multirow[t]{5}{*}{Mater} & \multirow[t]{5}{*}{F g} & Total mass of the material in the layer \\
\hline & & & & & Condition: mandatory for one of "material_mass" or "material mass fraction" \\
\hline & & & & & - stored in the database and provided to user in ' g ' unit \\
\hline & & & & & \(\boldsymbol{\rightarrow}\) if no value is given, then calculated from the constituent masses ("constituent_mass") of all the constituents in the material: \\
\hline & & & & & \(\Rightarrow\) "material_mass" \(=\sum_{\text {material(}}\) (constituent_mass") \\
\hline \multirow[t]{4}{*}{material_mass_error [+]} & \multirow[t]{4}{*}{float} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{mc}\right]}
\end{gathered}
\]} & \multirow[t]{4}{*}{Mater} & \multirow[t]{4}{*}{F g} & Absolute uncertainty on total mass of the material in the layer \\
\hline & & & & & Condition: mandatory when "material_mass" \(=\{\varnothing\), NULL \(\}\) \\
\hline & & & & & - stored in the database and provided to user in ' g ' unit \\
\hline & & & & & \begin{tabular}{l}
\(\rightarrow\) if no value is given, then calculated from the constituent mass errors ("constituent_mass_error") of all the constituents in the material: \\
\(\Rightarrow\) "material_mass_error" \(=\sum_{\text {material }}\) ("constituent_mass_error")
\end{tabular} \\
\hline material_mass_fraction [+] & float & U & Mater & F no & Mass fraction of the material in the layer \\
\hline
\end{tabular}

Note: When "material_import_mode"='use existing’: all Key Words below should not be used
Note: for precursor materials all this information can alternatively be described more simply (text) in "processing_process"

\section*{Material origin}

\section*{Material grain size distribution and texture}
material_grain_size_unit enum(text) \(\underset{[£ 0 \mathrm{~m}]}{\mathrm{U}}\) Sampl F

Note: for a matter these parameters may be already decribed at the global scale in matter_grain_sizes (_grain_size_method, _grain_texture,
_bulk_density/_error)

Unit for the material grain sizes (diameter)
Enum: \(\{\mathrm{nm}\), micron, \(\mathrm{mm}, \mathrm{cm}\}\)
Condition: compulsory when "material_grain_size_min" OR
"material_grain_size_min" OR "material_grain_size_max" has a value
Note \(D B\) : all grain sizes data will be stored in ' m '
Note: used for "material_grain_size_min/_max"
material_grain_size_method blob \(\underset{[\mathrm{m}]}{\mathrm{U}} \quad\) Mater \(\quad\) F
material_grain_sizes
List [L1]
[O]
\begin{tabular}{lccc}
\begin{tabular}{l}
material_grain_size_median \\
[material/matter_grain_size_medi \\
an]
\end{tabular} & \begin{tabular}{c}
S3 \\
[m]
\end{tabular} & Mater & F \\
& & & L1
\end{tabular}
-- Description of the definition of the grain size (particle diameter) used, of the methods used for grain size selection and of grain size (median/width or \(\min / \max\)) determination

Definitions: particle diameter definition can be of several types:
- Dv (volume): Diameter of a sphere having the same volume as the particle
- Ds (surface): Diameter of a sphere having the same external surface area as the particle
- Dsv (surface-volume): Diameter of a sphere having the same ratio of external surface area to volume as the particle
- Dp (projected area): Diameter of a sphere having the same projected area as the particle in random orientation (for convex particle \(\mathrm{Dp}=\mathrm{Ds}\))
- \(\quad D_{A}\) (sieve): width of the minimum square aperture through wich the particle will pass
\(E x\) : 'sieving by 2 stainless steel sieves with 50 and \(100 \mu \mathrm{~m}\) meshs'
\(£\) : Size distribution of the material grains
Note: there are several choices to describe them depending on which information is available.
var. Median size (diameter) of material grains
Unit: in "material_grain_size_unit"
- converted in ' \(m\) ' unit in the database but provided to user in "material_grain_size_unit"

Note: mostly used when only one median size is known for the material grains
var. Full width at half maximum of the size distribution (diameter) of material grains

Unit: in "material_grain_size_unit"
- converted in ' \(m\) ' unit in the database but provided to user in "material grain size unit"

Note: mostly used mostly when only one median size and its distribution width
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline material_grain_size_min & float & \[
\begin{gathered}
\text { S3 } \\
{[\mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Mater \\
L1
\end{tabular} & F & & \begin{tabular}{l}
Smallest size (diameter) of material grains of this size range \\
Unit: in "material_grain_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "material_grain_size_unit"
\end{tabular} \\
\hline material_grain_size_max & float & \[
\begin{gathered}
\text { S3 } \\
\text { [m] }
\end{gathered}
\] & Mater L1 & F & var. & \begin{tabular}{l}
Largest size (diameter) of material grains of this size range \\
Unit: in "material_grain_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "material_grain_size_unit"
\end{tabular} \\
\hline material_grain_size_fraction & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Mater \\
L1
\end{tabular} & F & no & \begin{tabular}{l}
Mass fraction of material grains comprised between size min and size max (diameter) \\
Note: value between 0 and 1 .
\end{tabular} \\
\hline material_grain_size_fraction_erro
r & & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Mater \\
L1
\end{tabular} & F & no & Absolute uncertainty on the mass fraction of material grains comprised between size min and size max (diameter) \\
\hline material_grain_size_shape & enum(text) & \[
\begin{gathered}
\mathrm{S} 1 \mathrm{~b} / \mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Mater \\
L1
\end{tabular} & F & -- & \begin{tabular}{l}
Shape of the individual material grains of this size range \\
Enum: \{amorphous, irregular, equant, reniform, globular, spherical, flakes, platy, tabular, lathlike, columnar, acicular, capillary, cubic, cylindrical, hexagonal, octahedral, prismatic, pyramidal, rhombohedral, nuggets, botryoidal, dendritic, spheres aggregate, aggregate, fluid, other, unknown\} \\
Definitions: \\
Simple shapes: \\
- 'amorphous': no crystalline form or imitative shape \\
- 'irregular': occurs as irregular, anhedral crystals \\
- 'equant': shape tends to be convex equidimensional (e.g. feldspars). \\
- 'reniform': "kidney like" in shape (e.g.. hematite). \\
- 'globular': spherical, or nearly so, rounded forms (e.g. wavellite). \\
- 'spherical': spherical, rounded aggregates. \\
- 'flakes': flat, thin crystals or aggregates.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\begin{tabular}{lc}
material_grain_size_distribution blob & U
\end{tabular} & Mater & F \\
[material/matter_grain_size_distri & {\([\mathrm{m}]\)} & & \\
bution] & & &
\end{tabular}
- 'platy': sheet forms (e.g. micas).
- 'tabular': book shape (plagioclase)
- 'lathlike': flat elongate grains (plagioclase)
- 'columnar': forms columns
- 'acicular': needle-like crystals.
- 'capillary': very slender and long, like a thread or hair (e.g. millerite).

Crystalline shapes:
- 'cubic': cubic shaped crystals.
- 'cylindrical': shaped like a cylinder.
- 'hexagonal': six-sided crystal shape in cross-section or habit.
- 'octahedral': octahedral shaped crystals.
- 'prismatic': crystals shaped like slender prisms.
- 'pyramidal': crystals are shaped like pyramids.
- 'rhombohedral': rhombohedral crystals.

Complex shapes:
- 'nuggets': irregular lumps
- 'botryoidal': "grape-like" rounded forms (e.g.. malachite).
- 'dendritic': branching "tree-like" growths of great complexity
- 'spheres aggregate': made of aggregated spheres.
- 'aggregate': made of aggregated particles or clustered molecules

Other:
- 'fluid': for liquid, gas and adsorbed
- 'other': not one described in the list, will be defined in "comments"
- 'unknown': unknown shape

Note: for rocks, meteorites, ... the material shape is that of the individual grains of each species constituting the rock. The shape of the rock itself is defined in the matter

Note: cf.: https://en.wikipedia.org/wiki/Crystal_habit
bution]
-- Description and parameters of the size distribution of the material grains
Note: it can provide the shape of the distribution (normal/Gaussian, lognormal, bimodal, ...) as well as several parameters such as:
- the modal size (maximum abundance)
- the mean size (center of gravity of the distribution)
- the interquartile range \(\left(=\mathrm{D}_{75}-\mathrm{D}_{25}\right)\)
- the interpercentile range \(\left(=D_{90}-\mathrm{D}_{10}\right)\)
- the coefficient of uniformity \(\left(\mathrm{Cu}=\mathrm{D}_{60} / \mathrm{D}_{10}\right)\)
- the coefficient of curvature \(\left(\mathrm{Cc}=\mathrm{D}_{30}{ }^{2} /\left(\mathrm{D}_{10} . \mathrm{D}_{60}\right)\right.\)
material_grain_texture
openum(text) \(\underset{\substack{\text { S1b/S2 } \\[\mathrm{m}]}}{ }\) Mater F
-- Description of the global texture of the grains
OpenEnum: \{clay-like, silt-like, compact, compact with defects, compact with bubbles, compact porous, compact microporous, lamellar, fibrous, compact mixed, complex, molecular layer, cluster, liquid, gaseous, other, unknown, ...\}
Definitions.
- 'clay-like': clay-like texture (\(<2 \mu \mathrm{~m}\)), aggregates with no visible individual particles
- 'silt-like': very fine particles (\(2-50 \mu \mathrm{~m}\)) invisible to barely visible individual particles
- 'compact': fine (>50 \(>\mathrm{m}\)) and coarse (\(>1 \mathrm{~mm}\)) compact grain/particle without bubbles, or open/closed porosity
- 'compact with defects': compact grain/particle with presence or cracks, voids, ...
- 'compact with bubbles': compact grain/particle with isolated bubbles (closed porosity)
- 'compact porous': compact grain/particle with visible open porosity
- 'compact microporous': compact grain/particle with invisible open microporosity
- 'lamellar': compact grain/particle with foliated texture
- 'fibrous': compact grain/particle with fibrous texture
- 'compact mixed': compact grain/particle with more than one simple texture described above (describe it in "material_comments")
- 'complex': grain/particle with texture too complex or variable within grains to be described by a single of the above words (explain in "material_comments")
- 'molecular layer': for 'adsorbed' and 'interlayer'
- 'cluster': atomic or molecular cluster
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
material_grain_compacity \\
[material/matter_grain_compacity
\end{tabular} & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & no & Compacity of the grains of the material (fraction of solid volume per grain volume unit) \\
\hline] & & & & & & \begin{tabular}{l}
Notes: \\
- compacity \(=(1-\) porosity \()\) \\
- it is the compacity of an individual grain, including the prosity inside the grain (beetween the crystals), but excluding the 'layer porosity' between the grains
\end{tabular} \\
\hline material_grain_compacity_error [material/matter_grain_compacity _error] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & no & Absolute uncertainty on the compacity of the grains of the material \\
\hline material_grain_density & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & \(\mathrm{g} / \mathrm{cm}^{3}\) & \begin{tabular}{l}
Density of the grains \\
- stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3}\) ' unit
\end{tabular} \\
\hline material_grain_density_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & \(\mathrm{g} / \mathrm{cm}^{3}\) & \begin{tabular}{l}
Absolute uncertainty on the density of the grains \\
- stored in the database and provided to user in ' \(\mathrm{g} / \mathrm{cm}^{3}\) ' unit
\end{tabular} \\
\hline material_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Mater & F & -- & Experimentalist additional information or comments about this material Ex: various material characterizations ... \\
\hline
\end{tabular}

\section*{Material references}
material_publications List[L3]
£: Publications describing the material and its eventual formation/processing
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline material_publication_uid [*] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \mathrm{~m} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Mater \\
Publi
\end{tabular} & F & -- & Link to the existing UID of the publication describing the material and its eventual formation/processing. \\
\hline \(\cdots\) & & & L3 & & & Note: these papers should be in the bibliography database, with "publication_content" = 'material-matter' \\
\hline
\end{tabular}

\section*{Material constituents organization}

with their pores filled by another phase
Coated grains:
- 'coated grains': the grains have their core made of one phase and an external shell of another phase (the coating)
Zoning in compact materials:
- 'concentric zoning': concentric organization of several phases inside grains
- 'sector zoning': sector organization of several phases inside grains
- 'layer zoning': layered organization of several phases inside grains
- 'interlayering': crystalline structures in which two or more constituents (layer types) are vertically stacked at the scale of a few atomic layers in the direction parallel to \(\mathrm{c}^{*}\)
- Note: mostly in interstratified clay minerals
- ref: http://clay.uga.edu/courses/8550/CM13.html

Colloid systems (particles \(1 \mathrm{~nm}-1 \mu \mathrm{~m}\)) or suspensions (above \(1 \mu \mathrm{~m}\)):
- 'foam': gas dispersed in a continuous liquid or solid phase
- 'emulsion': liquid dispersed in a continuous liquid or solid phase
- 'colloidal solution': (or 'sol') solid dispersed in a continuous liquid or solid phase

\section*{Others:}
- 'complex mixing': complex mixture of phases (numerous or indicernable and/or very heterogeneous) without clear topologic organization or too complex to be described.
- 'adsorbate-adsorbent': sorbed phase constituent(s), i.e. 'adsorbate' ("constituent_arrangement" = 'sorbed phase') 'mixed' with an '(ad)sorbate' constituent. This also includes interlayer adsorption. When there are several adsorbents, then use 'multi-phases'.

Note: The relation 'adsorbent/adsorbate' will be given by
"constituent_sorption_constituents" in the adsorbed phase constituent description.
- 'other': when type of mixing cannot be described by one of above words (explain in "material_comments")
- 'unknown': when type of mixing is impossible to observe
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline material_basic_constituents & List [L4] & \multicolumn{2}{|l|}{[!!]} & & & £: Basic constituents composing the material grains. \\
\hline \multirow[t]{4}{*}{material_basic_constituent_index [*§] [-xml]} & \multirow[t]{4}{*}{\begin{tabular}{l}
\(\operatorname{int}(11)\) \\
[Internal Links]
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { B } \\
{\left[!!\_\mathrm{g}\right]}
\end{gathered}
\]} & Mater & \multirow[t]{4}{*}{F} & \multirow[t]{4}{*}{--} & ID of the basic constituent composing the material grains. \\
\hline & & & BCons & & & Note: determined automatically during import \\
\hline & & & t & & & Note xml: in practice the description of the basic constituents(s) are done \\
\hline & & & L4 & & & directly under "material" without ID link \\
\hline material_constituents & List [L5] & [!!] & & & & £: Constituents composing the material grains. \\
\hline material_constituent_index [*§] [- & int(11) & B & Mater & F & -- & ID of the constituent composing the material grains. \\
\hline \(\mathrm{xml}]\) & [Internal Links] & [!!_g] & Const & & & Note: determined automatically during import \\
\hline & & & L5 & & & Note xml: in practice the description of the constituents(s) are done directly under "material" without ID link \\
\hline
\end{tabular}

\subsection*{11.7 Basic constituent Table}

\section*{Root of the table: basic_constituent}

Data type: in 'Sample'
Condition: not when a matter is used ("material_is_a_matter" = 'true')
Condition: if the constituent is a "basic constituent" (i.e. that can be described by one of the "fundamental solid, mineral or liquid" phases) then use this "Basic constituent" table. If not (constituent defined manually), then use the "Constituent" table
Key-word Type Level Table Exp Unit Description
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Basic constituent index} \\
\hline \multirow[t]{4}{*}{basic_constituent_import_mode} & \multirow[t]{4}{*}{enum(text)} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{BConst} & \multirow[t]{4}{*}{(V)} & \multirow[t]{4}{*}{--} & Mode of import of the actual "Basic constituent" metadata \\
\hline & & & & & & Enum: \{first import, inherited, use existing, ignore, draft, no change, correction\} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline & & & & & & Implied conditions: when "constituent_import_mode" = 'use existing', only "constituent_uid" and "constituent_arrangement" stay mandatory below \\
\hline ```
basic_constituent_index [**][-
xml]
``` & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{[!!, \mathrm{g}]}
\end{gathered}
\] & BConst & F & -- & Automatic random but unique number (ID) given to new actual basic constituent \\
\hline basic_constituent_uid [**] & \(\operatorname{varchar}(255)\) & \[
\begin{aligned}
& \mathrm{S} 0 \mathrm{c} / \mathrm{S} 1 \\
& {[!!\mathrm{m}]}
\end{aligned}
\] & BConst & F & -- & Unique identifier code (UID) given to the actual basic constituent table (to be created) \\
\hline & & & & & & \begin{tabular}{l}
Constraint : \\
- when "basic_constituent_import_mode" = 'use existing', this UID is then the "basic_constituent_uid" of an existing constituent already in the database
\end{tabular} \\
\hline & & & & & & Nomenclature: This code name should start with 'CONST_' and be very accurately formatted in order to be simple and unique \\
\hline
\end{tabular}

It should be of the style 'CONST_AB_yyyymmdd_123...' where 'AB' is initial of people preparing the import, 'yyyymmdd' \({ }^{\text {' }}\) is the full date of the day, and ' 123 ...' should be at the end and alphanumeric (only with '_'), up to 6 characters.

Ex: ‘CONST_BS_20181006_059', ‘CONST_OB_20000101_01', 'CONST_KD_20170712_X50A'
Notes:
- The post-fix ' 123 ...' may just be an incremental order number for that day, or may give a short description of the varying parameter of the constituent.
Ex: ‘'CONST_KD_20170712_X50A’

[!!_d]

\section*{Basic constituent arrangement and abundance in the material}

General condition: mandatory to give one of the following "basic_constituent_mass", "basic_constituent_mass_fraction", "basic_constituent_mole" or "basic_constituent_mole_fraction"
Note: abundances (mass or mole / absolute or fractional) should be given homogeneously for all basic constituents and constituents (next table)
\begin{tabular}{llllll}
\begin{tabular}{l} 
basic_constituent_arrangement \\
[constituent_arrangement]
\end{tabular} & enum(text) & \begin{tabular}{c} 
S2 \\
{\(\left[!_\mathrm{m}\right]\)}
\end{tabular} & BConst & F & -- \\
& \begin{tabular}{l} 
Relative arrangement of the constituent within the material grains
\end{tabular} \\
\begin{tabular}{l} 
OpenEnum: \(\{\) single phase, in multi-phases, homogeneous in multi-phases,
\end{tabular} \\
heterogeneous in multi-phases, endmember in polyphase, matrix, inclusion,
\end{tabular}
\(\underset{\text { [!o_mc] }}{\mathrm{U}}\) BConst F

U BConst F [!o_mc]
bubble, suspended particles, medium of suspension, in aggregate, in agglomerate, pore filling, coated core, coating shell, concentric zone, sector zone, layer zone, mixed-layer, complex intimate mix, sorbed phase, other, unknown, ...\}
Definitions: see "constituent_arrangement"
Notes: see "constituent_arrangement"
g Total mass of the basic constituent in the material
Condition: see general condition
- stored in the database and provided to user in ' \(g\) ' unit
\(\rightarrow\) calculated from "basic_constituent mole" when it is provided (need the molar masses of the species of the actual basic constituent \(=>\) in "molecule species" table: "molecule_molar_mass")
for "solid_specie_family" = 'molecule' and for "liquid_molecule":
- "mass" = "mole" * "molecule_molar_mass"
for "solid_specie_family" = 'element':
- "mass" = "mole" * "atom_molar_mass"
g Absolute uncertainty on the total mass of the basic constituent in the material
Condition: mandatory when "basic_constituent_mass" \(\neq\{\) Ø, NULL \(\}\)
- stored in the database and provided to user in ' \(g\) ' unit
\(\rightarrow\) calculated from "basic_constituent_mole_error" when it is provided
for "solid_specie_family" = 'molecule' and for "liquid_molecule":
- "mass_error" = "mole_error" * "molecule_molar_mass"
for "solid_specie_family" = 'element':
- "mass_error" = "mole_error" * "atom_molar_mass"

Note:
- when the unit of "basic_constituent_mole_error" is \(\mathrm{mol} / \mathrm{g}\) or \(\mathrm{mol} / \mathrm{kg}\) (liquid solutions) it is best to set "basic_constituent_mass_error" =

\section*{'NULL' to remove the calculated value}
basic_constituent_mass_fraction float
basic_constituent_mass_fraction_ float error
no Mass fraction of the constituent in the material
Condition: see general condition
\(\rightarrow\) if no value is given, then calculated from the constituent and basic constituent masses ("basic_constituent mass") of all the constituents in the material
\(\Rightarrow\) " mass_fraction" = " mass" / \(\sum_{\text {material ("mass") }}\)
\(\rightarrow\) otherwise calculated from "basic_constituent_mole_fraction" when provided for all constituents (mainly for atomic and molecular constituents: need the molar masses of all species in the constituent \(=>\) in "molecule species" table: "molecule_molar_mass" of each "solid/liquid_specie_uid")
\(\Rightarrow\) "mass_fraction" = mole_fraction * molecule_molar_mass /
i (mole_fraction(i) * molecule_molar_mass(i))
Note: value between 0 and 1 .
Note: a warning will be issued during import if the mass fraction of one constituent is not present or cannot be calculated

Absolute uncertainty on the mass fraction of the constituent in the material.
Condition: mandatory when "basic_constituent_mass_fraction" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) if no value is given, then calculated from constituent and basic constituent masses errors ("basic_constituent_mass_error") of all the constituents in the material:
\(\Rightarrow\) "mass_fraction_error" = "mass_fraction" * ["mass_error" / " mass" +
\(\sum_{\text {material }}\) ("mass_error") / \(\sum_{\text {material }}\) ("mass")]

\section*{Abundances in mole}

Note: abundances in mole should be used only in specific conditions:
Conditions: compulsory to be used only if all constituents of the material are "fundamental solids" of "solid_family" = \{molecular solid, ionic solid\}, or "fundamental liquids" ("liquid family" = \{molecular liquid, atomic liquid, ionic liquid, metallic liquid\}), but neither "fundamental minerals" ("mineral family" = \{mineral\}), nor "custom constituents", and if these basic constituents can be expressed homogeneously either all in "mole" or all in "mole fraction".


Condition: When "basic_constituent_import_mode"='use existing': All Key Words below should not be used (they are already described)
Basic constituent name and index
\begin{tabular}{|c|c|c|c|c|}
\hline basic_constituent_name varchar(255) & S0c/S1 BConst [!!_m] & F & & \begin{tabular}{l}
Name of the actual basic constituent \\
Note: \\
It may contain explicit info on the fundamental constituent or its variant: species name, specific abundance, and some properties of the constituent (phase, ...), origin, .... \\
- It is used as the title of the constituent page on the SSHADE interface \\
Ex: 'San Carlo Olivine', 'Synthetic fayalite \(3 \% \mathrm{Mg}\) ', Water ice Ih with \(0.1 \%\) CO2', ...
\end{tabular} \\
\hline basic_constituent_fundamental_p varchar(255) hase_uid [*] & \[
\begin{array}{cc}
\text { S0c/S1 } & \text { BConst } \\
{\left[!!_\mathrm{m}\right]} & \text { Solid } \\
& \text { Miner } \\
& \text { Liquid }
\end{array}
\] & F & -- & \begin{tabular}{l}
Link to the existing UID of the fundamental 'solid', 'mineral', or 'liquid' phase \\
Notes: \\
Only for fundamental 'solid', 'mineral', and 'liquid' phases. \\
- The others constituents are described with the full constituent/species structure ("Constituent" table) \\
- When a sample is processed before, during or after formation of the layer, in such a way that the initial fundamental constituent composition or structure is altered, then it is necessary to define if the fundamental constituent is still relevant (minor changes in composition or structure, to be defined with the variable parameters) or if a new description with the constituent(s)/specie(s) structure is necessary when the changes are significant.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fundamental constituent variable parameters}

Condition: OPTIONAL block but COMPULSORY to change what is better known or different from the linked fundamental solid/mineral/liquid.
Note: The variable parameters are mostly used to provide more accurate composition of the actual solid/mineral/liquid: for variable solids/minerals/liquids or solid/mineral liquid/hydration series, or when solid/mineral (sub-)groups are used for ill-defined solids/minerals. Also for adding replacement or impurity elements. Also used for changing structural info of equivalent crystalline fundamental solids/minerals for describing some related amorphous solids/minerals.
\begin{tabular}{|c|c|c|c|c|}
\hline basic_constituent_solid_variables & [O] & BConst & VS & £: solid variable parameters \\
\hline & & Solid & & Note: mostly used to provide more accurate composition of the actual solid: for variable solids or solid solution/hydration series, or when solid (sub)groups are used for ill-defined solids. Also for adding replacement or impurity elements. Also used for changing structural info of equivalent crystalline fundamental solids for describing some related amorphous solids \\
\hline basic_constituent_mineral_variabl & [O] & BConst & VMi & £: mineral variable parameters \\
\hline es & & Miner & & Note: mostly used to provide more accurate composition of the actual mineral: for variable or solution/hydration series minerals, or when mineral (sub)groups are used for ill-defined minerals. Also for adding replacement or impurity elements. Also used for changing structural info of equivalent crystalline fundamental minerals for describing some related amorphous minerals. \\
\hline basic_constituent_liquid_variable & [O] & BConst & VL & £: liquid variable parameters \\
\hline S & & Liquid & & Note: mostly used to provide the accurate composition of the actual liquid \\
\hline
\end{tabular}

\section*{Constituent texture}


Note: used for "basic_constituent_crystal_size_median/_width/_min/_max"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline basic_constituent_crystal_size_me thod [constituent_crystal_size_method] & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & BConst & F & -- & \begin{tabular}{l}
Description of the crystal size (mean/width or min/max) definition, and of the method of determination of the crystal size distribution \\
Ex: 'SEM microscope measurement of section'
\end{tabular} \\
\hline basic_constituent_crystal_sizes & List [L1] & [O] & & & & £: Size distribution of the basic constituent crystals \\
\hline \begin{tabular}{l}
basic_constituent_crystal_size_me dian \\
[constituent_crystal_size_median]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L1
\end{tabular} & F & var. & \begin{tabular}{l}
Median size (diameter) of basic constituent crystals \\
Unit: in "basic_constituent_crystal_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "basic_constituent_crystal_size_unit"
\end{tabular} \\
\hline & & & & & & Note: mostly used when only one median size is known for the constituent \\
\hline ```
basic_constituent_crystal_size_wi
dth
[constituent_crystal_size_width]
``` & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & BConst L1 & F & var. & \begin{tabular}{l}
Full width at half maximum of the size distribution (diameter) of basic constituent crystals \\
Unit: in "basic_constituent_crystal_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "basic_constituent_crystal_size_unit"
\end{tabular} \\
\hline & & & & & & Note: mostly used when only one median size and its distribution is known for the constituent crystals \\
\hline ```
basic_constituent_crystal_size_mi
n
[constituent_crystal_size_min]
``` & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & BConst L1 & F & var. & \begin{tabular}{l}
Smallest size (diameter) of basic constituent crystals of this size range \\
Unit: in "basic_constituent_crystal_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "basic_constituent_crystal_size_unit"
\end{tabular} \\
\hline ```
basic_constituent_crystal_size_ma
X
[constituent_crystal_size_max]
``` & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & BConst L1 & F & var. & \begin{tabular}{l}
Largest size (diameter) of basic constituent crystals of this size range \\
Unit: in "basic_constituent_crystal_size_unit" \\
- converted in ' m ' unit in the database but provided to user in
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.8 Constituent Table}

\section*{Root of the table: constituent}

Data type: in 'Sample'
Condition: not when a matter is used ("material_is_a_matter" = 'true')
Key-word Type Level Table Exp Unit Description

\section*{Constituent import mode and indexes}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_import_mode & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{\left[!!\_\mathrm{m}\right]}
\end{gathered}
\] & Const & (V) & & \begin{tabular}{l}
Mode of import of the "Constituent" metadata \\
Enum: \{first import, inherited, use existing, ignore, draft, no change, correction\} \\
Implied conditions: when "constituent_import_mode" = 'use existing', only \\
"constituent_uid", "constituent_arrangement", \\
"constituent_sorption_constituent_uid" (if needed) and the mandatory KWs of \\
"Constituent abundance in the material" stay mandatory below \\
Definitions: see "sample import mode"
\end{tabular} \\
\hline constituent_index [**][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{[!!-\mathrm{g}]}
\end{gathered}
\] & Const & F & -- & Automatic random but unique number (ID) given to new constituent \\
\hline constituent_uid [**] & \(\operatorname{varchar}(255)\) & \[
\begin{aligned}
& \mathrm{S} 0 \mathrm{c} / \mathrm{S} 1 \\
& \text { [!!_m] }
\end{aligned}
\] & Const & F & -- & \begin{tabular}{l}
Unique identifier code (UID) given to the constituent table (to be created) \\
Nomenclature: This code name should start with 'CONST_' and be very accurately formatted in order to be simple and unique \\
Note: It should be of the style 'CONST_AB_yyyymmdd_123...' where 'AB' is initial of people preparing the import, 'yyyymmdd' is full date of the day, and ' \(123 . .\). ' should be at the end and alphanumeric (only with '_'), up to 6 characters.
\end{tabular} \\
\hline
\end{tabular}

\section*{'CONST_KD_20170712_X50A’}

Notes:
- the post-fix '123...' may just be an incremental order number for that day, or may give a short description of the varying parameter of the constituent.
Ex: 'CONST_KD_20170712_X50A'

\section*{Important note:}
- when "constituent_import_mode" = 'use existing', this UID is then the "constituent_uid" of an existing constituent already in the database
\begin{tabular}{l}
constituent_relevance \\
[constituent_relevance]
\end{tabular} \(\quad\) enum(text) \(\quad\)\begin{tabular}{ccc}
S1b \\
{\(\left[!!\_\mathrm{m}\right]\)}
\end{tabular} Const F

Relevance of the constituent in the material
Enum: \{main - major, main - minor, impurity, product, precursor, unknown \}

\section*{Definitions:}
- 'main - major': essential constituent of the material before the beginning of an experiment (and prior any processing of the sample)
Note: 'major' refers both to a 'major abundance contribution' of a
constituent and to a 'major spectroscopic contribution' of a minor
abundance constituent
- 'main - minor': minor constituent of the material before the beginning of an experiment (and prior any processing of the sample)
Note: 'minor' refers to a constituent with both a 'minor abundance
contribution' and a 'minor spectroscopic contribution'.
- 'impurity': constituent not wanted in the nominal composition of the material but present in synthetic materials or others matters.
- 'product': constituent produced in the sample subjected to a processing during the experiment
- 'precursor': precursor constituents used for synthetic material formation, or pre-processing of natural matters.

Note: they are flagged 'precursor' only in the precursor material description. If some amount of the constituent remain in the sample after formation they are thus flagged 'main - minor' or 'impurity' in the sample description, depending if they are wanted or unwanted,
- 'unknown': if origin of the constituent is not clear: 'impurity' or 'product'?

Note: constituents of complex materials in synthetic samples are set as 'product' only if they are formed during the experiment.

Precursor material
```

Enum: {precursor}
Default = {precursor} when "material_is_precursor" = {yes, true}

```

\section*{Constituent arrangement and abundance in the material}

Condition: also needed when "constituent_import_mode" = 'use existing'
Condition: mandatory to give one of the following "constituent_mass", or "constituent_mass_fraction"
Notes:
- when the abundance info is fully known at the species level, then give it at the species level. The values (and errors) at the constituent level will thus be calculated during import where the fields values are missing.
- provide below abundances for constituents only when values are known only at this level or more accurately than the sum of the species abundances.
- abundances (absolute or fractional) should be given homogeneously for all constituents and basic constituents (previous table)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_arrangement [constituent_arrangement] & enum(text) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[!\mathrm{m}]}
\end{gathered}
\] & Const & F & & \begin{tabular}{l}
Relative arrangement of the constituent within the material grains \\
OpenEnum: \{single phase, in multi-phases, homogeneous in multi-phases, heterogeneous in multi-phases, endmember in polyphase, matrix, inclusion, bubble, suspended particles, medium of suspension, in aggregate, in agglomerate, pore filling, coated core, coating shell, concentric zone, sector zone, layer zone, mixed-layer, complex intimate mix, sorbed phase, other, unknown, ...\} \\
Condition: also mandatory when "constituent_import_mode" = 'use existing' \\
Definitions: \\
Compact mono- and poly-phases: \\
'single phase': single constituent of a grain (include cryptopolymineral) \\
'homogeneous in multi-phases': homogeneous arrangement of the constituent in compact multi-phases grains. Include adsorbat with
\end{tabular} \\
\hline
\end{tabular}
another constituent adsorbed or as an interlayer phase.
- 'heterogeneous in multi-phases': heterogeneous arrangement of the constituent in compact multi-phases grains
- 'endmember in polyphase': endmember phase intimately mixed (at microscopic level) within a solid solution phase (equivalent to a single solid solution of intermediate composition)
- 'matrix': matrix containing inclusions, bubbles, veinules (layer zone), ...
- 'inclusion’: solid inclusion in grains (in polymineral, ...)
- 'bubble': liquid or gas inclusion in grains

Colloid systems (foams, emulsions, colloidal solutions) and suspensions:
- 'suspended particles': solid or liquid (or gas) particles dispersed in a continuous phase (the medium of suspension). Particles have between 1 nm and \(1 \mu \mathrm{~m}\) for colloid systems and above \(1 \mu \mathrm{~m}\) for suspension
- 'medium of suspension': solid, liquid or gaseous medium in which the particles are suspended
Aggregates and agglomerates:
- 'in aggregate': constituent part of an aggregate of particles (same or different phase) i.e. particles in close contact without sintering
- 'in agglomerate': constituent part of an agglomerate of particles (same or different phases), i.e. particles in close contact with sintering
- 'pore filling': pore-filling phase forming "bridges" between aggregate or agglomerate particle of another phase thereby binding them together.

\section*{Coated grains:}
- 'coated core': internal core of coated grains
- 'coating shell': external coating shell surrounding coated grains

Zoning in compact materials:
- 'concentric zone': concentric zone(s) of concentric zoned grains
- 'sector zone': sector zone(s) of sector zoned grains
- 'layer zone': layer(s) of layer zoned grains
- 'mixed-layer': layer in an interlayered material with crystalline structure in which two or more constituents (mixed-layers) are vertically stacked at the scale of a few atomic layers in the direction parallel to c*
- Note: mostly in interstratified clay minerals
- ref: http://clay.uga.edu/courses/8550/CM13.html

Others:
- 'complex intimate mix': complex heterogeneous arrangement of a constituent in a complex mixture of phases (numerous or indicernable and/or very heterogeneous) without clear topologic organization
- 'sorbed phase': adsorbed or interlayer phase on/in another constituent
- 'other': when arrangement of constituent cannot be described by one of above words (explain in "constituent_comments")
- 'unknown': when arrangement of constituent is unknown

Note:
- For gases and liquids (without particles), and for molecular and inorganic solids, minerals, and complex matters (organic, carbonaceous, mineral) with mono-constituent: 'single phase'
- For gases and liquids (with particles): 'homogeneous in multi-phases', bubble'
- For molecular, ionic, covalent solids, minerals, and complex matters with multi-constituents: 'homogeneous in multi-phases', 'heterogeneous in multiphases', 'in aggregate', 'in agglomerate', 'concentric zone', 'sector zone', 'layer zone', 'inclusion'
- For grains with coating: 'coating core', 'coated shell'
- For constituents in complex mixture of several molecular, organic, inorganic and/or mineral phases: 'complex intimate mix'
- For molecular species adsorbed on, or in interlayer in other solid constituent(s): ‘sorbed phase'.
Note: the constituent(s) (adsorbat) on which the sorbed phase is sorbed is/are described in (an)other material(s) which is/are linked below with its sorbed constituent by the list "constituent_sorption_constituents"

Note: "constituent_arrangement" depends on "material_constituents_mixing" which describes how the constituents are mixed at material level
\(\underset{\text { [!o_mc] }}{\mathrm{U}}\) Const F
g Total mass of the constituent in the material
Condition: mandatory for one of "constituent_mass" or
\(\underset{\text { [!o_mc] }}{\mathrm{U}}\) Const \(\quad\) F

U Const F [!o_mc]
"constituent_mass_fraction’
- stored in the database and provided to user in ' \(g\) ' unit
\(\rightarrow\) if no value is given, then calculated from the species masses
("species_mass") of all the species in the constituent:
\(\Rightarrow\) "constituent_mass" \(=\sum_{\text {constituent }}\) (species_mass")
Note: For sorbed species (surface adsorption or insertion) this total mass allows to determine the mass fraction of sorbed species
("constituent_sorption_mass_fraction") relative to the constituent(s) of other material(s) on/in which it is sorbed
g Absolute uncertainty on the total mass of the constituent in the material
Condition: mandatory when "constituent_mass" \(\neq\{\emptyset\), NULL \(\}\)
- stored in the database and provided to user in ' g ' unit
\(\rightarrow\) if no value is given, then calculated from the species mass errors ("species_mass_error") of all the species in the constituent:
"constituent_mass_error" \(=\sum_{\text {constituent }}\) ("species_mass_error")
Mass fraction of the constituent in the material
Condition: mandatory for one of "constituent_mass" or
"constituent_mass_fraction"
\(\rightarrow\) if no value is given, then calculated from the constituent masses
("constituent_mass") of all the constituents in the material:
\(\Rightarrow\) "constituent_mass_fraction" = "constituent_mass"/
\(\sum_{\text {material("constituent_mass") }}\)
Note: value between 0 and 1 .
Note: a warning will be issued during import if the mass fraction of one constituent is not present or cannot be calculated
Note: For sorbed species this mass fraction is relative to a possible other sorbed phase (another constituent/species mixed with this one) of the specific material describing the sorbed phase(s), but not relative to the adsorbat abundance (wich belong to another material): see
constituent_mass_fraction_error float
U Const F [!o_mc]
"constituent_sorption_mass_fraction"
no Absolute uncertainty on the mass fraction of the constituent in the material.
Condition: mandatory when "constituent_mass_fraction" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) if no value is given, then calculated from constituent masses errors ("constituent mass error") of all the constituents in the material:
"constituent_mass_fraction_error" = "constituent_mass_fraction" * ["constituent_mass_error" / "constituent_mass" \(+\sum_{\text {material }}\)
("constituent_mass_error") / \(\sum_{\text {material ("constituent_mass") }}\))]

\section*{Constituent sorption}
\begin{tabular}{|c|c|}
\hline constituent_sorption_constituents List [L1] & [!!o] \\
\hline constituent_sorption_constituent_ varchar uid [*] & S1i Const [!!o_m] Const \\
\hline
\end{tabular}

L1
\begin{tabular}{lll}
constituent_sorption_mass_fractio float & \(\underset{\left[!\mathrm{o} \_\mathrm{mc}\right]}{\mathrm{U}}\) & Const \\
n & F
\end{tabular}

Condition: also needed when "constituent_import_mode" = 'use existing'
£: constituents on which this constituent is sorbed
Condition: absolute Mandatory when "constituent arrangement" = 'sorbed phase'
-- Link to the existing UID of the constituent on which this constituent is sorbed.
Condition: Absolute Mandatory when "constituent_arrangement" = 'sorbed phase'
Constraint: only for sorbed phases
Note: Do not fill when condition is not met.
Note: these adsorbate constituents should be among the other constituents(s) of this material.
no Mass fraction of the sorbed phase (molecular species) relative to the total mass of the constituent(s) on/in which it is sorbed
Condition: Only for sorbed phases: Mandatory when
"constituent_arrangement" = 'sorbed phase'.
if no value is given, then calculated (sorbed/sorbent) from
constituent_sorption_mass_fractio float
n_error
constituent_abundance_comments blob
\(\underset{\left[!\mathrm{o} \_\mathrm{mc}\right]}{\mathrm{U}} \mathrm{Const} \mathrm{F}\)

U Const F [m]
"constituent_mass" of this sorbed constituent and the "constituent_mass" of all constituents given by "constituent_sorption_constituent_uid"
\(\Rightarrow\) "constituent_sorption_mass_fraction \(»=\) "constituent_mass" /
\(\sum_{\text {adsorbat }}(\) "constituent_mass")
Note: value between 0 and 1
no Absolute uncertainty on the mass fraction of the sorbed phase (molecular species) relative to the mass of the constituent(s) on/in which it is sorbed Condition: only and mandatory when "constituent_sorption_mass_fraction" \(\neq\) \(\{\emptyset\), NULL \(\}\)
\(\rightarrow\) if no value is given, then calculated from "constituent mass error" of this sorbed constituent and the "constituent_mass_error" of all constituents given by "constituent sorption constituent uid"
\(\Rightarrow\) "constituent_sorption_mass_fraction_error" =
"constituent_mass_error" / "constituent_mass" +
\(\sum_{\text {adsorbat }}\left("\right.\) constituent_mass_error") / \(\sum_{\text {adsorbat }}(\) "constituent_mass")
Note: the 'adsorbat' are all constituents listed in
"constituent_sorption_constituent_uid"
-- Additional information or comments about the abundance of this constituent in the material, or adsorbed on another constituent

Note: other type of comments can possibly be added, especially when import mode \(=\) 'use existing' as it will be the only place to put comments

Ex: ...

\section*{Condition: When "constituent_import_mode" = 'use existing': All Key Words below should not be used (they are already described)}

\section*{Constituent name and family}
constituent_name \(\quad\) varchar(255) S0c/S1 Const F -- Constituent name
[!!_m]
Note:
It should contain explicit info on the constituent: species name and
\begin{tabular}{lcccc}
\begin{tabular}{l}
constituent_family \\
[constituent/phase_family]
\end{tabular} & enum(text) & S1 & Const & F \\
{\(\left[!\_\mathrm{m}\right]\)}
\end{tabular}
some properties of the constituent (phase, ...).
- It is used as the title of the constituent in the sample structure bloc of the SSHADE interface

Enum: \{molecular solid, covalent network solid, ionic solid, metallic solid, mineral, molecular liquid, atomic liquid, ionic liquid, metallic liquid, liquid solution, adsorbed, clusters, gas, complex mix, other, unknown\}

\section*{Definitions:}

Solids:
- 'molecular solid': Solid made up of atoms or molecules held together by London dispersion forces, dipole-dipole forces, or hydrogen bonds.
- 'covalent network solid': solid made up of atoms connected by covalent bonds; the intermolecular forces are covalent bonds as well.
- 'ionic solid': Solid made up of positive and negative ions and held together by electrostatic attractions.
- 'metallic solid': solid made up of metal atoms that are held together by metallic bonds.
- 'mineral': single naturally occurring mineral phase (include natural salts, and native elements)
Liquids:
- 'molecular liquid': single molecular liquid phase (possibly with mixture of molecules)
- 'atomic liquid': single covalent liquid phase
- 'ionic liquid': single ionic liquid phase
- 'metallic liquid': single metallic liquid phase (also called 'ionelectronic liquid')
- 'liquid solution’: homogeneous mixture in a single phase of several liquids from the above families, or a gas or a solid dissolved in a liquid Note: In such a mixture, the solute is the substance dissolved in another substance, known as the solvent. The solvent does the dissolving limited by the solubility (for gaz and solid in liquid), or by the miscibility for liquid in a liquid.
Reference: http://en.wikipedia.org/wiki/Solution)
constituent_class \(\quad\) enum(text) \(\underset{\left[!\_\mathrm{m}\right]}{\mathrm{S} 1}\) Const \(\quad\) F

Notes:
- 'colloid systems', i.e., a phase (the suspended particles of size between 1 nm and \(1 \mu \mathrm{~m}\)) dispersed in a continuous phase (the medium of suspension) and 'suspension', i.e. a phase (the suspended particles of size above \(1 \mu \mathrm{~m}\)) dispersed in a continuous phase (the medium of suspension), will be considered as a material constituted of two (or more) constituents.
- Types of 'colloid systems': foam (gas dispersed in liquid or solid), aerosols (liquid or solid dispersed in gas), emulsion (liquid dispersed in liquid or solid), sol (colloidal solution: solid dispersed in liquid or solid).

Reference: http://molphys.univ.kiev.ua/?p=204\&lang=en
Adsorbed and gas:
- 'adsorbed': phase (possibly with mixture of species) adsorbed on, or in interlayer in other solids
- 'clusters': free clusters (possibly with mixture of species)
- 'gas': gas phase (possibly with mixture of species)
- 'complex mix': complex mixture of solid and/or liquid phases (atomic, molecular, ionic, covalent, and/or metallic, mineral)
Others:
- 'other': when family of constituent cannot be described by one of above words (explain in "constituent_comments")
- 'unknown': when family of constituent is unknown
- Note: The 'complex mix' allows to represent with a single constituent a complex mixture of constituent types too numerous or too complex to be described separately.

Enum: \{non polar molecular solid, polar molecular solid, hydrogen bonded molecular solid, mixed molecular solid, chain covalent network solid, sheet covalent network solid, tridimentional covalent network solid, glass, acid salt, alkali salt, normal salt, mixed salt, true metal, pseudometal (semi-conductor), native element, non-silicate mineral, silicate mineral, organic mineral, non polar molecular liquid, polar molecular liquid, hydrogen bonded molecular
liquid, molecular liquid solution, atomic liquid, atomic liquid solution, ionic liquid, ionic liquid solution, metallic liquid, metallic liquid solution, mixed liquid solution, atomic adsorbed, molecular adsorbed, atomic clusters, molecular clusters, atomic gas, molecular gas, complex mix, other, unknown\}
Definitions:
- For molecular, covalent network, ionic and metallic solids:
- see "solid_class"
- For minerals:
- see "mineral_class"
- For liquids:
- see "liquid_class"
- For adsorbed species (molecules/radicals/ions/atoms):
- 'atomic adsorbed phase': natural or isotopic atomic species adsorbed on a solid, in its (micro)porosity or in its porous structure
- 'molecular adsorbed phase': natural or isotopic molecular sspecies adsorbed on a solid, in its (micro)porosity or in its porous structure
- For clusters:
- 'atomic clusters': pure or mixed atomic species (or any isotopic mixture) in clusters
- 'molecular clusters': pure or mixed molecular species (or any isotopic mixture) in clusters
- For gases:
- 'atomic gas': pure or mixed atomic species (or any isotopic mixture) in gas phase
- 'molecular gas': pure or mixed molecular species (or any isotopic mixture) in gas phase
- Complex mixtures and others compounds:
- 'complex mix': complex mixture of compounds too numerous, too intermixed or at a scale difficult to separate them
- 'other': compounds which cannot be described by one of the above words (include some mixtures such as atomic+molecular clusters) (describe in "constituent_comments")
- 'unknown': unknown compound

Note:
\begin{tabular}{llll}
\begin{tabular}{l}
constituent_compound_type \\
[phase_compound_type]
\end{tabular} & enum(text) & \begin{tabular}{c}
S0c/S0 \\
{\(\left[!\_\mathrm{m}\right]\)}
\end{tabular} & Const
\end{tabular}
- These classes correspond to the classes defined in "solid", "mineral" and "liquid" fundamental constituents. See their respective " class"
-- Type of solid compound composing the constituent. It tells how the species are mixed at the molecular level

OpenEnum: \{elemental solid, elemental mineral, noble gas solid, carbon allotrope, organic molecular solid, organic mineral, inorganic molecular solid, clathrate, clathrate hydrate, hydrate, homopolymer, copolymer, molecular solid solution, solid molecular mixture, oxide, hydroxide, oxide-hydroxide, non-oxide ceramic, antimonate, antimonite, arsenate, arsenite, borate, bromate, bromide, carbonate, chlorate, chloride, chlorite, chromate, cyanate, cyanide, fluoride, fulminate, halide, iodate, iodide, molybdate, nitrate, nitrile, nitrite, perchlorate, phosphate, phosphite, rhenate, selenate, selenide, selenite, sulfate, sulfide, sulfite, sulfosalt, tellurate, tellurite, tungstate, vanadate, vanadium oxysalt, organic salt, silicate, cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, tectosilicate, metal, metallic alloy, semi-conductor, complex mineral mix, solid oligomers, homopolymer, copolymer, Insoluble Organic Matter, Soluble Organic Matter, complex macromolecular mixture, complex organic-mineral mix, liquid, liquid solution, physically adsorbed phase, chemically adsorbed phase, interlayer phase, clusters, gas, gas mixture, other compound, other complex mix, unknown\}

\section*{Definitions:}
- For molecular, ionic, covalent network and metallic solids:
- see "solid_compound_type"
- For minerals:
- see "mineral_compound_type"
- 'complex mineral mix': complex mixture of minerals too numerous, too intermixed or at a scale difficult to separate them
- For organic solids:
- 'solid oligomers': Solid of molecules made of a small number of monomer units, up to a few dozen.
- 'homopolymer' \& 'copolymer': see "solid_compound_type"
- For complex organic matters:
- 'Insoluble Organic Matter' (IOM): insoluble mixture of
macromolecules composed of various and non-repeating structural units.
- 'Soluble Organic Matter' (SOM): soluble mixture of macromolecules composed of various and non-repeating structural units.
- 'complex macromolecular mixture' (IOM+SOM): mixture of soluble and insoluble macromolecules composed of various and non-repeating structural units.
- For complex organic+mineral matter:
- 'complex organic-mineral mix': complex mixture of organic solids/matter and minerals too numerous, too intermixed or at a scale difficult to separate them

\section*{- For liquids}
- see "liquid_compound_type"
- For adsorbed molecular or atomic species (molecules/radicals/ions/atoms):
- 'physically adsorbed phase': natural or isotopic atomic or molecular species physically adsorbed on a solid, in its (micro)porosity or in its porous structure (as in zeolites).
- 'chemically adsorbed phase': natural or isotopic atomic or molecular sspecies chemically adsorbed on a solid, in its (micro)porosity or in its porous structure
- For interlayer atomic species (atoms/ions) or molecular species (molecules/radicals/ions) in solids:
- 'interlayer phase': natural or isotopic atomic or molecular species adsorbed in the interlayer space of a solid

Note: 'interlayer phase' is only for atomic and molecular species not part of the solid structure.
\(E x\) : mostly clay minerals
- For atomic and molecular clusters:
- 'clusters': Van der Walls aggregates of 2 to 100000 atoms or molecules
- For gases:
- 'gas': pure gas
- 'gas mixture': mixed species (or any non-terrestrial isotopic mixture) in gas phase
- Others compounds and complex mixtures
- 'other compound': compounds which cannot be described by one of the above words (include some mixtures such as atomic+molecular clusters) (describe in "constituent_comments")
- 'other complex mix': complex mixture of compounds too numerous, too intermixed or at a scale difficult to separate them (describe in "constituent_comments")
- 'unknown': unknown compound

\section*{Constituent chemical composition}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_formula [phase_formula] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & Developed structural (empirical) chemical formula of the constituent Syntax: Latex format \\
\hline & & & & & & \begin{tabular}{l}
Notations: see "solid_formula" \\
- Note: of use only when not using a fundamental species
\end{tabular} \\
\hline \multirow[t]{2}{*}{constituent_chemical_formula [phase_chemical_formula]} & \multirow[t]{2}{*}{CS-varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 1 \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Const} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{--} & \begin{tabular}{l}
Developed global chemical and structural formula of the constituent \\
Notations: see "solid_chemical_formula"
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- of use only when not using a fundamental species \\
- contain ionic information.
\end{tabular} \\
\hline constituent_hydration [phase_hydration] & boolean & \[
\begin{gathered}
\mathrm{S} 0 \mathrm{c} / \mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & \begin{tabular}{l}
Flag telling if the constituent contains structural \(\mathrm{H}_{2} \mathrm{O}\) \\
- BoolEnum: \(\{\) yes, no \(\}\) or \(\{\) true, false \(\}\)
\end{tabular} \\
\hline constituent_hydration_number [phase_hydration_number] & varchar(255) & \[
\begin{aligned}
& \mathrm{S} 2 \mathrm{c} / \mathrm{S} 3 \\
& {\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{aligned}
\] & Const & F & var. & \begin{tabular}{l}
Number or amount (or range) of \(\mathrm{H}_{2} \mathrm{O}\) in the constituent structure Condition: mandatory when "constituent_hydration" = 'true' \\
- Unit: can be expressed in any unit, to be specified
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- exclude adsorbed water \\
- put ' \(n\) ' if there is hydration but the number is unknown
\end{tabular} \\
\hline
\end{tabular}

Ex: '2', '4-6', ‘0-2', 'n', ‘4.5 mol/kg', \(25 \mathrm{~g} / \mathrm{kg}, \ldots\)

\section*{constituent_chemical_functions List [L2]}
constituent_chemical_function_ui varchar(255)
d [*]
[phase_chemical_function_uid]
constituent_chemical_function_nu varchar(255) mber [+]
[phase_chemical_function_numbe

S2c Const F
[m] L2
r]
£: List of different chemical functions present in the constituent, except those already in the molecular "species"
- Condition: compulsory if exist
-- Link to the existing UID of the chemical function present in the constituent
Condition: mandatory if bloc used: "constituent_chemical_function_number" \(\neq \varnothing\)
Note: If the constituent is described in terms of molecular species with "constituent_specie_uid" their chemical functions (already implicitely taken into account) should not be listed here
var. Amount or range of amount of the chemical function present in the constituent
- Unit: can be expressed in any unit, to be specified

Ex: \(10^{18} \mathrm{~mol} / \mathrm{mol}\)
\(\rightarrow\) Calculated:
\(\rightarrow\) For solids described with molecular species
("constituent_specie_family" \(=\) \{molecule, chemical function \(\}\)): for each
'function_i' of all 'molecule_j' or 'function_j' of "constituent_specie_uid" excepted \(\overline{\text { those }}\) with "constituent specie relevance" \(=\{\) impurity, unknown \(\}\) it is:
Condition: when all "constituent_specie_number_min" \(\neq\{\emptyset\), NULL \(\}\)
\(\Rightarrow\) See "solid_chemical_function_number"
Condition: else when all "constituent_specie_mole_fraction" \(\neq\{\emptyset, \mathrm{NULL}\}\)
\(\Rightarrow\) See "liquid_chemical_function_number"
Notes:
- in constituent when the amount of species is given in mole, mass or mass fraction (not in number or mole fraction) and when it cannot be converted in mole fraction, it is no possible to determine a mole

\(\Rightarrow\) See "liquid_chemical_bond_number"
Condition: else no calculation
Notes:
- "constituent_specie_mole_fraction" will be calculated when all
"constituent_specie_mole" are given, so
"constituent_chemical_bond_number" will be also calculated in this case

\section*{Constituent molecular and atomic composition}

Condition: when all "constituent_specie_number_min" \(\neq\{\varnothing\), NULL \(\}\)
- \(\mathrm{n}(\) atom_i \()=\sum_{\text {specie_j }}\) ("_specie_number_min(specie_j)"* "specie_atom_number(specie_j,atom_i)")
Condition: when also a "constituent_specie_number_max" \(\neq\{\varnothing\), NULL \(\}\)
- n_min(atom_i) \(=\sum_{\text {specie_j }}\) (("_specie_number_min(specie_j) * "specie_atom_number(specie_j,atom_i)")
- n_max(atom_i) \(=\sum_{\text {specie_j }}\) (("_specie_number_max(specie_j)" * "specie_atom_number(specie_j,atom_i)")
with "specie_atom_number(atom_i)" =
"molecule_atom_number(atom_i)" for a molecule and "specie_atom_number(atom_i)" = 1 for an atom or element
- n_min or n_max(atom_i) is set to ' \(n\) ' when one instance of the element (element or molecule containing this element) has
"constituent_specie_number_min/_max" = ' n '

Note: for each type of atom it is the sum over all the molecules of the constituent of the product of the number of molecules in the constituent by the number of this atom in the molecule, plus possibly the number of elements or atoms of this type not included in molecules. If there are isotopes the isotopic atoms are counted separately
Condition: else when all "constituent_specie_mole_fraction" \(\neq\{\varnothing, \mathrm{NULL}\}\)
- \(\mathrm{n}(\) atom_i \()=\left[\sum_{\text {specie_j }}\right.\) ("_specie_mole_fraction (specie_j)" *
"specie_atom_number(specie_j,atom_i)")]/ \(\sum_{\text {atom_i }}\left[\sum_{\text {specie }-\mathrm{j}}\right.\) ("_specie_mole_fraction (specie_j)" *
"specie_atom_number(specie_j,atom_i)")]
Condition: when also a "constituent_specie_mole_fraction_error" \(\neq\{\varnothing\), NULL\}
- n_min(atom_i) \(=\left[\sum_{\text {specie } \_j}(\right.\) ("_specie_mole_fraction \((\) specie_j)" -
"_specie_mole_fraction_error (specie_j)") *
"-specie_atom_number(specie_ j, atom_i)") \(] / \sum_{\text {atom_i }}\left[\sum_{\text {specie_ }-\mathrm{i}}\right.\)
("_specie_mole_fraction (specie_j)" *
"specie_atom_number(specie_j,atom_i)")]
- n_max \((\) atom_i \()=\left[\sum_{\text {specie_ } j}(\right.\) ("_specie_mole_fraction \((\) specie_j)" +
" specie mole fraction_error (specie j)") *
"-specie_atom_number(specie_j,atom_ii)")]/ \(\sum_{\text {atom_i }}\left[\sum_{\text {specie_ }-\mathrm{j}}\right.\)
("_specie_mole_fraction (specie_j)" *
"specie_atom_number(specie_j,atom_i)")]
Condition: else when all "constituent_specie_mass_fraction" \(\neq\{\emptyset\), NULL \(\}\)
- \(\mathrm{n}(\) atom_i \()=\left[\sum_{\text {specie_j }}(\right.\) ("_specie_mass_fraction (specie_j)"/
"specie_molar_mass(specie_j)")*
"specie_atom_number(specie_j,atom_i)")]/ \(\sum_{\text {atom_i }}\left[\sum_{\text {specie }-\mathrm{j}}\right.\)
(("_specie_mass_fraction (specie_j)"/ "specie_molar_mass(specie_j)")
* "specie_atom_number(specie_j,atom_i)")]
with "specie_molar_mass(specie_j)" =
"molecule_molar_mass(specie j)" for a molecule and "specie_molar_mass(specie_j)" =
"atom_molar_mass(specie_j)" for an atom or element
Condition: when also a "constituent_specie_mass_fraction_error" \(\neq\{\varnothing\), NULL\}
- n_min(atom_i) \(=\left[\sum_{\text {specie_j }}(((\right.\) "_specie_mass_fraction \((\) specie_j)" -
"_specie_mass_fraction_error (specie_j)") /
"-specie_molar_mass(specie_j)") *
"specie_atom_number(specie_j,atom_i)"))] / \(\sum_{\text {atom_i }}\left[\sum_{\text {specie_j }}\right.\)
(("_specie_mass_fraction (specie_j)"/"specie_molar_mass(specie_j)")
* "specie_àtom_number(specie_j,atom_i)")]
- \({ }_{\text {n_- }} \max (\) atom_i \()=\left[\sum_{\text {specie_ } j}(((\right.\) ("_specie_mass_fraction (specie_j)" + "-_specie_mass_fraction_error (specie-j)") /
"specie_molar_mass(specie_j)") *
"specie_atom_number(specie_j,atom_i)"))]/ \(\sum_{\text {atom_i }}\left[\sum_{\text {specie_j }}\right.\) ("_specie_mass_fraction (specie_j)" /"specie_molar_mass(specie_j)")
* "specie_atom_number(specie_j,atom_i)")]

\section*{Notations.}
- suite of the atomic elements followed by the total number (possibly decimal) or range of their occurrence. Isotope can be added before each atom. This atom information is separated by a 'space'
\[
\text { Ex: ' } \mathrm{C} 2.5 \mathrm{O} 0.4 \text { N0.7 H7.3', }
\]

Ex: '13C0.3-0.4 12C0.9 16O1.5 17O0.001 18O2.3'
- put ions between parentheses
\[
E x:^{\prime}(\mathrm{Fe} 2+)(\mathrm{Fe} 3+) 2 \mathrm{O} 4 \prime
\]
- when there is only one occurrence of the atom the ' 1 ' should be omitted
- for variable elements in solid solutions: need to put the atom between brackets () followed by an occurrence of '_atom_number_min''_atom_number_max'

Ex: ' \(\left.{ }^{-} \mathrm{N}\right) 1.9-\mathbf{-}^{-}(\mathrm{C}) 0-0.05(\mathrm{H}) 0-0.2^{\prime}\) for CH 4 in solution in N 2 Ex: '(Fe)0.1-1 (Mg)0-0.9 Si O4'
- the maximum is set to ' \(n\) ' when one instance of the element (element or molecule containing this element) has "solid_specie_number_max" \(=\) ' n '
\begin{tabular}{|c|c|c|c|c|c|}
\hline constituent_isotope_mixture_type enum(text) [phase_isotope_mixture_type] & \[
\begin{gathered}
\mathrm{S} 1 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & Const & F & -- & \begin{tabular}{l}
Type of isotopic mixture of the constituent \\
Enum: \{pure isotope, partly substituted, terrestrial abundance, specific abundance, unknown\} \\
Definitions: \\
- 'pure isotope': when all molecules/atoms of the constituent are pure isotopes (only one isotopic species for each type of molecule or atom)
\[
E x:{ }^{14} \mathrm{ND}_{3}: \mathrm{D}_{2}{ }^{16} \mathrm{O}
\] \\
- 'partly substituted': when at least one, but not all, molecule/atom of the constituent is fully (i.e. pure isotopic species) or partly substituted
\[
E x: \mathrm{NH}_{3}: \mathrm{D}_{2}{ }^{16} \mathrm{O}, \mathrm{ND}_{3}: \mathrm{D}_{2}{ }^{16} \mathrm{O}, \ldots
\] \\
- 'terrestrial abundance': when all molecules/atoms of the constituent are in terrestrial isotopic abundance \\
- 'specific abundance': when at least one molecule/atom of the constituent has a specific isotopic abundance
\[
E x:\left(50 \% \mathrm{NH}_{3}+50 \% \mathrm{ND}_{3}\right): \mathrm{H} 2 \mathrm{O}
\]
\end{tabular} \\
\hline & & & & & Note: define the effective type of isotopic mixture of the constituent \\
\hline \multirow[t]{5}{*}{```
constituent_species_mole_fraction enum(text)
_unit
```} & \[
\begin{gathered}
\mathrm{U} \\
{[\text { od_m] }}
\end{gathered}
\] & Const & F & -- & Unit for the molar fraction or concentration of the species in the liquid constituent \\
\hline & & & & & Enum: \(\{\underline{\mathrm{mol} / \mathrm{mol}, \mathrm{mol} / \mathrm{g}, \mathrm{mol} / \mathrm{kg}, \mathrm{mol} / \mathrm{l}\}}\) \\
\hline & & & & & Default: 'mol/mol' \\
\hline & & & & & Constraint: only when "constituent_phase_type" = \{amorphous, glassy, mesophase, supercooled liquid, liquid, supercritical fluid\} \\
\hline & & & & & Note: \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
constituent_species & List [L4] & {\([!]\)} & & \\
& & & & \\
constituent_specie_family & enum(text) & \begin{tabular}{cc} 
S1 \\
{\([!!\) m \(]\)}
\end{tabular} & Const & F4
\end{tabular}
- the ' \(\mathrm{mol} / \mathrm{g}\) ', ' \(\mathrm{mol} / \mathrm{kg}\) ' and ' \(\mathrm{mol} / \mathrm{l}\) ' units are used only in liquid solutions and allow to express the concentration of solutes relative to a solvent
- in liquid solutions, the solvent mole fraction should be expressed in the same unit as the solutes
- used only for "constituent_specie_mole_fraction" and
"constituent_specie_mole_fraction_error"

\section*{\(£:\) List of different species present in the constituent}

Notes:
- For pure isotopes (atom, molecule), for natural or synthetic isotopic mixtures in terrestrial abundance (idem) or for substituted molecular mixtures (molecule), i.e. with one pure isotopic atom and the others in terrestrial abundance: it is necessary to link to the single corresponding fundamental species existing in the database (if not present: request it) using "constituent_specie_atom_uid/_molecule_uid"
- For non-standard natural or synthetic isotopic mixtures it is necessary to build your own mixture using several fundamental pure isotopic species (at least the most abundant), i.e. several times this 'constituent_specie’ structure.
- General family of the species composing the constituent.

Enum: \{atom, element, molecule, chemical function, unknown\}
Definitions:
- 'atom': atoms and ions
- 'element': atoms and ions as part of molecules, solids, minerals or liquids.
- 'molecule': molecules, molecular ions and radicals
- 'chemical function': only for anionic radicals (as in minerals)
- 'unknown': for complex organic or mineral matters with unknown composition, neither in terms of molecular, nor atomic species.

Note: 'unknown' is used to overpass the absolute mandatory and the following mandatories.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_specie_uid [*] & varchar(255) & \[
\begin{gathered}
\text { S0c/S1/ } \\
\text { S1i } \\
{\left[!!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Const \\
Atom \\
Molec \\
L4
\end{tabular} & F & & \begin{tabular}{l}
Link to the existing UID of the atomic or molecular species composing the constituent \\
Condition: absolute mandatory when "constituent_specie_family" = \{atom, element, molecule, chemical function\} \\
Notes: \\
- will be "atom_uid" (atomic, element) or "molecule_uid" depending on "constituent_specie_family". \\
- for complex solids (organic or mineral matters, ...) this value refers to 'atom_uid' \\
- complex constituents can also use the "constituent_chemical_functions" bloc to describe in parallel (or solely) their functional groups ('chemical function') and/or "constituent_chemical_bonds" bloc to describe their bonds ('chemical bond'), if known.
\end{tabular} \\
\hline
\end{tabular}

\section*{Species abundance in constituent \\ Species abudance in constitur}

- complex constituents of complex organic or mineral matters mostly refer to the "atom" table to describe their elemental composition ('element') constituent

Condition: absolute mandatory when "constituent_specie_family" = \{atom, element, molecule, chemical function\}

Notes:
will be "atom_uid" (atomic, element) or "molecule_uid" depending on constituent_specie_family".
'atom_uid'
complex constituents can also use the"constituent_chemical_functions" ('chemical function') and/or "constituent_chemical_bonds" bloc to describe their bonds ('chemical bond'), if known.

```

[!o_m]
Condition: only when "constituent_specie_mole_fraction" ={ {Ø, NULL}
Condition: calculated only when all "constituent_specie_mole" and
"constituent_specie_mole_error" }\not={\emptyset,NULL
calculated from "constituent_specie_mole_error"
" "_specie_mole_fraction_error(specie_j)" =
"-
"_mole(specie_j)" + \i ("_mole_error(specie_i)") / \Sigmai
("_mole(specie_i)")]
Condition: only when "constituent_specie_mole_fraction" $=\{$ \{, NULL $\}$
Condition: calculated only when all "constituent_specie_mole" and
"constituent_specie_mole_error" $\neq\{\varnothing$, NULL $\}$
\rightarrow calculated from "constituent_specie_mole_error"
\Rightarrow "_specie_mole_fraction_error(specie_j)" =
"- specie_mole_fraction(specie_j)" *["_mole_error(specie_j)"/
"_mole(specie_j)" $+\Sigma \mathrm{i}$ ("_mole_error(specie_i)") / i
("_mole(specie_i)")]

```
    Condition: calculated only when all "constituent_specie_number_min" and
    "constituent_specie_number_max" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) calculated from "constituent_specie_number_min/_max"
    \(\Rightarrow\) " specie mole fraction error(specie j)" \(=\)
        "_specie_mole_fraction(specie_j)" * [("_number_max(specie_j)" -
    "_number_min(specie_j)") / ("_number_max(specie_j)" +
    "-number_min(specie_j)") \(+\overline{\mathrm{i}}(\) ("_number_max(specie_j)" -
    "_number_min(specie_j)") / \(\operatorname{ii}(\) "_number_max(specie_j)" +
    "_number_min(specie_j)")]
- Units: see "constituent_species_mole_fraction_unit"

Condition: calculated only when all "constituent_specie_number_min" and
"constituent_specie_number_max" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) calculated from "constituent_specie_number_min/_max"
\(\Rightarrow\) "_specie_mole_fraction_error(specie_j)" =
"_specie_mole_fraction(specie_j)" *[("_number_max(specie_j)" -
"- number min(specie j\() ")+\Sigma \overline{\mathrm{i}}("\) number max(specie j\() "\) -
"_number_min(specie_j)") / \(\operatorname{ii}\) ("_number_max(specie_j)" +
"_number_min(specie_j)")]
float
\begin{tabular}{ccc}
\(\underset{\substack{\text { U } \\
\text { c] }]}}{ }\) & Const & F \\
& &
\end{tabular}
[!o_m L4
constituent_specie_mass [+]
g Mass of the species in the constituent
Condition \#1: mandatory for one of "constituent_specie_mole",
"_mole_fraction", "_mass", "_mass_fraction", or "_number_min" - AND

Condition \#2: when "constituent_specie_family" = \{atom, element, molecule \(\}\)
Condition: calculated only when "constituent_specie_mole" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) calculated from "constituent_specie_mole" when it is provided (need the molar masses \(=>\) in "molecule and atom species" tables:
"molecule/atom_molar_mass")
\(\Rightarrow\) "_specie_mass \((\) specie j\() "=\) " specie_mole \((\) specie j\() "\) *
"specie_molar_mass(specie_j)"
with "specie_molar_mass(specie_j)" = "molecule_molar_mass(specie_j)" for a molecule
\begin{tabular}{|c|c|c|c|c|}
\hline constituent_specie_mass_error [+] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right.} \\
\mathrm{c}]
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L4
\end{tabular} & F \\
\hline constituent_specie_mass_fraction
\[
[+]
\] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[\begin{array}{c}
\mathrm{o} _\mathrm{m} \\
\mathrm{c}]
\end{array}\right.}
\end{gathered}
\] & Const
L4 & F \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { and "specie_molar_mass(specie_j)" }= \\
& \text { "atom_molar_mass(specie_j)" for an atom or element }
\end{aligned}
\]

Notes:
- for adsorbed and interlayer species, it is the mass of the species in the adsorbed or interlayer phase (not including the adsorbat, which belong to another material/constituent)
g Absolute uncertainty on mass of the species in the constituent
Condition: only when "constituent_specie_mass" \(\neq\{\varnothing\), NULL \(\}\)
\(\rightarrow\) calculated from "constituent_specie_mole_error" when it is provided \(\Rightarrow\) "-specie_mass_error(specie_j)"" "- \(\overline{\text { specie_mole_error(specie_j)" * }}\) "specie_molar_mass(specie_j)"
Note: see "constituent_specie_mass"
no Mass fraction of the species in the constituent
Condition \#1: mandatory for one of "constituent_specie_mole",
"_mole_fraction","_mass","_mass_fraction", or "_number_min" AND
Condition \#2: when "constituent_specie_family" = \{atom, element, molecule \}
Condition: calculated only when all "constituent_specie_mass" \(\neq\{\emptyset\), NULL \(\}\)
\(\rightarrow\) calculated from "constituent_specie_mass" when available for all species of the constituent
```

" "specie_mass_fraction(specie_j)" = "_specie_mass(specie_j)"/ Li
("_specie_mass(specie_i)")

```

Condition: calculated only when all "constituent_specie_mole_fraction" \(\neq\{\varnothing\), NULL\}
\(\rightarrow\) calculated from "constituent_specie_mole_fraction" when provided for all species of the constituent (need the molar masses of all species in the constituent => in "molecule and atom species" tables:
"molecule/atom_molar_mass" of each "constituent_specie_uid") \(\Rightarrow\) "_specie_mass_fraction(specie_j)" \(=\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_specie_mass_fraction _error [+] & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} _\mathrm{m}\right.} \\
\mathrm{c}]
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L4
\end{tabular} & F & no & \begin{tabular}{l}
Absolute uncertainty on mass fraction of the species in the constituent \\
Condition: only when "constituent_specie_mass_fraction" \(\neq\{\varnothing\), NULL \(\}\) \\
Condition: calculated only when all "constituent_specie_mole_fraction" and "constituent_specie_mole_fraction_error" \(\neq\{\varnothing\), NULL \(\}\) \\
\(\rightarrow\) calculated from "constituent_specie_mole_fraction_error" for atomic and molecular constituents \\
\(\Rightarrow\) "_specie_mass_fraction_error(specie_j)" \(=\) \\
"-specie_mass_fraction(specie_j)" *["_mole_fraction_error(specie_j)"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_specie_number_min
\[
[+]
\] & float or ' n ' & \[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L4
\end{tabular} & F & & \begin{tabular}{l}
Nominal or minimum total number of the molecular/atomic species in the constituent formula \\
Condition \#1: mandatory for one of "constituent_specie_mole", "_mole_fraction", "_mass", "_mass_fraction", or "_number_min" \\
AND \\
Condition \#2: when "constituent_specie_family" = \{atom, element, molecule \} \\
Notes: \\
generally available only for fully atomic or molecular constituents. \\
If only a range of number is known then give a minimum value here and a maximum value in "constituent_specie_number_max" \\
- If the number is known within an uncertainty \(( \pm)\) then "number_min" \(=\) 'nominal number' - 'error' \\
- for adsorbed and interlayer species, it is the number of moles of the species in the adsorbed or interlayer phase (not including the adsorbat, which belong to another material/constituent)
\end{tabular} \\
\hline constituent_specie_number_max
\[
[+]
\] & float or ' n ' & \[
\begin{gathered}
\mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L4
\end{tabular} & F & -- & \begin{tabular}{l}
Maximum total number of the molecular/atomic species in the constituent formula \\
Notes: \\
- do not fill for well defined constituent \\
- If the number is known within an uncertainty ( \(\pm\) ) then "number_max" \\
\(=\) 'nominal number' + 'error' \\
- If undefined then put ' \(n\) '
\end{tabular} \\
\hline
\end{tabular}

\section*{Species state in constituent}
\begin{tabular}{llllll} 
constituent_specie_state & enum(text) & S1 \begin{tabular}{llll} 
Const & F & -- & \begin{tabular}{l} 
State of the species inside the compound composing the constituent
\end{tabular} \\
& L4 & & OpenEnum: \(\{\) constituent element, constituent cation, constituent anion,
\end{tabular} \\
\hline
\end{tabular}
constituent mer, constituent molecular, molecular ion, anionic radical, pure, mixed, matrix, monomers, dimers, multimers, solute, solvent, liquid solution, solid solution, clathrate network, clathrate guest, hydration, hydrated, in complex, physically adsorbed, chemically adsorbed, interlayer physically adsorbed, other, unknown, ...\}

\section*{Definitions:}
- For complex compounds, and for atoms in minerals, and covalent and metallic compounds which can only be described by elemental composition:
- 'constituent element': for elements (neutral atoms) constituting the constituent, i.e. for elemental composition
- 'constituent cation': for cations (ions or molecular ions) constituting the constituent
- 'constituent anion': for anions (ions or molecular ions) constituting the constituent
- 'constituent mer': mer radical as basic building blocks of polymers
- 'constituent molecular': molecule as building block of a solid structure or of a larger molecule. Did not include the independent molecules in molecular solids (see 'pure', 'mixed', 'matrix')
- 'anionic radical': for anions constituting the constituent (mainly for natural and synthetic minerals)
- 'pure'^: only one atomic species forms the compound (also gas and liquid)
- For molecular compounds (also with radicals/ions: *) and in some cases (^) for ions in ionic compounds:
- 'pure'^: only one molecular species forms the compound (also gas and liquid)
- 'mixed \({ }^{*}\) : : more than one type of molecular/atomic species form the compound but the species state cannot be described more specifically with one of the next attributes (also gas, liquid and clusters)
- 'matrix'^: the species largely dominates the solid compound (mole fraction > 99\%)
- 'monomers \({ }^{*}\) : : the molecular species is fully isolated in minor abundance in the compound (generally when mole fraction \(<0.1 \%\) ), or in clusters. Also used for precursor monomers of polymers
- ‘dimers \({ }^{* \wedge}\) : the molecular species occurs as isolated pairs of species
(generally when mole fraction < \(1 \%\) ), or in clusters.
- 'multimers'*^: isolated small group of molecular species and with limited size: 3 to 5 monomers (generally when mole fraction < \(5 \%\) ), or in clusters.

Note: the " cases above can be special cases of 'solute'
- 'solute' \(\wedge\) : molecular/atomic species diluted in a liquid or solid solution (or atom in alloy)

Note: in solid solutions the solute species can be in substitutional or interstitial sites of the solvent crystal structure
- 'solvent'^: molecular/atomic species that dilute the solute in a liquid or solid solution (or main element of the alloy)

Note: in case of complete miscibility (similar crystallographic structures) it is sometimes difficult to define who is the solvent and who is the solute: so we will define a 'solvent' and its 'solute(s)' only when a mole fraction is \(<0.1\), and use 'solid solution' for the intermediate cases.
- 'liquid solution': for liquid solutions when mole fractions is \(0.1<\mathrm{f}<\) 0.9 (solute ~ solvent).
- 'solid solution': for mineral or solid solutions when mole fractions is \(0.1<\mathrm{f}<0.9\) (solute \(\sim\) solvent).
- 'clathrate network': host molecule forming the clathrate structure (Ex: \(\mathrm{H}_{2} \mathrm{O}\) for clathrate hydrate)
- 'clathrate guest': guest molecule occupying the cages of the clathrate structure
- 'hydration': \(\mathrm{H}_{2} \mathrm{O}\) molecules in solid stoichiometric hydrate
- 'hydrated"*^: species that form with water a solid stoichiometric hydrate

Note: for liquids, depending on relative amounts and compound formed, \(\mathrm{H}_{2} \mathrm{O}\) can also be called the 'solvent'
- For molecular (molecules/radicals/ions) or atomic species (atoms/ions) adsorbed at the surface, in (micro)pores or in interlayer of the constituent:
- 'physically adsorbed': physical adsorption at surface and in porosities (macro-, micro-)
- 'chemically adsorbed': chemical adsorption at surface and in porosities (macro-, micro-)
\begin{tabular}{ccc} 
constituent_specie_relevance & enum(text) & \begin{tabular}{cc} 
S1 \\
{\([!!\mathrm{o}-\mathrm{m}\)} \\
\(]\)
\end{tabular} \\
& L4
\end{tabular}
- 'interlayer physically adsorbed': physical adsorption in interlayer spaces of solids (mostly clay minerals)
- For complex organic matter, mineral mixtures and other complex mixtures:
- 'in complex': for elements and chemical functions in complex organic matter.
- 'unknown': unknown state of the species
- Others compounds
- 'other': species state in a compound which cannot be described by one of the above words (describe in "constituent_specie_comments")
Note: This state depends on "constituent_compound_type" which gives the type of solid compound composing the constituent and tells how the species are mixed at the molecular level
- Relevance of the species in the constituent

Enum: \{main, replacement, substituted, impurity, product, precursor, unknown \(\}\)

Condition: absolute mandatory when "constituent_specie_family" \(=\{\) atom, element, molecule\}

\section*{Definitions:}
- 'main': essential molecular/atomic species constituting the nominal molecular/atomic composition of the constituent in the sample before the beginning of an experiment (and prior any processing of the sample)
- 'replacement': common replacement atom not included in the nominal elemental formula of the contituent but present as replacement atoms,

Note: mostly in solid solutions, ...
- 'substituted': used only for isotopic molecular/atomic species substituting the equivalent "natural molecule/atom"
- 'impurity': molecular/atomic species not wanted in the nominal composition of the constituent but present in synthetic materials or others matters.
- 'product': species produced in the constituent of a sample subjected to a processing during the experiment
- 'precursor': precursor species used for synthetic material formation, or pre-processing of natural matters.

Note: They are flagged 'precursor' only in the precursor material description. If some species remain in a constituent of the sample after formation they are thus flagged 'main' or 'impurity' in the sample description, depending if they are wanted or unwanted,.
- 'unknown': if origin of the species is not clear: 'impurity' or 'product'?

Note: species of complex constituents in synthetic samples are set as 'product' only if they are formed during the experiment.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_specie_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Const \\
L4
\end{tabular} & F & & Additional information on the specie state, origin and composition in the constituent \\
\hline constituent_composition_commen ts & & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & Additional information on the composition and formula of the constituent \\
\hline \multicolumn{7}{|l|}{Constituent state} \\
\hline constituent_phase_name & varchar(255) & \[
\underset{[\mathrm{m}]}{\mathrm{S} 0 \mathrm{c} / \mathrm{S} 1}
\] & Const & F & -- & \begin{tabular}{l}
Common name of the constituent phase. \\
Notes: \\
- name is not normalized but mostly crystal system as defined in the literature, and any information on crystal class, symbol, and spacegroup (Hermann-Mauguin symbol) \\
- for constituents made of one mineral detailed crystallographic information is given in "mineral phase". Just give the crystal system. \\
e.g.: 'alpha-cubic', 'beta-hexagonal', 'orthorhombic', ... (mostly for crystalline phase types), 'high density amorphous', 'adsorbed on orthorhombic', ...
\end{tabular} \\
\hline constituent_phase_type & enum(text) & S1 & Const & F & -- & \begin{tabular}{l}
Type of phase of the constituent (solid, liquid, gas) \\
Enum: \{crystalline, semicrystalline, paracrystalline, disordered, quasi-
\end{tabular} \\
\hline
\end{tabular}
amorphous, amorphous, glassy, mesophase, supercooled liquid, liquid, supercritical fluid, adsorbed, interlayer, adsorbed+interlayer, mono-multimer, cluster, gas, mixed, other, unknown\}

\section*{Definitions.}
- 'crystalline': with a well defined crystalline structure
- 'semicrystalline': partially crystalline, with crystals embedded in an amorphous or glassy matrix
- 'paracrystalline': solid with short and medium range ordering in their lattice (similar to the liquid crystal phases) but lacking crystal-like long-range ordering at least in one direction. Ordering is the regularity in which atoms appear in a predictable lattice, as measured from one point.
- 'disordered': solid with only irregular and/or local order, mostly for metamict and macromolecular solids
- 'quasi-amorphous': nanocrystalline solids
- 'amorphous': solid lacking the long-range order characteristic of a crystal.
- 'glassy': amorphous solid that transforms into a liquid upon heating through the glass transition
- 'mesophase': for liquid crystal': state of matter intermediate (partly ordered orientation) between solid (ordered position and orientation) and liquid (disordered)
- 'supercooled liquid': liquid phase under the freezing point
- 'liquid’: liquid phase
- 'supercritical fluid': material at a temperature and pressure above its critical point where distinct liquid and gas phase did not exist
- 'adsorbed': phase of adsorbed molecules, or films, at the surface or in pores (macro/meso/micro) of another material
- 'interlayer': phase of the interlayer molecular layer (generally \(\mathrm{H}_{2} \mathrm{O}\) ) inside minerals (phylosilicates)
- 'adsorbed+interlayer': when it is not possible to distinguish the adsorbed and interlayer phases
- 'mono-multimer': Van der Walls aggregates up to 4 molecules
- 'cluster': Van der Walls aggregates of 5 to 100000 molecules
- 'gas': gaseous phase
- 'mixed': a mix of several of the above phase types
- 'other': when the phase type of the constituent cannot be described by one of above words (explain in "constituent_comments")
- 'unknown': when phase type of constituent is unknown

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Constituent texture} \\
\hline \multirow[t]{5}{*}{constituent_crystal_size_unit [sample/matter_crystal_size_unit]} & \multirow[t]{5}{*}{enum(text)} & \multirow[t]{5}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\text { £o_m] }}
\end{gathered}
\]} & \multirow[t]{5}{*}{Const} & \multirow[t]{5}{*}{F} & \multirow[t]{5}{*}{--} & Unit for the constituent crystal sizes (diameter) \\
\hline & & & & & & Enum: \(\{\mathrm{nm}\), micron, mm, cm \(\}\) \\
\hline & & & & & & Condition: compulsory when "constituent_crystal_size_median" OR "constituent_crystal_size_min" OR "constituent_crystal_size_max" has a value \\
\hline & & & & & & Note DB: all crystal sizes data will be stored in ' m ' \\
\hline & & & & & & Note: used for "constituent_crystal_size_median/_width/_min/_max" \\
\hline \multirow[t]{2}{*}{constituent_crystal_size_method [constituent_crystal_size_method]} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Const} & \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{--} & Description of the crystal size ( \(\mathrm{min} / \mathrm{max}\) ) definition, and of the method of determination of the crystal size distribution \\
\hline & & & & & & Ex: 'SEM microscope measurement of section' \\
\hline constituent_crystal_sizes & List [L6] & [O] & & & & £: Size distribution of the constituent crystals \\
\hline \multirow[t]{3}{*}{constituent_crystal_size_median [constituent_crystal_size_median]} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Const L6} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{var.} & Median size (diameter) of constituent crystals \\
\hline & & & & & & \begin{tabular}{l}
Unit: in "constituent_crystal_size_unit" \\
converted in ' \(m\) ' unit in the database but provided to user in "constituent_crystal_size_unit"
\end{tabular} \\
\hline & & & & & & Note: mostly used when only one median size is known for the constituent crystals \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_crystal_size_width [constituent_crystal_size_width] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const L6 & F & var. & Full width at half maximum of the size distribution (diameter) of constituent crystals \\
\hline \(\cdots\) & & & & & & \begin{tabular}{l}
Unit: in "constituent_crystal_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "constituent_crystal_size_unit"
\end{tabular} \\
\hline & & & & & & Note: mostly used when only one median size and its distribution is known for the constituent crystals \\
\hline constituent_crystal_size_min [constituent_crystal_size_min] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const L6 & F & var. & \begin{tabular}{l}
Smallest size (diameter) of constituent crystals of this size range \\
Unit: in "constituent_crystal_size_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "constituent_crystal_size_unit"
\end{tabular} \\
\hline constituent_crystal_size_max [constituent_crystal_size_max] & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const L6 & F & var. & \begin{tabular}{l}
Largest size (diameter) of constituent crystals of this size range \\
Unit: in "constituent_crystal_size_unit" \\
- converted in 'm' unit in the database but provided to user in "constituent_crystal_size_unit"
\end{tabular} \\
\hline constituent_crystal_size_fraction [constituent_crystal_size_fraction] & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const L6 & F & no & Mass fraction of constituent crystals comprised between size min and size max (diameter) \\
\hline & & & & & & Note: value between 0 and 1 \\
\hline ```
constituent_crystal_size_fraction_
error
[constituent_crystal_size_fraction
_error]
``` & & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const L6 & F & no & Absolute uncertainty on the mass fraction of constituent crystals comprised between size min and size max (diameter) \\
\hline constituent_crystal_size_shape [constituent_crystal_size_shape] & enum(text) & \[
\begin{aligned}
& \mathrm{S} 2 \\
& {[\mathrm{~m}]}
\end{aligned}
\] & Const L6 & F & -- & \begin{tabular}{l}
Dominant shape of the constituent crystals of this size range \\
Enum: \{amorphous, irregular, equant, reniform, globular, spherical, flakes, platy, tabular, lathlike, columnar, acicular, capillary, cubic, cylindrical, hexagonal, octahedral, prismatic, pyramidal, rhombohedral, nuggets, botryoidal, dendritic, spheres aggregate, aggregate, fluid, other, unknown \(\}\)
\end{tabular} \\
\hline
\end{tabular}

- 'gaseous': for gas
- 'other': when texture of constituent cannot be described by one of above words (describe in "constituent_comments")
- 'unknown': when texture of constituent is unknown

Notes:
- The compacity of a crystal is considered to be 'unity'. If it is not the case you can note the effective value in
"constituent_crystal_comments"
- a compact layer or thin film of solid or a mineral slice, are considered here as "polycrystals"

\section*{Constituent properties}

\section*{Constituent optical properties}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline constituent_refraction_index_n [constituent_refraction_index_n] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & \begin{tabular}{l}
Refraction index(es), n, (value or range) of the constituent \\
Note: precise the type if not isotropic, and at which wavelength the refraction index is measured \\
\(E x\) : ' 1.125 at 535 nm ', '\$n_\{/alpha \(\}=1.563\) and \(\$ n \_\{/ \text {beta }\}=1.630\) at 636nm’
\end{tabular} \\
\hline constituent_true_color [constituent_true_color] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & \begin{tabular}{l}
Color of the constituent \\
Note: \\
Ex: 'pale pinkish - green'
\end{tabular} \\
\hline constituent_diaphaneity [constituent_diaphaneity] & enum(text) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & \begin{tabular}{l}
Capacity of the constituent to transmit light \\
Enum: \{transparent, transparent to translucent, transparent to subtranslucent, transparent to opaque, translucent, translucent to subtranslucent, translucent to opaque, subtranslucent to opaque, opaque, various, unknown\} \\
Definitions: see "mineral_diaphaneity"
\end{tabular} \\
\hline constituent_luster [constituent_luster] & enum(text) & \[
\begin{aligned}
& \mathrm{S} 2 \\
& {[\mathrm{~m}]}
\end{aligned}
\] & Const & F & -- & \begin{tabular}{l}
Description of how and how much the surface of the constituent reflects light. \\
Enum: \{metallic, submetallic, waxy, vitreous, pearly, silky, greasy, resinous, adamantine, earthy, various, unknown\} \\
Definitions: see "mineral_luster"
\end{tabular} \\
\hline constituent_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Const & F & -- & Additional information on constituent state and compound organization, in particular for coating of grains: coating thickness, phase, and texture \\
\hline
\end{tabular}

\subsection*{11.9 Precursor Materials}

\section*{Root of the table: precursor material}

Data type: in 'Sample'
Note: refer to the "material" table but with "material_is_precursor" = 'true'
Condition: description of precursor materials is optional (can be also simply described with (short) text in the relevant "processing") but strongly recommended.
Note: Precursor materials which are not matter(s) are defined here through the "material(s)/constituent(s)/specie(s)" structure. They are used in "processing" through links with their "precursor_material_uid". Precursors which are "matters" are directly linked in "processing".
Their mixing and processing step(s) up to the post-formation processing of the sample before the start of the experiment are described in "processings".
\begin{tabular}{|c|c|c|c|c|c|}
\hline Key-word & Type & Level Table & Exp & Unit & Description \\
\hline \multirow[t]{6}{*}{```
precursor_material_index [**][-
xml]
```} & \multirow[t]{6}{*}{\(\operatorname{int}(10)\)} & \multirow[t]{6}{*}{\[
\begin{array}{cc}
\text { B } & \text { PreMater } \\
{[\mathrm{o}!!\mathrm{g}]} & \text { L1 }
\end{array}
\]} & \multirow[t]{6}{*}{F} & \multirow[t]{6}{*}{--} & Automatic random but unique number (ID) given to new precursor material used to create the 'sample materials' \\
\hline & & & & & Note: replace "material_index" in the material table \\
\hline & & & & & Note: a precursor material is a "simple material" described through the material/constituent(s) and specie(s) structure. When the precursor material is a "matter" then no need to describe it here because it can be linked directly as a matter (with its "matter_uid") in the processings with "matter_processing_precursor_material_uid" \\
\hline & & & & & Note: if a material or matter is not processed as a precursor material, or during layer deposition or in the formed layer or in the formed sample (before the start of the experiment), then it is not a 'precursor_material' but a "layer_material" \\
\hline & & & & & Note \(x m l\) : in practice the description of the precursor material(s) are done directly under "precursor_material" in the xml sample structure, without ID link \\
\hline & & & & & \(E x\) : a CH4:N2 gas mixture is a single precursor material with a single gaseous \\
\hline
\end{tabular}

\subsection*{11.10 Processing Table}

\section*{Root of the table: processings}

Data type: in 'Sample'
Condition: optional, but useful at least for the layer(s) deposition step
Notes:
\(\Rightarrow\) The formation of synthetic samples (or matters) is obtained from (one or) a mixture of precursor materials and/or matters that are subjected to at least one type of processing that affect its chemical composition, phase and/or texture. Natural samples may also be subjected to some pre-processing before the start of the experiment.
\(\Rightarrow\) Physical and chemical processings can be applied to natural or synthetic precursor matters, to layer under deposition, to an already deposited layer, or to a whole sample (with its layer(s)) before the start of the experiment.
\(\Rightarrow\) this bloc is like a 'cooking recipe'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multirow[t]{2}{*}{Sample/Matter processings} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{[O]}} & & & & £: processings of precursor materials or matters to create the sample (or matter) \\
\hline & & & & & & Condition: Optional bloc - Mandatory active below when "processings_title"
f‘NULI' \(\neq\) 'NULL' \\
\hline \multirow[t]{4}{*}{sample/matter_processings_title} & \multirow[t]{4}{*}{\(\operatorname{varchar}(256)\)} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[(!!) \mathrm{do}}
\end{gathered}
\]
\[
\mathrm{m}]
\]} & \multirow[t]{4}{*}{Proces} & \multirow[t]{4}{*}{F} & \multirow[t]{4}{*}{--} & Title for the whole processing sequence of the material(s), matter(s) or sample(s). \\
\hline & & & & & & Default \(=\) 'NULL' \\
\hline & & & & & & Condition: (option trigger) the filling of this KW is 'absolute mandatory' when this optional bloc is used. It triggers the 'mandatory' status of several others KW in the optional bloc. \\
\hline & & & & & & Ex: 'irradiation of annealed sulfur produced in a previous experiment (2008/09/25)', 'annealing under vacuum at 100 K of freshly deposited \\
\hline
\end{tabular}

\section*{Sample/Matter processings: precursor sample(s), matter(s) or material(s)}

All the material(s), matter(s) or sample(s) that have been used as initial precursors at any step of the processing sequence should be listed below. The precursor material(s) should be described with the "precursor materials" structure, while the precursor matter(s) and sample(s) should already exist in the database.
[!o]


L1


Note: the precursor sample(s), matter(s) or material(s) can be also simply described in 'sample/matter_processing_process' of the first step.
\(£\) : Precursor samples processed during the whole processings sequence
-- Link to the existing UID of the initial precursor sample processed during the whole processings sequence

Note: the precursor samples should be directly linked here (SAMPLE_, ...) instead through their constituting materials

\section*{Matters: Not used in processings to create matters}
£: Precursor matters processed during the whole processings sequence
-- Link to the existing UID of the initial precursor matter processed during the whole processings sequence
Note: the precursor matters should be directly linked here (MATMIN_,..) instead through their constituting materials
\(£:\) Precursor materials processed during the whole processings sequence
-- Link to the existing UID of the initial precursor material processed during the whole processings sequence

Note: all the initial precursor materials (except those included in precursor matters or sample) should be listed and described in "precursor_materials"

\section*{Sample/Matter processings: produced sample, matter or material(s)}

The sample, the matter or all the material(s) that have been formed by the processing sequence should be listed below. The final sample or final matter of the processing sequence is the one described by the "Sample" or "Matter" structure, while the created material(s) should be some of their listed materials.


\section*{"processings_title" \(\neq{ }^{\prime} \mathrm{NULL}\) '}

Notes:
- Used when only part of the materials of a final sample or matter are created with this processings sequence
- When a whole final matter is produced by the processings sequence "processings_product_matter_uid" should be given instead of listing here all its"matter_materials"

When a whole final sample is produced by the processings sequence
"processings_product_sample_uid" should be given instead of listing here all its"sample_materials"

\section*{Sample/Matter processings: steps}
\begin{tabular}{|c|c|c|}
\hline sample/matter_processing_steps List [L5] & [!!o] & \\
\hline sample/matter_processing_step_o \(\operatorname{int}(255)\) rder & \[
\begin{gathered}
\mathrm{U} \\
{\left[!!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & Proces L5 \\
\hline ```
sample/matter_processing_chrono enum(text)
logy
[-: for Matter]
``` & \[
\begin{gathered}
\mathrm{U} \\
{\left[!!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & Proces
L5 \\
\hline
\end{tabular}
£: processing steps
-- Order of occurrence of the processing step
Condition: absolute mandatory when "processings_title" \(\neq\) 'NULL'
-- Chronology of the processing step
Enum: \{before layer formation, during layer formation, after layer formation, after sample formation, on parent sample \}

Condition: absolute mandatory when "processings_title" \(\neq{ }^{\prime} \mathrm{NULL}^{\prime}\)
Note: only for Sample (not useful for Matter)
Definitions:
These processing steps concern processings performed either:
- 'before layer formation': processing of precursor materials before formation of the layer of the sample (n steps)
- 'during layer formation': processing of precursor materials or of layer during formation of the layer of a sample (mostly 1 step)
- 'after layer formation': processing of layer after its complete deposition but before formation of the next layer of a sample (n steps)
- 'after sample formation': on the whole sample after last layer

\section*{Sample/Matter processings: processes and conditions}
\begin{tabular}{lllllll}
sample/matter_processing_types & List [L6] & {\([!\mathrm{o}]\)} & & & & £: Types of processing steps of the material(s), matter(s) or sample(s)
\end{tabular}
sample/matter_processing_proces blob
s \(\quad\)\begin{tabular}{c}
U \\
{\(\left[!\mathrm{o} \_\mathrm{m}\right]\)}
\end{tabular} \begin{tabular}{c}
Proces \\
L5
\end{tabular} F

Enum: \{no, mixing, layer formation, thermal, pressure, mechanical, fluid physical, chemical, irradiation\}
Condition: mandatory when "processings_title" \(\neq\) ' NULL '

\section*{Definitions:}
- 'mixing': Mode of mixing of the different precursor materials or matters in the 'precursor layer' or in the 'sample layer' and its physical characteristics.
- 'layer formation': Mode of formation of a 'precursor layer’ or 'sample layer' and its physical characteristics.
- 'thermal': temperature cycling of the material(s), layer, or sample
- 'pressure':mechanical pressure cycling of the material(s), layer or sample
- 'mechanical': mechanical stress or alteration of the material(s), layer or sample
- 'fluid physical': contact of a fluid (or vacuum) with the material(s), layer, or sample
- 'chemical': reaction of a fluid with the material(s), layer, or sample
- 'irradiation': irradiation of the material(s), layer, or sample by energetic photons (\(\gamma\), X, UV-Vis-IR, microwaves, ...) or particles (\(\mathrm{e}^{-}\), protons, ions, ...).

Note: multiple types may occur simultaneously, e.g. T and P increase. If processings are successive then it is better (necessary ?) to define several processing steps with they order of occurrence
-- Description of the type of process(es) and its conditions during the processing step of the material(s), matter(s), layer or sample.
Condition: mandatory when "processings_title" \(\neq\) 'NULL'
Note: the numbers are given only as text but it is requested to expres all their physical units in an homogeneous way by using the one defined as "sample_xxx_unit"
Definitions per type:
\(\Rightarrow\) 'mixing': Describe the mode of mixing (at the grain level) of precursor
materials in the 'precursor layer' (matters) or in the 'sample layer' (e.g. homogeneous mixing, heterogeneous mixing, grains in fluid, fluid in porous solid, ...) and its physical characteristics
\(\Rightarrow\) 'layer formation': Describe the mode of formation (condensation, manual deposition, ...) of the 'precursor layer' (matters) or the 'sample layer' and the physical characteristics of this layer (thickness, mass, texture, porosity, density, substrate, ...)
\(\Rightarrow\) 'thermal': Temperature of the material(s)/layer/sample during thermal processing + uncertainty and duration (time) of the thermal stage Unit: use "sample_temperature_unit" and "sample_time_unit"

Note: it can also describe any type of temperature change (step, ramp, cycle, ...). A series of freeze-thaw cycles can be described in one thermal processing step (instead of several at low and high T)

Ex: ' 125 +/- 1 K during \(250 \mathrm{~min} ’\)
\(\Rightarrow\) 'pressure': Hydrosatatic pressure of the material(s)/layer/sample during pressure processing + uncertainty and duration (time) of the pressure stage
Unit (sample): use "sample_pressure_unit" and "sample_time_unit"
Note: it can also describe any type of pressure change (step, ramp, cycle, ...).
\(E x\) : ' 25 GPa during 10 min '
\(\Rightarrow\) 'mechanical': Mechanical processing (stressing, grinding, crushing, sieving, manual selection, section, polishing, ...) of the material(s)/layer/sample during mechanical processing + method/technique used + forces applied (stress, crushing, ...) + duration (time) of the mechanical stage
Unit (sample): use "sample_xxx_unit"(s)

\section*{Definitions:}
- 'stressing': technique, stress type and value of forces applied,
- 'crushing': technique (press, manual, ...), force applied and thickness (+ uncertainty) after crushing, ...

Ex: single grain crushing
- 'sieving' technique (manual, mechanical, ...), size(s) of the sieving mesh(s), ...
\(E x\) : direct deposition by sieving
- 'grain selection': technique (manually or micromanipulator) and mode (magnet, needle, paint brush, under binocular, ...), selection criteria, ...

Ex: selective adding, moving or removing of grains in/from a layer
- 'section': technique (cutting, FIB, microtomed, ultramicrotomed, polishing, ...), type of section (ultra-thin, ultrathin in epoxy, ultra-thin on glass slide, ...) and thickness
- 'surface preparation': flattening or shaping surface, roughening, ...
- 'surface polishing': polishing method (..., polishing in epoxy), degree of polishing (micro-roughness: ..., no polishing) and roughness value (rms, ...)

Ex: 'sieving the mineral matter between 50 and \(100 \mu \mathrm{~m}\) meshs during gravitational deposition of the layer'
\(\Rightarrow\) 'fluid physical': Type of fluid (gas, liquid, liquid solution) and molecule(s) or matter(s), with their mole fraction(s), in contact with the material(s)/layer/sample during fluid processing. Temperature, pressure and pH of the fluid in contact with the material(s)/layer/sample during fluid processing + uncertainties and duration (time) of the fluid stage
Unit (sample): use "sample_temperature_unit",
"sample_pressure_unit" and "sample_time_unit"
Notes:
- During deposition under vacuum, or under ambient conditions, the fluid composition is the residual gas or ambient air,
respectively
- process can be a fluid that will produce either a coating shell on the material(s) or an additional layer on the layer/sample itself (if not porous), or will penetrate/alter the layer/sample either physicaly or chemicaly (reactions to be described as "chemical"). This coating will be one new constituent (coating shell) of the material(s) or one new material in the layer, or one new layer on the sample. They need to be described in the final sample/ layer(s)/ material(s)/ constituents(s)/ specie(s) structure with comments on their origin.
- During deposition under vacuum, or under ambient conditions, the fluid pressure is the residual gas pressure or the ambient pressure, respectively

Ex: ‘CO2 (15\%) + N2 (85\%) gas, \(125+/-1 \mathrm{~K}\) at 100Pa', ‘fluoridric acid (\(30 \%\)) aqueous solution, \(\mathrm{pH}=5.2\) during 250 min ', 'Air with 400 ppm CO 2 and \(2 \% \mathrm{H} 2 \mathrm{O}\) ', 'unknown residual gas', 'ultra-high vacuum, 2e-8 mbar', ...
\(\Rightarrow\) 'chemical': Nature and composition of the reactant(s), chemical method, protocol and reactions of formation/alteration of the material(s)/ constituents(s)/ species(s) in the sample/ layer/ material(s) during chemical processing, temperature, pressure and pH of the reactants + uncertainties and duration (time) of the chemical stage

Note: include material synthesis by various types of chemical vapor deposition (CVD, PECVD, ...)
\(\Rightarrow\) 'irradiation': Type of irradiation (photons of all energies) or particle bombardment (ions, electrons, ...) + irradiation source (type + model), filter, irradiation energy (+ distribution) of the material(s)/layer/sample during irradiation processing. Irradiation or particle bombardment conditions (flux or power, duration (time), dose or energy dose, ...) of the material(s)/layer/sample during irradiation processing

Unit (sample): use "sample_irradiation_particle_energy_unit" or "particule", "sample_time_unit" and \(\mathrm{cm}^{-2}\) or m \(\mathrm{m}^{-2}\)

Ex: ‘UV-Vis photons from Hg lamp (Zeiss HBO 100W), lines 250-

600 nm , bandpass filter \(200-650 \mathrm{~nm}, 25 \mathrm{~mW} . \mathrm{cm}-2\) during 30 s , total: 0.75 J.cm-2', 'Ar+ ions, \(3 \mathrm{e}+5\) particule.s-1.cm-2 during 1500 s , total \(4.5 \mathrm{e}+8\) particule.cm-2'.

Matters: the physical units are not specified in "matters" (contrary to "sample") but it is requested to express all them in an homogeneous way by choosing ONE of each of the following units:
- Temperature: \(\left\{\mathrm{K},{ }^{\circ} \mathrm{C}\right\}\)
- Pressure: \(\{\mathrm{Pa}, \mathrm{hPa}\), mbar, bar, atm, torr \(\}\)
- Time: \(\{\mathrm{s}, \min , \mathrm{h}, \mathrm{d}\}\)
- Energy: \(\{\mathrm{J}, \mathrm{kJ}, \mathrm{eV}, \mathrm{keV}, \mathrm{MeV}, \mathrm{A}, \mathrm{nm}\), micron, cm-1\}
\begin{tabular}{|c|c|c|c|c|c|}
\hline sample/matter_processing_change blob s & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Proces L5 & F & - & \begin{tabular}{l}
Observed/expected physical and chemical changes of the material(s), layer or sample during the processing step. \\
Note: physical changes (textural/structural/phase, ...), or chemical changes (chemical reaction(s), compostion, ...) \\
Note: the final result, in term of composition and texture of the sample, of all the successive processing step(s) (i.e. after the very last processing step just before experiment start) should be described in the Sample/ Layers/ Materials/ Constituents/ Species structure
\end{tabular} \\
\hline sample/matter_processings_com blob ments & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Proces & F & & Additional or synthetic information on the whole processing of the material(s), layer or sample. \\
\hline
\end{tabular}

\section*{12. Instruments - Instrument Parameters}

\subsection*{12.1 Description}

The instrument data model is intended to give all information relative to the spectroscopic instrument used, as well as on the specific technics implemented on it. It is split on three parts: the "laboratory" table which gives basic information on the laboratory in which the experiment is performed; the "instrument" table which gives information on all types of instruments and technics that can be used, and the "instrument parameters" table which gives the values of the spectral parameters of the instrument (wavelength range/resolution/sampling) but also some specific information related to particular instrument and techniques such as angles for goniometric and ellipsometric techniques, spatial extent/resolution/sampling for micro-spectroscopy, and/or polarization parameters (bot incident and measured).

Wavelength range: We did not put limits on the spectroscopic instrument except it should measure electromagnetic waves and its wavelength range should be comprised between the VUV (about 100nm \(-100000 \mathrm{~cm}^{-1}\)) and the mm ranges (about \(1 \mathrm{~mm}-10 \mathrm{~cm}^{-1}\)). So currently, X-ray and gamma spectroscopy on one side, and radio waves on the other sides are excluded.
- The instrument is defined by "instrument and technique descriptions" and by a set of "Instrument references" These descriptions are stored in a "fundamental" database to which the instrument parameters will refer.

We will feed this database with all relevant combinations of instrument and technique (named with "instrument_technique_name"). Specific generic instrument/techniques will be generated for high levels products which may combine several spectral ranges (and possibly several instruments).
- The instrument parameters are then described for each experiment, mainly with their "data acquisition parameters" and "spectral parameters" and with a link to the corresponding instrument. Depending on the instrument and technique used there are also additional or optional "spatial modes and parameters", "angular parameters", and/or "polarization parameters".

\subsection*{12.2 Instrument Table}
Root of the table: instrument

Data type: 'Instrument'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{Instrument import mode and indexes} \\
\hline \multirow[t]{2}{*}{instrument_import_mode} & \multirow[t]{2}{*}{enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Instru} & \multirow[t]{2}{*}{F} & & \begin{tabular}{l}
Mode of import of the "instruments" data (global for the template) \\
Enum: \{first import, ignore, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & Definitions: see "sample_import_mode" \\
\hline \multirow[t]{2}{*}{instrument_xml_filename [-xml]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\operatorname{varchar}(255)\) \\
[virtual KW]
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{vc}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Instru} & \multirow[t]{2}{*}{(V)} & \multirow[t]{2}{*}{} & \begin{tabular}{l}
Name of the storage copy of the xml import file of the instrument metadata \\
\(\rightarrow\) determined automatically during import (from "instrument_uid»?)
\end{tabular} \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline instrument_index [**][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{\left[!!\_\mathrm{g}\right]}
\end{gathered}
\] & Instru & F & & Automatic random but unique number (internal ID) given to new instrument/technique set. \\
\hline \multirow[t]{3}{*}{instrument_uid [**]} & \multirow[t]{3}{*}{varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} 0 / \mathrm{S} 1 \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Instru} & \multirow[t]{3}{*}{F} & & Unique identifier code (UID) given to the instrument+technique set or to a numerical model (to be created) \\
\hline & & & & & & Nomenclature: Create this code name with 'INSTRU_' in order to be unique. For an instrument+technique the UID should be of the style 'INSTRU_InstrumentName_Technique_LabAcronym' where 'InstrumentName' is the instrument name, 'Technique' is a short but unambiguous version of the technique name, and 'LabAcronym' is the acronym of the laboratory where it is situated. \\
\hline & & & & & & For Numerical model (case of spectrum simulations) the UID should be of the style 'MODEL_ModelName_ModelYear/Version' where 'ModelName' is the \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{```
instrument_manager_databases List [L0]
instrument_manager_database_uid varchar(255)
[*]
```}} & \multicolumn{2}{|l|}{[!!]} \\
\hline & & S1 & Instru \\
\hline & & [!!o_m] & DatBas \\
\hline & & & L0 \\
\hline instrument_laboratories & List [L1] & [!!] & \\
\hline
\end{tabular}
name of the numerical model, and 'ModelYear/Version' is either the year of the model or its version number.

\section*{Notes:}
- each couple of instrument + technique is described independently. Ex: for an instrument that has 4 sets of source/detector/beamsplitter to cover the whole visible-IR wavelength range, it is necessary to describe 4 instrument/techniques, one for each set (i.e. wavelength range).
- as similar instrument+technique can be present in different laboratories it is necessary to distinguish them with '_LabAcronym'
- for widely distributed commercial instruments used without modification, only its name may be sufficient (and may be created at the common SSHADE level, but difficult to manage ...).

Ex:
- INSTRU_Nicolet800_Vis_IPAG, INSTRU_Nicolet800_NIR_IPAG, INSTRU_Nicolet800_MIR_IPAG, INSTRU_Nicolet800_FIR_IPAG
- INSTRU_Vertex+Hyperion_mono_trans_NIR_IAS, ...
- MODEL_Hapke_1986, MODEL_SPECTRIMAG_v3 (numerical models)
£: databases which manage this laboratory
F
-- Link to the existing UID of the database which manages this instrument information

Condition: at least one database
Note: For instrument that did not belong to one laboratory which has a database (and not managed by a database) or for widely distributed models, it should be 'DB_SSHADE'
£: current and previous laboratory(ies) of the instrument
Note: this list should be ordered from the oldest to the current (or most recent
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & lab) \\
\hline instrument_laboratory_order [-xml] & \(\operatorname{int}(4)\) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!!_\mathrm{c}\right]}
\end{gathered}
\] & Instru L1 & F & & \begin{tabular}{l}
Order of the laboratory \\
Note: calculated from the order of the "instrument_laboratories"
\end{tabular} \\
\hline instrument_laboratory_current & boolean(flag) & \[
\begin{gathered}
\mathrm{S} 3 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Instru \\
L1
\end{tabular} & F & & Flag telling if this laboratory is the current one BoolEnum: \(\{\) yes, no\} or \{true, false \(\}\) \\
\hline instrument_laboratory_uid [*] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 1 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Instru \\
Labo \\
L1
\end{tabular} & F & & \begin{tabular}{l}
Link to the existing UID of the current or previous laboratory where the instrument or model is currently, or was, located. \\
Note xml: Can also be found with "laboratory_acronym" \\
Note: For widely distributed models, it may be IPAG (@SSHADE)
\end{tabular} \\
\hline instrument_laboratory_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Instru \\
L1
\end{tabular} & F & & Additional information on the instrument in this laboratory. Ex: years in the laboratory, ... \\
\hline \multicolumn{7}{|l|}{Instrument description} \\
\hline instrument_type & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & Instru & F & -- & \begin{tabular}{l}
Type of instrument or of model \\
FreeList: \{FTIR spectrometer, grating spectrometer, AOTF spectrometer, CRDS spectrometer, laser diode spectrometer, SWIFT spectrometer, \(\mu\) SPOC spectrometer, narrow-band filters spectrometer, grating imaging spectrometer, grating hyperspectral imaging system, ImSPOC imaging spectrometer, narrowband filters imager, spectro-gonio radiometer, Raman spectrometer, Raman micro-spectrometer, FTIR micro-spectrometer, spectrofluorometer, ellipsometer, X-ray absorption spectrometer, gamma-ray spectrometer, Mossbauer spectrometer, vector network analyzer, radiative transfer simulation, quantum mechanical simulation, \(\ldots\) \} \\
Definitions: \\
- 'FTIR spectrometer': \\
- 'grating spectrometer': \\
- 'AOTF spectrometer':
\end{tabular} \\
\hline
\end{tabular}
- 'CRDS spectrometer':
- 'laser diode spectrometer':
- 'SWIFT spectrometer':
- ' \(\mu\) SPOC spectrometer':
- 'narrow-band filters spectrometer':
- 'grating imaging spectrometer' or 'grating hyperspectral imaging system':
- 'ImSPOC imaging spectrometer':
- 'narrow-band filters imager':
- 'spectro-gonio radiometer':
- 'Raman spectrometer':
- 'spectrofluorometer':
- 'Raman micro-spectrometer':
- 'FTIR micro-spectrometer':
- 'ellipsometer':
- 'X-ray absorption spectrometer':
- 'gamma-ray spectrometer':
- 'Mossbauer spectrometer':
- 'vector network analyzer': VNA
- 'impedance spectrometer'
- 'radiative transfer simulation':
- 'quantum mechanical simulation':
-- Specific name and model of the instrument or of the numerical model
Free list: use the following style:
Spectrometers: Nicolet 800, Brucker Vertex 70v, Brucker Vertex 80v, Jobin Yvon Horiba - Labram HR800 Vis, Jobin Yvon Horiba - Labram HR800 UV, XY Dilor, ...
Radiative transfer models: Lommel-Seeliger, Minnaert 1941, Lumme and Bowell 1981, Hapke 1986, Douté \& Schmitt 1998, DISORT, Shkuratov, RTLS 2000, ...
Note: for "instrument_type" = 'radiative transfer simulation' or 'quantum mechanical simulation': name of radiative transfer model or quantum mechanical model (theories) used to simulate the spectra.
-- Instrumental technique.
OpenEnum: \{transmission, reflection-absorption, ATReflection, specular reflection, ellipsometry, bidirectional reflection, biconical reflection, confocal reflection, diffuse reflection, directional-hemispherical reflection,
hemispherical-directional reflection, scattering, thermal emission, Raman scattering, fluorescence emission, gamma emission, Mossbauer absorption, permittivity, time-domain, dual polarisation interferometry\}
Definitions: It is combined with the instrument type:
For FTIR, grating, CRDS, ... spectrometers:
- 'transmission (absorption)':
- 'reflection-absorption' (absorption, called RAIRS):
- '(surface) bidirectional reflection': incidence and emergence angles are well defined and with only in a small conic solid angle (typically both with less than \(5^{\circ}\) half angle)
- '(surface) biconical reflection': a bidirectional reflection technique but with a large conic solid angle (typically between \(5^{\circ}\) and \(45^{\circ}\) half angle)
- '(surface) diffuse reflection': also called DRIFTS. The central incidence and emergence angles and ranges are not well defined (frequently asymmetric ellipsoid mirrors)
- '(surface) directional-hemispherical reflection': incidence is defined within a small to medium conic solid angle ( \(<45^{\circ}\) half angle ), but emergence is integrated over (almost) an hemisphere
- '(surface) hemispherical-directional reflection': incidence comes from (almost) an hemisphere and emergence is defined within a small to medium conic solid angle ( \(<45^{\circ}\) half angle )
- '(surface) specular reflection':identical incidence and emergence angles within very small conic solid angle (typically both with less than \(1^{\circ}\) half angle)
- '(surface) thermal emission':
- 'ATReflection' (also called MIR),
- '(grains) scattering':
- '(grains) thermal emission':


\section*{bidirectional reflection Vis+NIR,}
- For Radiative transfer models: Hapke 1989 - surface reflectance RT model, Douté \& Schmitt 1998 - Spectrimag surface reflectance RT model, DISORT - doubling-adding surface reflectance RT model, Machin 2012 - grains thermal emission RT model, ... Truc 2013-abinitio QM emission model, ...

Note: for "instrument_type" = 'radiative transfer simulation' or 'quantum mechanical simulation': Specific name and technique of the radiative transfer model or quantum mechanical model used to simulate spectra
Note: need to maintain a (free) external correspondence table between:
\(\Rightarrow\) instrument_technique_name
and - spectral_range_min/_max
\(\Rightarrow\) spatial_resolution
\(\Rightarrow\) angle_resolution
in order to help filling manually these keywords

\section*{Instrument techniques description}

\author{
instrument_microscopy_imaging enum(text) \\ S1/S1b Instru
}

F
-- Tell if the instrumental technique use a microscope, a micro-imager, an imager or not.

Enum: \{macroscopic, microscopy, linear scan, linear micro-scan, imaging, micro-imaging

Definitions:
It is combined with the instrument technique:
- 'macroscopic': individual macroscopic measurements (scale > \(100 \mu \mathrm{~m}\) ) \(E x\) : for all instrument techniques
- 'microscopy': individual microscopic measurements (scale < \(100 \mu \mathrm{~m}\) ) Ex: for 'transmission micro-spectroscopy', 'reflection microspectroscopy', 'ATR micro-spectroscopy', ‘fluorescence microspectroscopy', 'Raman micro-spectroscopy'
- 'linear scan': 1D measurements at macroscopic scale (scale > \(100 \mu \mathrm{~m}\) ) for linear (or curved) scans
\(E x\) : scan of a surface by a plane/drone with a monodetector
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline instrument_optical_accessory & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[\mathrm{~m}]}
\end{gathered}
\] & Instru & F & & \begin{tabular}{l}
Type of additional optical accessory installed in the instrument \\
FreeList: \(\{\) Ge ATR crystal, KRS- 5 crystal, ZnSe ATR crystal, Si ATR crystal, biconical diffuse reflectance, diffuse reflectance (DRIFTS), multipass cell, integrating sphere, absolute specular reflectance, blue filter, red filter, linear polarizer, Vis confocal microscope in reflection, IR microscope in transmission, IR microscope in reflection, IR microscope in ATR, ...\}
\end{tabular} \\
\hline instrument_source & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[!\mathrm{m}]}
\end{gathered}
\] & Instru & F & -- & \begin{tabular}{l}
Light source type of the instrument \\
FreeList: \{Tungsten/Halogen lamp, Globar-IR, Hydrogen arc lamp, Deuterium arc lamp, Hg lamp, Xe arc lamp, He-Ne laser, laser diode, Ar+/Kr+ laser, Ar+ laser, frequency-doubled Ar+ laser, Nd:YAG laser, frequency-doubled Nd:YAG laser, pulsed laser, synchrotron - bending magnet, synchrotron undulator, synchrotron - wiggler, Sun, no, , ...\}
\end{tabular} \\
\hline & & & & & & Note: 'no' (or 'NULL') for simulation ("instrument_type" = 'radiative transfer simulation' or 'quantum mechanical simulation') \\
\hline instrument_source_wavelength & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \\
{[!\mathrm{m}]}
\end{gathered}
\] & Instru & F & & General spectral range, precise wavelength (laser), or wavelength range (laser diode) of the source \\
\hline & & & & & & FreeList: \{gamma, hard X, soft X, EUV, VUV-UV, Vis-NIR, UV-NIR, MIR, FIR, MIR-FIR, submm, mm, \(90 \mathrm{GHz}, 6050-6900 \mathrm{~cm}-1,244 \mathrm{~nm}, 457.9 \mathrm{~nm}, 488\) \(\mathrm{nm}, 514.5 \mathrm{~nm}, 532 \mathrm{~nm}, 632.8 \mathrm{~nm}, 647.1 \mathrm{~nm}, \ldots\}\) \\
\hline & & & & & & Note: cf. "parameters_instrument_spectral_range_type" for the typical spectral ranges. If spectral range is more limited, then specify in \\
\hline
\end{tabular}


'SPECTRIMAG radiative transfer model', ...
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline instrument_link_url [xxx_link_url] & CS-varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{O}!\mathrm{m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Instru } \\
\text { L5 }
\end{gathered}
\] & F & & \begin{tabular}{l}
Link to web sites describing the instrument, technique or the associated cells used, or the simulation model. \\
Condition: mandatory when "instrument_link_name" \(\neq \varnothing\) \\
Notes: \\
- can link to a publication by giving its url address, preferably through its DOI. \\
Ex: https://doi.org/10.1002/ejic. 200700067
\end{tabular} \\
\hline instrument_publications & List [L6] & [O] & & & & £: Publications describing the instrument and techniques, or the model. \\
\hline instrument_publication_uid [*] & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Instru \\
Publi \\
L6
\end{tabular} & F & -- & \begin{tabular}{l}
Link to the existing UID of the publication describing the instrument, technique or the associated cells used, or the simulation model. \\
Note: these papers should be in the bibliography database, with "publication_content" = 'instrument-technique'
\end{tabular} \\
\hline
\end{tabular}

\subsection*{12.3 Instrument parametersTable}

\section*{Root of the table: parameters_instrument}

Data type: in 'Experiment and spectra'
Note: These parameters will be first defined for the whole experiment in "experiment_parameters_instruments" (see "Experiment" table) and then possibly modified for each spectrum in "spectrum_parameters_instruments" (see "spectrum" table), except for "spectrum_parameters_instruments_instrument_carrier" and "_instrument_sample_holder".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{Instrument parameters index} \\
\hline parameters_instrument_index [**][-xml] & \begin{tabular}{l}
\(\operatorname{int}(10)\) \\
[Virtual index]
\end{tabular} & \[
\begin{gathered}
\text { B } \\
{\left[!!_v\right]}
\end{gathered}
\] & ParIns & F & -- & Automatic random but unique number (internal ID) given to a new instrumental parameter set. \\
\hline & & & & & & Note xml: when a 'multiple items' bloc is changed, all the items of the bloc should be (re-)defined \\
\hline
\end{tabular}

\section*{Instrument and sample holder}
parameters_instrument_instrumen varchar(255) t_uid [*]

B ParIns F
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
{[!!\mathrm{m}]} \\
{\left[\mathrm{V}: £ \mathrm{~m}_{0}\right.}
\end{gathered} \text { Instr }
\]} \\
\hline \\
\hline
\end{tabular}
\(\mathrm{m}]\)
-- Link to the existing UID of the instrument used to do the measurements (or to measure the original spectra used to produce high level spectra)
Note: In "sample parameters_instruments" it is necessary to use one of the UID defined in "experiment_parameters_instruments"

\section*{Variable: spectrum}

Condition: absolute compulsory when a parameter is changed or when there are several instruments

Notes:
* when there is only one instrument
- absolute compulsory to give "instrument_uid" when one or more parameter(s) is changed
* when there are several instruments
parameters_instrument_instrumen
t_carrier \(\quad\) blob \(\quad\)\begin{tabular}{c} 
S1b \\
{\(\left[!\mathrm{o} _\mathrm{m}\right]\)}
\end{tabular} ParIns \(\quad\) F
parameters_instrument_instrumen
t_sample_holder
blob

U ParIns F [\$_m]
- if no "instrument_uid" is given: all instruments are taken by default with the default values of all parameters
- if only one instrument is used then it is compulsory to give its "instrument_uid" even if no parameter is changed
- absolute compulsory to give all "instrument_uid" when one or more parameter(s) is changed in one instrument
-- Type and name of the carrier of the instrument
Condition: mandatory when "experiment_type" = \{low altitude field measurement, satellite remote sensing\}

Notes:
- mostly used for remote sensing experiments
- for 'low altitude field measurement': provide the type of low altitude flying device (plane, helicopter, UAV, drone, ... and eventually some flying info (altitude range, ...)

Ex: ‘Hexacopter, flying altitude between 10 and 120 m’
- for 'satellite remote sensing' provide the name of the satellite carrying the instrument, and eventually some orbit info (altitude, orbit type)

Ex: 'Mars Express spacecraft, quasi-polar elliptic orbit (perihelion:
298 km , aphelion: \(10,107 \mathrm{~km}\), period: 7.5 hours)'
- for 'field measurement' you can tell if the instrument is fixed on a tripod, or carried by a people during measurement, ...

\section*{Variable: spectrum}

Note \(x \mathrm{ml}\) : This KW did not appear in the xml in the bloc
"spectrum parameters_instrument" as the carrier of the instrument is fixed for the experiment ("experiment_parameters_instrument_carrier")
-- \(\quad\) Sample holder and/or type of confinement cell used with the instrument
Free List: \{Glass plate in room air, KBr window cooled by He cryostat in UHV chamber, CSi window cooled by He cryostat in UHV chamber, Saphire window inside cell filled with Ar, Polished aluminum cube, Cooper closed cell 8mm thick with MgF2 windows cooled by He cryostat in UHV chamber, SERAC environmental cell: Aluminum sample holder 12 cm diameter and 2
cm depth (?) inside P-T controled chamber closed by saphire window and cooled by Peltier elements, CarboN-IR environmental cell: P-T controled cooper cylinder 8 cm diameter and 6 cm depth closed by a saphire window and cooled by a He cryostat in UHV chamber, ...\}
Notes:
- It is strongly recommended to provide this information! (but not mandatory only for programming reasons)
- It is good to prepare a list of all available sample holders and cells for each instrument of each lab to help fill homogeneously this information
Variable: spectrum
Note \(x m l\) : This KW did not appear in the xml in the bloc
"spectrum_parameters_instrument" as the sample holder of the instrument is fixed for the experiment
("experiment_parameters_instrument_sample_holder")

\section*{Instrument data acquisition parameters}
parameters_instrument_spectrum \(\operatorname{int}(11)\)
\begin{tabular}{cll}
\(\underset{[\mathrm{m}]}{\mathrm{U}}\) & ParIns & V \\
{\([\mathrm{V}: \mathrm{m}]\)} & &
\end{tabular}
-- Total number of individual spectra of the sample co-added to get the spectrum Note: for "parameters_instrument_spatial_observation_mode" = 'rastered' and 'rastered image' it is the total number of scans for all the spatial spots averaged, defined in "spatial_spots_number"

Note: filling less useful for spectra levels 3 and 4

\section*{Instrument spectral parameters}
parameters instrun
\begin{tabular}{|c|c|c|c|}
\hline parameters instruent spectral & [V: £O] & & \\
\hline parameters_instrument_spectral_ enum(text) unit & \[
\begin{gathered}
\mathrm{U} \\
{[!!\mathrm{m}]}
\end{gathered}
\] & ParIns & \[
\begin{aligned}
& \text { V/Vv } \\
& \text { [Ver] }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{[V: m]}} & & Enum: \(\{\mathrm{m}-1, \mathrm{~cm}-1\), angstrom, nm , micron, \(\mathrm{mm}, \mathrm{m}, \mathrm{km}, \mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}, \mathrm{GHz}\), eV, keV\} \\
\hline & & & & & \begin{tabular}{l}
Note: it is necessary here to set the spectral unit because the \\
"parameters_instrument_spectral_sampling" and \\
"parameters_instrument_spectral_resolution" parameters are constant in one specific unit depending on the type of instrument and cannot be expressed simply in one unique standard unit (like \(\mathrm{cm}^{-1}\) )
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Note DB: all wave data (spectra, bandlist, ...) will be stored in the database in wavenumber " \(\mathrm{cm}^{-1}\) " unit whatever is the unit in which they are entered. \\
Variable: spectrum
\end{tabular} \\
\hline & & & & & Note: generally unchanged as it only depends on the instrument \\
\hline \multirow[t]{7}{*}{parameters_instrument_spectral_s enum(text) tandard} & \multirow[t]{7}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[!!\mathrm{m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{7}{*}{ParIns} & \multirow[t]{7}{*}{\begin{tabular}{l}
V/Vv \\
[Ver]
\end{tabular}} & -- & Medium in which the wavenumber/wavelength/frequency scale is given Enum: \{vacuum, air, unknown\} \\
\hline & & & & & \begin{tabular}{l}
Definitions: \\
- 'vacuum': reference wavelength is in vacuum (no correction) \\
- 'air': reference wavelength is in air (correction: \(v_{0}=v_{\text {air }} / 1.000272\) ) \\
- 'unknown': unknown reference wavelength (no correction)
\end{tabular} \\
\hline & & & & & \(\rightarrow\) conversion to vacuum reference to be done at the import of the file and after conversion to wavenumber ' \(v\) ' in \(\mathrm{cm}^{-1}\) \\
\hline & & & & & \\
\hline & & & & & Notes: \\
\hline & & & & & \begin{tabular}{l}
- 'air' corresponds to "standard air" @ 633 nm corrected to \(20^{\circ} \mathrm{C}(1013\) \\
hPa with \(0.033 \% \mathrm{CO}_{2}\) ) \\
- n (air) \(=1.000278(400 \mathrm{~nm})-1.000268(20 \mu \mathrm{~m})\) \\
- see Birch and Down Metrologia, 30, 155 /31, 315 (1993/94)
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- Case of Infrared measurements \\
- correction useful for resolution power \(R=\lambda / \Delta \lambda=v / \Delta v>350\) (i.e. correction > \(\Delta \lambda / 10\) )
\end{tabular} \\
\hline
\end{tabular}
- correction necessary for resolution power \(R>1000\) (i.e. correction \(>\Delta \lambda / 3\) ).
- Average shift is \(0.0275 \%\) (i.e. \(1 \mathrm{~cm}^{-1}\) at \(3600 \mathrm{~cm}^{-1}\) ).
- applying a constant correction with \(\mathrm{n}=1.000272\) (@633nm, standard air at \(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}\) ) gives an accuracy of correction better than \(0.1 \mathrm{~cm}^{-1}\) from < 500 to \(23000 \mathrm{~cm}^{-1}(0.43\) to \(>20 \mu \mathrm{~m})\) and better than \(0.3 \mathrm{~cm}^{-1}\) from < 500 to \(30000 \mathrm{~cm}^{-1}(0.33\) to >20 \(\mu \mathrm{m})\).
- a change of \(10^{\circ} \mathrm{C}\) induces a change of \(\sim 0.910^{-5}\).
- a change of \(P\) of 40 mb induces a change of \(\sim 1.110^{-5}\left(\right.\) i.e. \(0.1 \mathrm{~cm}^{-1}\) at \(10000 \mathrm{~cm}^{-1}\) ).
- the effects of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) abundances in air are both negligible at our resolutions.
- Case of Raman measurements
- with \(514 \mathrm{~nm}\left(19455 \mathrm{~cm}^{-1}\right)\) laser excitation the reference shift is \(\sim 5.4 \mathrm{~cm}^{-1}\)
- \(v_{\text {laser0 }}-v_{0}=\left(v_{\text {laser }}-v_{\text {air }}\right) / 1.000278\) (@400nm)
- So same correction and rule on R apply when using Raman shift
- Average shift is \(0.0278 \%\) (i.e. \(1 \mathrm{~cm}^{-1}\) at \(3600 \mathrm{~cm}^{-1}\) ).

Notes:
- all FTIR measurements are given with wavenumber vacuum standard (given by vacuum He -Ne laser wavelength).
- a number of grating spectrometer measurements are given with wavelength air standard, but correction will depend on the calibration conditions and references and any possible changes of T and P (altitude, wheather conditions) between calibration and measurement.
- Raman spectra seemsto be given with wavenumber air standard (TBC)

\section*{Variable: spectrum}

Note: generally unchanged as it only depends on the instrument
\begin{tabular}{llll}
\begin{tabular}{l} 
parameters_instrument_spectral_- \\
observation_mode
\end{tabular} & enum(text) & \begin{tabular}{c} 
S2 \\
{\([!!\mathrm{m}]\)}
\end{tabular} & ParIns \\
& & \\
& {\([\mathrm{V}: \mathrm{m}]\)}
\end{tabular}
-- Mode of spectral observation
Enum: \{spectrum, multi wavelengths, single wavelength, multi spectral averages, single spectral average \}
\begin{tabular}{lllll}
\hline parameters_instrument_spectral_ & List [L1] & {\([!!]\)} & V/Vv \\
range_types & & {\([\mathrm{V}: \mathrm{O}]\)} & {\([\mathrm{Ver}]\)} \\
parameters_instrument_spectral_r & varchar(255) & S 0 & ParIns & V/Vv \\
ange_type & & {\([!!\mathrm{m}]\)} & L1 & [Ver] \\
& & {\([\mathrm{V}: \mathrm{m}]\)} & &
\end{tabular}

\section*{Definitions:}
- 'spectrum': measurement of a continuous set of a large number of wavelengths, typically evenly sampled, and with (almost) the same resolution (in some unit) or resolution power over its range (or over a part of the range).
- 'multi wavelengths': measurement at a limited number of wavelengths ( \(\sim 3-15\) ), with generally varying spectral spacing and/or bandwidths. These data have generally angular or spatial variations, such as BRDF, or image.
- 'single wavelength': measurement at a single wavelength, generally with a wide spectral bandwidth. These data need to have angular or spatial variation, such as BRDF, or image.
- 'multi spectral averages': several values averaged over a set of spectral ranges. It can be the integration over specific spectral ranges of a spectral measurement (e.g. RGB channels, standard set of filters). These data have generally angular or spatial variations, such as BRDF, or image
- 'single spectral average': single value averaged over a spectral range.

It can be the integration over a narrow or wide spectral range of a spectral measurement (e.g. bond albedo). These data need to have angular or spatial variation, such as BRDF, or image.

\section*{Variable: spectrum}

Note: effective spectral observation mode for this spectrum

\section*{£: Typical spectral ranges}
-- Typical spectral range
Enum: \{gamma, hard X, soft X, EUV, VUV, UV, Vis, NIR, MIR, FIR, submm, mm, cm, UHF, VHF, HF, MF, LF, VLF, ULF, SLF, ELF \}
Definitions:
- 'gamma': Gamma rays
0.1-10pm
(12-0.12 MeV)
- 'hard X': hard X-rays
\(0.01-0.2 \mathrm{~nm}\)
( \(100-5 \mathrm{keV}\) )
\begin{tabular}{|c|c|c|}
\hline & ys (0.1-)0.2-10nm & ((12-)6-0.12 keV) \\
\hline & \(V^{\prime}\) : Extreme Ultraviolet \(\quad 10-120 \mathrm{n}\) & ( \(120-10 \mathrm{eV}\) ) \\
\hline & \begin{tabular}{l}
'VUV': Vacuum Ultraviolet (10-)120-200 nm \\
- also called 'FUV': Far Ultra-Violet
\end{tabular} & ( \(10-6 \mathrm{eV}\) ) \\
\hline \multicolumn{3}{|c|}{- also called 'NUV': Near Ultra-Violet} \\
\hline & Vis': Visible \(400-800(-1000) \mathrm{n}\) & 400-800(-1000) nm \\
\hline & 'NIR': Near-InfraRed \(\quad 1-2.5(-5) \mu \mathrm{m}\) & 1-2.5(-5) \(\mu \mathrm{m}\) \\
\hline & IR': Mid-InfraRed \(\quad 2.5-15(-50) \mu \mathrm{m}\) & 2.5-15(-50) \(\mu \mathrm{m}\) \\
\hline & ' 15 ': Far-InfraRed & 15-300(-500)(-1000) \(\mu \mathrm{m}\) \\
\hline & -mm': Sub-millimeter \(\quad 300-1000 \mu \mathrm{~m}\) & 300-1000 \(\mu \mathrm{m}\) \\
\hline & \begin{tabular}{l}
' mm ': millimeter wave \(\quad 1-10 \mathrm{~mm}\) \\
- also called 'EHF': Extremely High Fre
\end{tabular} & (300GHz-30GHz) uency or microwaves \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{: centimeter waves \(\quad 1-10 \mathrm{~cm} \quad(30 \mathrm{GHz}-3 \mathrm{GHz})\)}} \\
\hline & & \\
\hline & \(F\) : Ultra high frequency \(0.1-1 \mathrm{~m}\) & (3GHz-300MHz) \\
\hline \multicolumn{3}{|c|}{- also called decimeter radio waves} \\
\hline & \(H F^{\prime}\) : Very high frequency \(1-10 \mathrm{~m}\) & ( \(300-30 \mathrm{MHz}\) ) \\
\hline \multicolumn{3}{|c|}{- also called meter radio waves} \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{': High frequency \(\quad 10-100 \mathrm{~m}\)}} \\
\hline & & \\
\hline & ': Medium frequency \(100-1 \mathrm{~km}\) & (3MHz-300kHz) \\
\hline \multicolumn{3}{|c|}{- also called hectometer wave} \\
\hline & ' \(L F\) ': Low frequency 1-10k & (300-30 \\
\hline \multicolumn{3}{|c|}{- also called kilometer wave} \\
\hline & 'VLF': Very Low frequency 10-100k & ( \(30-3 \mathrm{kHz}\) ) \\
\hline \multicolumn{3}{|c|}{- also called myriameter wave} \\
\hline & 'ULF': Ultra Low frequency \(100-1000 \mathrm{~km}\) & \(3 \mathrm{kHz}-300 \mathrm{~Hz}\) ) \\
\hline & 'SLF': Super Low frequency 1000-10 000km & (300-30Hz) \\
\hline & \multicolumn{2}{|l|}{' \(E L F\) ': Extremely Low frequency \(10000-100000 \mathrm{~km}(30-3 \mathrm{~Hz})\)} \\
\hline \multicolumn{3}{|r|}{- frequently extended to all waves down to 0 Hz} \\
\hline
\end{tabular}

Note: this spectral range is indexed to an equivalence table in term of typical minimum and maximum wavenumbers/wavelength/frequency

\footnotetext{
Variable: spectrum
}

Note: effective spectral range type for this spectrum

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & Note: effective start of valid spectral range for this spectrum \\
\hline \multirow[t]{4}{*}{```
parameters_instrument_spectral_r
ange_max
```} & \multirow[t]{4}{*}{float} & \[
\begin{gathered}
\mathrm{S} 2 \\
{[!!\mathrm{m}]} \\
{[\mathrm{V}:} \\
\text { !o_m] }
\end{gathered}
\] & ParIns L2 & \begin{tabular}{l}
V/Vv \\
[Ver]
\end{tabular} & & \begin{tabular}{l}
End of each spectral range of valid data measurement (or analysis) \\
Unit: same as "bandlist_spectral_range_min" \\
Note: \\
- for a series of broad/narrow-band filters this correspond to about the highest wavenumber filter \\
- for a single broad/narrow-band filter (in case of single wavelength BRDF) this value should be the same as "parameters_instrument_spectral_range_min"
\end{tabular} \\
\hline & & & & & & Variable: spectrum \\
\hline & & & & & & Condition: Mandatory if at least one value of the bloc "parameters_instrument_spectral_ranges" is changed \\
\hline & & & & & & Note: effective end of valid spectral range for this spectrum \\
\hline \multirow[t]{6}{*}{```
parameters_instrument_spectral_r
ange_absorption_edge_element_ui
d [*]
```} & \multirow[t]{6}{*}{varchar(255)} & \multirow[t]{6}{*}{\[
\begin{gathered}
\text { S2 } \\
{[£!\mathrm{o}=\mathrm{m}]} \\
{[\mathrm{V}:} \\
\text { !o_m }]
\end{gathered}
\]} & \multirow[t]{6}{*}{\begin{tabular}{l}
ParIns \\
Atom \\
L2
\end{tabular}} & \multirow[t]{6}{*}{\begin{tabular}{l}
V/Vv \\
[Ver]
\end{tabular}} & - & Link to the existing UID of the chemical element corresponding to the measured absorption edge in X Absorption Spectroscopy. \\
\hline & & & & & & \begin{tabular}{l}
Condition: Compulsory only for X-ray absorption spectrometer \\
Condition: Mandatory when \\
"parameters_instrument_spectral_range_absorption_edge_type" \(\neq \varnothing\)
\end{tabular} \\
\hline & & & & & & Note: link to the natural atom as all isotopes have same electronic structure. \\
\hline & & & & & & Variable: spectrum \\
\hline & & & & & & \begin{tabular}{l}
Condition: Mandatory when \\
"parameters_instrument_spectral_range_absorption_edge_type" \(\neq \varnothing\)
\end{tabular} \\
\hline & & & & & & Note: effective chemical element corresponding to the measured absorption edge for this spectrum \\
\hline \multirow[t]{2}{*}{parameters_instrument_spectral_r ange_absorption_edge_type} & \multirow[t]{2}{*}{enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 2 \\
{[£!\mathrm{o}=\mathrm{m}]} \\
{[\mathrm{V}:}
\end{gathered}
\]} & ParIns & V/Vv & - & Type of absorption edge measured in X Absorption Spectroscopy. \\
\hline & & & L2 & r] & & Enum: \{K, L, L1, L2, L3, L2-3, M, M1, M2, M3, M4, M5, M4-5, N, N1, N2, N3, N4, N5, N6, N7, O, O1, O2, O3, O4, O5, O6, O7\} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & !o_m] & & & \begin{tabular}{l}
Condition: Compulsory only for X-ray absorption spectrometer \\
Condition: Mandatory when \\
"parameters_instrument_spectral_range_absorption_edge_element_uid" \(\neq \varnothing\)
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- L2-3 and M4-5 are used for spectra spanning these 2 edge ranges \\
- The use of the generic edges \(\mathrm{L}, \mathrm{M}, \mathrm{N}\), and O is not recommended, but may be used for spectra spanning other multiple edges.
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
See: \\
- https://github.com/XraySpectroscopy/XAS-DataInterchange/blob/master/specification/dictionary.md \\
- http://old.iupac.org/publications/analytical_compendium/Cha10sec348. pdf
\end{tabular} \\
\hline & & & & & Variable: spectrum \\
\hline & & & & & \begin{tabular}{l}
Condition: Mandatory when \\
"parameters_instrument_spectral_range_absorption_edge_element_uid" \(\neq \varnothing\) \\
Note: effective type of absorption edge for this spectrum
\end{tabular} \\
\hline parameters_instrument_spectral_s ampling & float & \[
\begin{array}{cc}
\mathrm{U} & \text { ParIns } \\
{[\mathrm{m}][\mathrm{V:}} \\
\mathrm{m}] & \mathrm{L} 2 \\
\end{array}
\] & \[
\begin{aligned}
& \text { V/Vv } \\
& \text { [Ver] }
\end{aligned}
\] & & \begin{tabular}{l}
Spectral sampling of each spectral range given \\
Unit: in unit defined by "parameters_instrument_spectral_unit" \\
- stored in the database and provided to user in "parameters_instrument_spectral_unit" (later in 'user unit' => calculation => file)
\end{tabular} \\
\hline & & & & & Defintion: it is the regular spacing (in the spectral unit) between recorded spectral points. \\
\hline & & & & & \begin{tabular}{l}
Note: \\
no value for broad/narrow-band filters, except if their spacing is regular in the spectral unit. Their individual position is given in "parameters_instrument_spectral_filter_center" \\
- for instruments that have a no constant spectral sampling neither in wavenumber/frquency nor in wavelength unit, it is necessary to to give an average value here and provide more detailed information in
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameters_instrument_spectral_r esolution & float & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{m}]} \\
{[\mathrm{V}:} \\
\text { !om] }
\end{gathered}
\] & \begin{tabular}{l}
ParIns \\
L2
\end{tabular} & \[
\begin{aligned}
& \text { V/Vv } \\
& \text { [Ver] }
\end{aligned}
\] & & \begin{tabular}{l}
Optical spectral resolution (FWHM of intensity collected at a particular wavelength/wavenumber) of each spectral range \\
Unit: in unit defined by "parameters_instrument_spectral_unit" stored in the database and provided to user in "parameters_instrument_spectral_unit" (later in 'user unit' => on-theflight calculation \(=>\) interface) \\
Defintion: it is the width at half maximum (in the spectral unit) of an infinitely narrow line (Dirac) as measured by the instrument. \\
Notes: \\
- it should be constant within each spectral range. \\
- for instruments that have no constant spectral resolution neither in wavenumber/frquency nor in wavelength unit, it is necessary to give an average value here and provide more detailed information in "parameters_instrument_spectral_comments" \\
- for broad/narrow-band filters their individual FWHM is given in "parameters_instrument_spectral_filter_width", so no value is needed here (put 'NULL')
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Variable: spectrum \\
Condition: Mandatory if at least one value of the bloc "parameters_instrument_spectral_ranges" is changed \\
Note: effective spectral resolution for this spectrum
\end{tabular} \\
\hline parameters_instrument_spectral_ position_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}][\mathrm{V}:} \\
\mathrm{m}]
\end{gathered}
\] & \begin{tabular}{l}
ParIns \\
L2
\end{tabular} & \begin{tabular}{l}
V/Vv \\
[Ver]
\end{tabular} & & \begin{tabular}{l}
Error (+/-) on the wavenumber/wavelength/frequency value of the position of the points in the spectral file \\
Unit: in unit defined by "parameters_instrument_spectral_unit" \\
stored in the database and provided to user in "parameters_instrument_spectral_unit" (later in 'user unit' => on-the-
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llcc}
\begin{tabular}{lll} 
parameters_instrument_spectral_f \\
ilters
\end{tabular} & List [L3] & {\([!\mathrm{o}]\)} & V/Vv \\
& & {\([\mathrm{V}: \mathrm{O}]\)} & {\([\mathrm{Ver}]\)}
\end{tabular}
parameters_instrument_spectral_f varchar(255) ilter_type
flight calculation => interface)

Notes:
- it should be constant within each spectral range.
- If not constant in the spectral unit then give average value here and more info in "parameters_instrument_spectral_comments".
Variable: spectrum
Note: effective spectral position error for this spectrum
\(£:\) filters or diaphragm used to bandpass or attenuate the flux.
Notes:
For multispectral measurements:
- it is highly recommended to enter the filters in increasing order of central wavelength.
- the filters should not change between spectra (parameters type="spectrum")
-- Type of filter (and its transmission information) or diaphragm (size), if any
Condition \#1: Mandatory when "instrument_technique" = \{Raman scattering, fluorescence emission\}

OR
Condition \#2: Mandatory for multispectal measurements, i.e. when "parameters_instrument_spectral_observation_mode" = \{ multi wavelengths, single wavelength, multi spectral averages, single spectral average \}
\(E x\) :'neutral density \(10 \%\) ', 'bandpass 650 nm, FWHM \(200 \mathrm{~nm}, 60 \%\) ', 'diaphragm 3 mm', 'no', ...
Variable: spectrum
Condition: Mandatory if at least one value of the bloc
"parameters_instrument_spectral_filters" is changed
Note: effective type of spectral filter used for this spectrum
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameters_instrument_spectral_f ilter_place & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}][\mathrm{V}:} \\
\mathrm{m}]
\end{gathered}
\] & \begin{tabular}{l}
ParIns \\
L3
\end{tabular} & V/Vv & & \begin{tabular}{l}
Placement of the filter used to bandpass or attenuate the flux reaching the detector. \\
Ex.' in front of the detector', 'in front of the source', 'at the focus of the illumination beam', ...
\end{tabular} \\
\hline \multirow[t]{5}{*}{```
parameters_instrument_spectral_f
ilter_center
```} & \multirow[t]{5}{*}{float} & \multirow[t]{5}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\text { !o_m] }
\end{gathered}
\]} & \begin{tabular}{l}
ParIns \\
L3
\end{tabular} & V/Vv & var. & \begin{tabular}{l}
Central (or edge) wavelength/wavenumber/frequency of the filter \\
Unit: in unit defined by "parameters_instrument_spectral_unit" \\
- converted and stored in 'cm-1' unit in the database but provided to user in the unit specified by the data provider in "parameters_instrument_spectral_unit"
\end{tabular} \\
\hline & & & & & & Condition: Mandatory only when "parameters_instrument_spectral_filter_type" \(\neq \varnothing\) (if a filter/diaphragm is used) \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- used in particular to specify the position of a series of narrow bandpass filters \\
- can also be used to specify the edge of a low/high pass filter Variable: spectrum
\end{tabular} \\
\hline & & & & & & Condition: Mandatory if at least one value of the bloc "parameters_instrument_spectral_filters" is changed \\
\hline & & & & & & Note: effective central/edge wavelength of spectral filter used for this spectrum \\
\hline \multirow[t]{5}{*}{parameters_instrument_spectral_f ilter_width} & \multirow[t]{5}{*}{float} & \multirow[t]{5}{*}{\[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\text { !o_m] }
\end{gathered}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
ParIns \\
L3
\end{tabular}} & \multirow[t]{5}{*}{V/Vv} & var. & Full width at half maximum of the filter \\
\hline & & & & & & Unit: in unit defined by "parameters_instrument_spectral_unit" - stored in the database and provided to user in "parameters_instrument_spectral_unit" \\
\hline & & & & & & Note: \(\quad\) \\
\hline & & & & & & - Conversion from wavenumber \(v\left(\mathrm{~cm}^{-1}\right)\) to wavelength \(\lambda(\mu \mathrm{m})\) :
\[
\begin{aligned}
& =>\operatorname{width}(\lambda)=10000 /(\operatorname{center}(v)+\operatorname{width}(v) / 2)-10000 /(\operatorname{center}(v)- \\
& \operatorname{width}(v) / 2)
\end{aligned}
\] \\
\hline & & & & & & - Conversion from wavelength \(\lambda(\mu \mathrm{m})\) to wavenumber \(v\left(\mathrm{~cm}^{-1}\right)\) : \\
\hline
\end{tabular}
```

=> width}(v)=10000/(\operatorname{center}(\lambda)+width(\lambda)/2)-10000/(center(\lambda)
width(\lambda)/2)

```

Condition: Mandatory only when
"parameters_instrument_spectral_filter_type" \(\neq \varnothing\) (if a filter/diaphragm is used)
Notes:
- used in particular to specify the width of a series of narrow bandpass filters
- generally not used for low/high pass filters

Variable: spectrum
Condition: Mandatory if at least one value of the bloc "parameters_instrument_spectral_filters" is changed
Note: effective width of spectral filter used for this spectrum
parameters_instrument_spectral_c blob omments
\begin{tabular}{cc}
U \\
{\([\mathrm{m}][\mathrm{V}:\)} & ParIns \\
\(\mathrm{m}]\) & \(\mathrm{V} / \mathrm{Vv}\) \\
{\([\mathrm{Ver}]\)} \\
& Aj
\end{tabular}
-- Additional information on spectral parameters: special range type, narrowband filter peak transmission and transmission shape, info on variable spectral resolution, uncertainties, ...

\section*{Instrument angular parameters (goniometer, ellipsometer)}

Definition: The angles follow the «positive \& same origin and direction » notation as defined for physics, i.e all angles are positive with the following ranges: i (0 \(90^{\circ}\)), e \(\left(0-90^{\circ}\right)\), az (\(0-360^{\circ}\)) with origin \(\left(0^{\circ}\right)\) at nadir for incidence ' \(i\) ' and emergence ' \(e\) ' and \(0^{\circ}\) for azimuth 'az' (increasing clockwise) when the direction of i and e are both in the same quadrant of the principal plane. The specular geometry is thus for \(i=e, a z=180^{\circ}\) and the opposition geometry is for \(i=e, a z=0^{\circ}\).
Definition (short): incidence and emergence angles are positive with origin at nadir and azimuth origin (increasing clockwise) is for \(\mathrm{i}=\mathrm{e}\) (opposition geometry). Note: the «positive \& opposite » notation defined for remote sensing, i.e all angles are positive with the following ranges, is the following: i \(\left(0-90^{\circ}\right)\), e \(\left(0-90^{\circ}\right)\), az \(\left(0-360^{\circ}\right)\) with \(0^{\circ}\) at nadir for \(i\) and \(e\) and \(0^{\circ}\) for azimuth (increasing clockwise) when the direction of \(i\) and e are opposite in the principal plane. The specular geometry is thus for \(\mathrm{i}=\mathrm{e}, \mathrm{az}=0^{\circ}\) and the opposition geometryis for \(\mathrm{i}=\mathrm{e}, \mathrm{az}=180^{\circ}\).
Note: The "parameters_instrument_angle_incidence/_emergence/_azimuth" need only to be given for spectra with a single geometry
("parameters_instrument_angle_observation_mode" = 'fixed angles'). For multi-angles data the set of 'i,e,az' values are either given manually with each spectral

- 'specular': bidirectional observation at the opposite angle to illumination incidence angle relative to the normal of the surface Ex: ellipsometry
- 'confocal': observation in confocal reflection geometry, such as in many microscopes
- 'bidirectional': illumination at a well defined incidence angle and observation at well defined emergence and azimuth angles. Both the angular ranges (angular width of cones) of illumination and observation are small (\(<10^{\circ}\) ?)
- 'directional-conical': illumination at a well defined incidence angle (angular range \(<10^{\circ}\) ?) and observation integrated over a large regular angular range (cone) (> \(10^{\circ}\) ?)
- 'conical-directional': illumination over a large regular angular range (cone) (> \(10^{\circ}\) ?) and observation at a well defined emergence and azimuth angles (angular range \(<10^{\circ}\) ?)
- 'biconical': illumination and observation at well defined central angle of incidence and observation but with large regular angular ranges (cones) (> \(10^{\circ}\) ?)
- 'directional-hemispherical': illumination at a well defined incidence angle and observation integrated over (almost) the whole hemisphere. The angular range of illumination is small (\(<10^{\circ}\) ?
- 'conical-hemispherical': illumination over a large regular angular range (cone) (\(>10^{\circ}\) ?) and observation integrated over (almost) the whole hemisphere. The angular range of illumination is small (\(<10^{\circ}\) ?)
- 'hemispherical-directional': diffuse illumination over (almost) the hemisphere and observation at well defined emergence and azimuth angles. The angular range of observation is small (\(<10^{\circ}\) ?)
- 'hemispherical-conical': diffuse illumination over (almost) the hemisphere and observation integrated over a large regular angular range (cone) (> \(10^{\circ}\) ?)
- 'bihemispherical': diffuse illumination over the hemisphere and observation integrated over (almost) the whole hemisphere.
- 'directional': measurement at well defined emergence and azimuth angles, but with no illumination (thermal)
- 'conical': measurement at well defined central angle of observation but
with large regular angular ranges (angular width of cone) (> \(10^{\circ}\) ?), and with no illumination (thermal).
- 'hemispherical': observation integrated over (almost) the whole hemisphere but with no illumination (thermal).
- 'other geometry': measurement with a illumination-observation geometry not described above. Describe the geometry in "parameters_instrument_angle_comments"
\(E x\) : ATR transmission geometry
Ex: reflectance measurements in special attachments in FTIR spectrometers: the 'bi-conical' geometry of the illumination and
observation (central angles, and solid angles shape) is not simple.
- 'various': measurements over various geometries within the
experiment. Provide the different geometries in
"parameters_instrument_angle_comments".
Note: 'various' used only for "experiment", not for "spectrum"
- 'unknown': measurement over an unknown or incompletely known geometry. Provide what you know on the geometry in "parameters_instrument_angle_comments".
- ' \(N / A\) ': measurement for which angles have no signification, e.g., optical constants, ...

Variable: spectrum
Enum: idem sauf pas de 'various'
Notes:
- effective angular geometry of observation for this spectrum
-- Mode of angular variation of the illumination and observation geometries
Enum: \{fixed angles, one variable angle, two variable angles, three variable angles, fixed phase angle, mono-angular function, bi-angular function, triangular function, fixed phase angle function, other geometry set, unknown, N/A \(\}\)
Condition: absolute mandatory only when
"parameters_instrument_instrument_uid" / "instrument_technique" =
\{specular reflection, ellipsometry, bidirectional reflection, biconical reflection,
confocal reflection, diffuse reflection, directional-hemispherical reflection, hemispherical-directional reflection, scattering, thermal emission \}

Default = 'fixed angles' when "instrument_technique" = \{transmission, reflection-absorption, ATReflection, Raman scattering, fluorescence emission, gamma emission, Mossbauer absorption, permittivity, time-domain, dual polarisation interferometry\}

Definitions:
- 'fixed angles': measurement at a single combination of illumination and observation angles (or single observation angle)
- 'one variable angle': measurement with one of either the illumination (incidence) or the observation angles (emergence, azimuth) varying in a few discrete values in the dataset.

Ex: Bidirectional spectra at \(\mathrm{i}=0^{\circ}\) and \(\mathrm{e}=15,30,45,60^{\circ}\)
- 'two variable angles': measurement with two of either the illumination (incidence) or the observation angles (emergence, azimuth) varying in a few discrete values in the dataset.
\(E x\) : bidirectional spectra at all combinations of \(\mathrm{i}=0,15,30,45,60^{\circ}\) and \(\mathrm{e}=15,30,45,60^{\circ}\)
- 'three variable angles': measurement with all three illumination (incidence) and observation angles (emergence, azimuth) varying in a few discrete values in the dataset.
- 'fixed phase angle': measurement at a fixed phase angle but for a few couples of illumination and observation (and possibly azimuth) angles.

Ex: bidirectional spectra at fixed phase angle for a set of 5 (i,e) couples: \(\left(0,15^{\circ}\right),\left(15,30^{\circ}\right),\left(30,45^{\circ}\right),\left(45,60^{\circ}\right),\left(60,75^{\circ}\right)\)
- 'mono-angular function': measurement with one of either the illumination (incidence) or the observation angles (emergence, azimuth) varying continuously over a large number of angles, typically evenly sampled over a wide range. The other angles may have a few values.

Ex: BRDF in the principal plane for a large set of observation angles but at a single illumination angle.
- 'bi-angular function': measurement with two of either the illumination (incidence) or the observation angles (emergence, azimuth) varying
continuously over a large number of angles, typically evenly sampled over wide ranges. The other angle may have a few values.

Ex: BRDF in the principal plane for a large set of illumination and observation angles (azimuth \(=0,180^{\circ}\))
\(E x\) : BRDF in the whole observation hemisphere for a single illumination angle.
- 'tri-angular function': set of measurements with all three illumination (incidence) and observation angles (emergence, azimuth) varying continuously over a large number of angles, typically evenly sampled.

Ex: whole BRDF in the whole observation hemisphere for a large set of illumination angles.
- 'fixed phase angle function': measurement at a fixed phase angle but for different couples of illumination and observation (and possibly azimuth) angles varying continuously over a large number of angles, typically evenly sampled.
\(E x\) : bidirectional spectra in the principal plane at fixed phase angle \(\mathrm{g}=5^{\circ}\) for \(\mathrm{i}=\left[0-75^{\circ}\right]\), every \(1^{\circ}\)
- 'other geometry set': measurement with a combination of angles and sampling not described above. Describe the set of geometries in "parameters_instrument_angle_comments".

\section*{Ex:}
- 'unknown': measurement over an unknown or incompletely known geometry set. Provide what you know on the geometry set in "parameters_instrument_angle_comments".
- ' \(N / A\) ': measurement for which angles have no signification, e.g., optical constants, ...
Notes:
- 'variable angles' are typically for 2 to 4 different values for each angles, or for unevenly spaced measurements
\[
\text { Ex: 'two variable angles' }(\mathrm{i}, \mathrm{e})=(0,10),(0,30),(0,60),(30,0) \text {, }
\]
\[
(30,40),(30,60),(60,0),(60,30),(60,70), a z=0^{\circ}
\]
- 'angular functions' are typically for \(\geq 5\) different values (~evenly spaced) for each angle.

Ex:
- 'mono-angular function': \(\mathrm{i}=0,30^{\circ}, \mathrm{e}=0,15,30,45,60,75^{\circ}\),
parameters_instrument_angle_inc idences [-xml]
parameters_instrument_angle_inc idence
\begin{tabular}{ccc}
List [L4] & {\([!\mathrm{o}\) c \(]\)} & \\
& {\([\mathrm{V}: \mathrm{c}]\)} & \\
\multirow{3}{*}{ float } & \(\mathrm{S3}\) & ParIns \\
& {\([!\mathrm{o}=\mathrm{m}]\)} & \\
& {\([\mathrm{V}: \mathrm{m}]\)} & L4
\end{tabular}
\(\mathrm{az}=0,180^{\circ}\)
- 'bi-angular function': \(\mathrm{i}=0,15,30,45,60,75^{\circ} ; \mathrm{e}=0,15,30\), \(45,60,75^{\circ} ; \mathrm{az}=0,90,180^{\circ}\)
- 'tri-angular function': \(\mathrm{i}=0,15,30,45,60,75^{\circ} ; \mathrm{e}=0,15,30\), \(45,60,75^{\circ}\); \(\mathrm{az}=0,30,60,90,120,150,180^{\circ}\)

\section*{Variable: spectrum}

Note:
- effective angular mode of observation for this spectrum
- for "spectrum_files_parameter_type" ='simple spectrum' it will be always 'fixed angles'
\(£\) : instrument incidence angles (multiple for BRDF only)
\(\mathbf{V +}\) deg Incidence angle ' \(i\) ' of illumination relative to the normal to the sample surface
- stored in the database and provided to user in 'deg' unit

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles'
AND
when "parameters_instrument_angle_observation_geometry" = \{specular,
bidirectional, directional-conical, conical-directional, biconical, directionalhemispherical, conical-hemispherical\}

\section*{Constraints:}
\(\rightarrow\) filled automatically for the other observation modes using the values of each spectrum of the experiment either from
"spectrum_file_multiangle_angle_incidence" or from the values in the file "spectrum file filename"
("parameters_instrument_angle_observation_mode" \(=\) \{one variable angle, two variable angles, three variable angles, fixed phase angle, mono-angular function, bi-angular function, tri-angular function, fixed phase angle function, other geometry set \(\}\))

\section*{Definition:}
parameters_instrument_angle_em
ergences \([-\mathrm{xml}]\)
parameters_instrument_angle_em
ergence
\begin{tabular}{cc}
List [L5] & {\([\) !o_c \(]\)} \\
& {\([\mathrm{V}: \mathrm{c}]\)} \\
float & S 3 \\
& {\(\left[!\mathrm{o} \_\mathrm{m}\right]\)} \\
& [V: P \(]\)
\end{tabular}
- the incidence angle is measured from the normal to the sample surface and is always positive from \(0^{\circ}\) to \(90^{\circ}\)

Note xml:
- for multi-angles experiments (BRDF, M/SBRDF, ...) the full list of values of incidence angles has not to be filled manually: it will be calculated either from "spectrum_file_multiangle_angle_incidence" or from the file "spectrum_file_filename"

\section*{Variable: spectrum}

\section*{Constraints:}
\(\rightarrow\) filled automatically for the other observation modes using the values of "spectrum_file_multiangle_angle_incidence" or from the values in the file "spectrum_file_filename"
Notes:
- effective incidence angle for this spectrum
- or the whole series of incidence angles for (spectro-) photometric data
£: instrument emergence angles (multiple for (S)BRDF and (S)DEDF only)
deg Emergence angle ' \(e\) ' of observation relative to the normal to the sample surface
- stored in the database and provided to user in 'deg' unit

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles' AND
when "parameters_instrument_angle_observation_geometry" = \{specular, bidirectional, directional-conical, conical-directional, biconical, hemisphericaldirectional, hemispherical-conical, directional, conical \}
Constraints:
Same as for "parameters_instrument_angle_incidence" but with
"spectrum_file_multiangle_angle_emergence"

\section*{Definitions:}
- the emergence angle is measured from the normal to the sample surface and is always positive from \(0^{\circ}\) to \(180^{\circ}\)
- For particle scattering the emergence is defined relative to the plane perpendicular to illumination

Notes:
- for reflection measurements the angle should have values between \(0^{\circ}\) and \(90^{\circ}\)
- for 'specular reflection' and 'ellipsometry' it should be equal or close to the incidence angle
- for transmission measurements the angle should have values between \(90^{\circ}\) and \(180^{\circ}\) (i.e. ' \(180^{\circ}\) - incidence': e.g. emergence \(=180^{\circ}\) for incidence \(=0^{\circ}\))
- for scattering measurements the angle can have values from 0 to \(360^{\circ}\) \(\left(0-90^{\circ}+270-360^{\circ}\right.\) : backward, \(90-270^{\circ}\) : forward) but if the scatterer is symmetrical relative to the incidence direction then azimuth is unimportant and values simply varies from 0 to \(180^{\circ}\)

Note xml:
- for multi-angles experiments (BRDF, M/SBRDF, DEDF, M/SDEDF, scattering ...) the full list of values of emergence angles has not to be filled manually: it will be calculated either from
"spectrum_file_multiangle_angle_emergence " or from the file "spectrum_file_filename"

\section*{Variable: spectrum}

\section*{Constraints:}

Same as for "parameters_instrument_angle_incidence" but with
"spectrum_file_multiangle_angle_emergence"
Notes:
- effective emergence angle for this spectrum,
- or the whole series of emergence angles for (spectro-)photometric data
\begin{tabular}{lll}
parameters_instrument_angle_azi & List [L6] & {\([!\mathrm{o}\) c \(]\)} \\
{\([\mathrm{V}: \mathrm{c}]\)}
\end{tabular}
£: instrument azimuth angles (multiple for (S)BRDF and (S)DEDF only)
```

muths [-xml]
parameters_instrument_angle_azi float
muth

$\underset{\substack{\text { S3_mc] } \\[\mathrm{V}: \mathrm{mc}]}}{ }$ ParIns
L6

```
deg Azimuth angle 'az' of observation relative to the plane perpendicular to the surface and containing the illumination beam
- stored in the database and provided to user in 'deg' unit

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles' AND
when "parameters_instrument_angle_observation_geometry" = \{bidirectional, directional-conical, conical-directional, biconical\} AND
when "parameters_instrument_angle_phase" = \{0, NULL \(\}\)

\section*{Constraints:}

Same as for "parameters_instrument_angle_incidence" but with "spectrum_file_multiangle_angle_azimuth"
\(\rightarrow\) calculated when "parameters_instrument_angle_azimuth" = \(\varnothing\) and when "parameters_instrument_angle_phase" \(\neq\{\varnothing\), NULL \(\}\) using the incidence, emergence and phase angles.
\(\Rightarrow\) "angle_azimuth" \(=\operatorname{arcos}\left[\left(\cos \left(\right.\right.\right.\) angle \(\_\)phase \()-\cos (\) angle_incidence \() ~ *\) \(\cos (\) angle_emergence) \() /(\) sin(angle_incidence) * \(\sin (\) angle_emergence))]

\section*{Definitions:}
- For a surface the azimuth angle is measured in the plane of the surface and its origin is in the principal plane (plane perpendicular to the surface and containing the illumination beam), but on the opposite side of the illumination. It is always positive from \(0^{\circ}\) to \(360^{\circ}\) and is counted in the counter-clock (trigonometric) direction.
- A value of \(0^{\circ}\) corresponds to an observation in the principal plane and in the forward direction, while a value of \(180^{\circ}\) is in the backward direction (i.e. same side as incidence angle).
- For particle scattering or for emission the azimuth is defined in the plane perpendicular to the illumination and from an arbitrary origin
azimuth.
Notes:
- should be set to '0' for normal illumination (incidence angle \(=0\), where azimuth is indefinite)
- for 'specular reflectance' and 'complex reflectance ratio' this angle is generally \(=0\), but some specular reflection studies can explore small azimuth angles.
- In the case of aerosols scattering azimuth is generally set to 0 , except if the medium is anisotropic or scatter anisotropically. A reference azimuth must then be defined.
- for emission and scattering measurements a reference azimuth should be defined
- not defined for 'directional-hemispherical reflection' and 'hemispherical-directional reflection'
Note xml:
- for multi-angles experiments (BRDF, M/SBRDF, ...) the full list of values of azimuth angles has not to be filled manually: it will be calculated either from "spectrum_file_multiangle_angle_azimuth" or from the file "spectrum_file_filename"

\section*{Variable: spectrum}

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles' AND
when "parameters_instrument_angle_observation_geometry" =
\{bidirectional, directional-conical, conical-directional, biconical\}
AND
when "parameters_instrument_angle_phase" \(=\{\emptyset\}\)
Constraints:
Same as for "parameters_instrument_angle_incidence" but with
"spectrum_file_multiangle_angle_azimuth"
Notes:
- effective azimuth angle for this spectrum
- or series of azimuth angles for (spectro-)photometric data
\begin{tabular}{|c|c|c|c|}
\hline parameters_instrument_angle_ph ases [-xml] & List [L6b] & \[
\begin{aligned}
& {\left[!\mathrm{o} \_\mathrm{c}\right]} \\
& {[\mathrm{V}: \mathrm{c}]}
\end{aligned}
\] & \\
\hline parameters_instrument_angle_ph ase & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\mathrm{o} \_\mathrm{cm}\right.} \\
{[\mathrm{V}:} \\
\left.!\mathrm{o} \_\mathrm{cm}\right]
\end{gathered}
\] & ParIns
L6b \\
\hline
\end{tabular}
\(£:\) instrument phase angles (multiple for (S)BRDF only)

V+ deg Phase angle 'ph' between the incident illumination and the observation directions
- stored in the database and provided to user in 'deg' unit

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles' AND
when "parameters_instrument_angle_observation_geometry" =
\{bidirectional, directional-conical, conical-directional, biconical\}
AND
when "parameters_instrument_angle_azimuth" = \{ \(\emptyset\), NULL \(\}\)
Constraints:
Same as for "parameters_instrument_angle_incidence" but with
"spectrum_file_multiangle_angle_phase"
\(\rightarrow\) set to ' 0 ' when both "parameters_instrument_angle_azimuth" and " phase" = \(\varnothing\)
\(\rightarrow\) calculated when "parameters_instrument_angle_phase" = \(\emptyset\) and when "parameters_instrument_angle_azimuth" \(=\{\) \{, NULL \(\}\) using the incidence, emergence and phase angles.
\(\Rightarrow\) "angle phase" \(=\operatorname{arcos}[\cos (\) angle incidence \() * \cos (\) angle emergence \()+\) \(\sin (\) angle_incidence \() * \sin (\) angle_emergence \() * \cos (\) angle_azimuth \()]\)

\section*{Definition:}
- the phase angle is the absolute value of the angle between the incident illumination and the observation directions in the plane containing both the illumination and observation directions. It is always positive from \(0^{\circ}\) to \(180^{\circ}\)

Notes:
- for 'specular reflection' it should be generally equal to 2 times the

\section*{incidence angle}

Note xml:
- The phase angle can also be set manually in the xml
- for multi-angles experiments (BRDF, M/SBRDF, ...) the full list of values of phases angles has not to be filled manually: it will be taken or calculated either from
"spectrum_file_multiangle_angle_incidence/_emergence/_azimuth/_ph ase" or from the file "spectrum_file_filename"

\section*{Variable: spectrum}

Condition: Mandatory only when
"parameters_instrument_angle_observation_mode" = 'fixed angles' AND
when "parameters_instrument_angle_observation_geometry" =
\{bidirectional, directional-conical, conical-directional, biconical\}
AND
when "parameters_instrument_angle_azimuth" \(=\{\varnothing\}\)
Constraints:
Same as for "parameters_instrument_angle_incidence" but with
"spectrum_file_multiangle_angle_phase"
Note:
- effective phase angle for this spectrum
- or series of phase angles for (spectro-)photometric data
\begin{tabular}{lll}
\begin{tabular}{l}
parameters_instrument_angle_res \\
olution_illumination
\end{tabular} & float & \begin{tabular}{c}
U \\
\end{tabular} \\
& {\([!\mathrm{o}\) m \(]\)} \\
{\([\mathrm{V}: \mathrm{m}]\)}
\end{tabular}
deg Angular optical resolution of the illumination (incident) beam (defined as the FWHM of the intensity of the beam)
- stored in the database and provided to user in 'deg' unit

Condition: Mandatory only when
"parameters_instrument_angle_observation_geometry" = \{ specular, bidirectional, directional-conical, conical-directional, biconical, directionalhemispherical, conical-hemispherical\}
Notes:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameters_instrument_angle_res olution_observation & float & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{o}=\mathrm{m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & ParIns & V & & \begin{tabular}{l}
Angular optical resolution of the detection system (defined as the FWHM of the intensity collected) \\
- stored in the database and provided to user in 'deg' unit \\
Condition: Mandatory only when \\
"parameters_instrument_angle_observation_geometry" = \{ specular, bidirectional, directional-conical, conical-directional, biconical, hemisphericaldirectional, hemispherical-conical, directional, conical\} \\
Notes: \\
- = ' \(180^{\circ}\) ' for 'directional-hemispherical reflection' \\
- for 'biconical reflection' it is the angular width of the observation cone. \\
- also useful for fixed angle spectrometers (collection angle, ...) \\
Variable: spectrum \\
Note: effective angular optical resolution of the detection system for this spectrum.
\end{tabular} \\
\hline Anisotropic sample orientation & & [O] & & & & Used to define the relative orientation of an anisotropic sample (monocrystals, anisoptropic roughness, ...) relative to the illumination or observation beams \\
\hline parameters_instrument_angle_ani sotropic_reference_axis & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & ParIns & V & -- & \begin{tabular}{l}
Illumination or observation reference axis used to define the anisotropic sample orientation \\
Enum: \{illumination, observation, other, unknown\} \\
Condition: mandatory when
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llcl}
parameters_instrument_angle_ani & varchar(255) & U & ParIns \\
sotropic_sample_axis & & V \\
& {\(\left[\mathrm{o} \_\mathrm{m}\right]\)} \\
& &
\end{tabular}
"parameters_instrument_angle_anisotropic_sample_angle" \(\neq \varnothing\)
Notes:
- for a reference axis other than the illumination or observation axis, provide the information in "parameters_instrument_angle_comments"

Variable: spectrum
Note:
- effective illumination or observation reference axis used to define the anisotropic sample orientation for this spectrum.
- better to keep the definition of this reference axis constant over the experiment.
-- Definition of an axis of the anisotropic sample used to measure its angle relative to the reference axis

Condition: mandatory when
"parameters_instrument_angle_anisotropic_sample_angle" \(\neq \varnothing\)
Definition: define a physical or an arbitrary axis of the sample taking into account its anisotropy (principal axis, crystal axis, ...)
Ex:
- for a sample with an anisotrope surface
o simple textual description of a main axis of the sample:
\(E x\) : 'axis perpendicular to the ripples'
o definition of the axis relative to geographic orientation (for field measurement)

Ex: 'geographic N, WGS84'
- for a monocrystals:
o simple textual description of a main axis:
\(E x\) : 'c axis of hexagonal H 2 O ice'
o Direction indices of the crystallographic axe (perpendicular to the plane defined with same Miller indices).
\(E x\) : '[010] direction'
Note: to write a negative coordinate use LaTeX:
'[1loverline11]' for [1̄11]
o Miller's hkl indices, or description, of the crystalline plane of the monocrystal used to measure its angle relative to the reference axis
Definition: a family of lattice planes is determined by three integers \(\mathrm{h}, \mathrm{k}\), and \(\ell\), the Miller indices. They are written '(\(\mathrm{hk} \ell\))', and denote the family of planes orthogonal to \(h b_{1}+k b_{2}+\ell b_{3}\). where \(b_{i}\) are the basis of the reciprocal lattice vectors

Ex: 'normal to (010) plane'
Ref: https://en.wikipedia.org/wiki/Miller_index
Notes:
- 'random orientation' can be used for isotropically oriented powders, and 'unknown' if this angle may be of importance but is unknown

Variable: spectrum
Note:
- effective axis of the anisotropic sample, of the crystalline plane of the monocrystals..., used to measure its angle relative to the reference axis for this spectrum.
- better to keep the definition of this axis constant over the experiment.

\begin{tabular}{lcccl}
\begin{tabular}{l}
parameters_instrument_polarizati blob \\
on_comments
\end{tabular} & \begin{tabular}{c}
U \\
{\([\mathrm{m}]\)}
\end{tabular} & ParIns & V & -- \\
{\([\mathrm{V}: \mathrm{m}]\)}
\end{tabular}

\section*{Instrument spatial modes and parameters (microscope, ...)}

Note: several of these parameters are only for IR or Raman microscopies
\(\left.\begin{array}{llcc}\text { parameters_instrument_spatial } & & {[!\mathrm{o}]} & \text { V/Vv } \\
{[\mathrm{V}: £ \mathrm{O}]}\end{array}\right]\)\begin{tabular}{l}
{\([\mathrm{Ver}]\)} \\
\\
\end{tabular}
£: Instrument spatial parameters
Condition: all keywords, except
"parameters_instrument_spatial_observation_mode" are Mandatory only when "parameters_instrument_uid/instrument_microscopy_imaging" = \{linear scan, linear micro-scan, micro-imaging, imaging\} (for linear scan and imager)

\section*{Variable: spectrum}

Condition: compulsory to give the effective value for the spectrum if it changed compared to the global value given in experiment
-- Mode of macro/microscopic observation
Enum: \{single spot, averaged, line, image, roi averaged, rastered, rastered image \(\}\)
Definitions:
- 'single spot': single punctual measurement
- spatial_sampling_x/_y" or "spatial_extent_x/_y" gives the size of the measurement spot
- 'averaged': single average of several individual and non connex spatial measurements.
- "spatial_extent_x/_y" gives the approximate total extent of the area covered by all the measurements.
- "spatial_sampling_x/_y" gives the physical size of the individual measurements.
- the number of measurements averaged is given in "spatial_spots_number"
- 'line': spectral linear scan of total physical size "spatial_extent_x/_y"
- "spatial_measures_x" give the line size in number of pixels ("spatial_measures_y"='1')
- "spatial__sampling_x/_y" give the individual pixel size.
- 'image': spectral image of total physical size "spatial_extent_x/_y"
- "spatial_measures_x/_y" give the image size in number of pixels
- "spatial_sampling_x/_y" give the individual pixel size.
- 'roi averaged': single average over a ROI (Region Of Interest = one or several groups of connex pixels) in an image (but not rectangular area).
- "spatial_extent_x/_y" gives the approximate total extent of the area of the \(\overline{\mathrm{R} O I}\).
- "spatial_sampling_x/_y" gives the physical size of the individual pixels
- the number of pixels averaged in the ROI can is in "spatial_spots_number"
- 'rastered': single average over a rectangular area of connex pixels in an image
- "spatial_extent_x/_y" gives the total extent of the rectangular area
- "spatial_sampling_x/_y" gives the physical size of the individual pixels
- the number of pixels averaged in the rectangle is given in "spatial_spots_number"
- 'rastered image': part or all the pixels of an image are averaged over a grid of rectangular boxes (super-pixels)
- "spatial_extent_x/_y" gives the total extent of the rastered area of the image
- "spatial_measures_x/_y" give the boxes number
- "spatial_sampling_x/_y" gives the physical size of the individual pixels
- the number of pixels averaged in each box is given in "spatial_spots_number"

\section*{Variable: for Spectrum}
```

parameters_instrument_spatial_u enum(text)

``` nit
\begin{tabular}{cc}
U & ParIns \\
[!o_m] & V/Vv \\
{\([\mathrm{V}:\)} & [Ver] \\
!o_m] &
\end{tabular}
parameters_instrument_spatial_o varchar(255) bjective
\begin{tabular}{ll}
U & ParIns \\
{\(\left[!\mathrm{o} \_\mathrm{m}\right]\)} \\
{\([\mathrm{V}:\)} \\
!o_m \(]\) &
\end{tabular}
parameters_instrument_spatial_sp int(11) ots_number

Condition: same as above
-- Unit in which all the spatial parameters are entered
Enum: \(\{\mathrm{nm}\), micron, mm, cm \(\}\)
Condition: mandatory when "parameters_instrument_spatial_sampling_x/_y" or "parameters_instrument spatial extent \(\mathrm{x} / \mathrm{y}\) " \(\neq\{\varnothing\), NULL \(\}\)
OR
Condition: compulsory when
"parameters_instrument_spatial_resolution_width" has a value
Variable: for Spectrum
Note: better to keep the same for the whole experiment
-- Type of objective (x10, x15, x40...) and focal length for microscope and spectro-imagers
Ex: 'objective X15, focal length 40 mm '
Condition: Mandatory when
"parameters_instrument_uid/instrument_microscopy_imaging" = \{microscopy, linear micro-scan, micro-imaging\} (for microscope)

Variable: for Spectrum
Note:
-- Number of different measurement spots over the sample or number of pixels in the image averaged to get the 'averaged spectrum'
Condition: Mandatory only for
"parameters_instrument_spatial_observation_mode" = \{averaged, roi averaged, rastered, rastered image\}

Notes:
- for "parameters_instrument_spatial_observation_mode" = 'roi averaged', 'rastered' and 'rastered image' the "spatial_spots_number" is the number of pixels averaged
- for "parameters_instrument_spatial_observation_mode" = 'averaged':
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameters_instrument_spatial_sa mpling_x & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\left.!\mathrm{o} \_\mathrm{m}\right]
\end{gathered}
\] & ParIns & \[
\begin{aligned}
& \text { V/Vv } \\
& \text { [Ver] }
\end{aligned}
\] & & \begin{tabular}{l}
Spatial separation between image pixels (or pixel size) on the sample (over x axis), or separation between 'rastered' boxes when averaging is done over the x axis \\
Condition \#1: Mandatory when \\
"parameters_instrument_uid/instrument_microscopy_imaging" = \{linear scan, linear micro-scan, micro-imaging, imaging\} (for linear scan and imager) \\
AND \\
Condition \#2: Mandatory only for \\
"parameters_instrument_spatial_observation_mode" = \{averaged, line, image, rastered image \} \\
Unit: in unit defined in "parameters_instrument_spatial_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "parameters_instrument_spatial_unit" \\
Note: depends on "parameters_instrument_microscope_objective" \& "observation_mode" (see these KW) \\
Variable: for Spectrum \\
Note:
\end{tabular} \\
\hline parameters_instrument_spatial_sa mpling_y & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\mathrm{o} \_\mathrm{m}\right]} \\
{[\mathrm{V}:} \\
\left.!\mathrm{o} \_\mathrm{m}\right]
\end{gathered}
\] & ParIns & \[
\begin{aligned}
& \text { V/Vv } \\
& \text { [Ver] }
\end{aligned}
\] & & \begin{tabular}{l}
Spatial separation between image pixels (or pixel size) on the sample (over y axis) or separation between 'rastered' boxes when averaging is done over the \(y\) axis \\
Condition \#1: Mandatory when "instrument_microscopy_imaging" = \{micro-
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{lll}
\\
\begin{tabular}{l}
parameters_instrument_spatial_di \\
stance_z
\end{tabular} & & \begin{tabular}{l}
Varialble: for Spectrum \\
Note:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameters_instrument_spatial_re solution_width_error & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
ParIns \\
L7
\end{tabular} & V/Vv & & \begin{tabular}{l}
Absolute uncertainty on the optical spatial resolutions on the sample at different wavenumbers or wavelengths \\
Unit: in unit defined in "parameters_instrument_spatial_unit" \\
- converted in ' \(m\) ' unit in the database but provided to user in "parameters_instrument_spatial_unit"
\end{tabular} \\
\hline & & & & & & Note: may also be used to take into account (roughly) effects such as unperfect focus on sample surface and/or sampling depth. \\
\hline \multirow[t]{3}{*}{parameters_instrument_spatial_re solution_position} & \multirow[t]{3}{*}{float} & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
ParIns \\
L7
\end{tabular} & V/Vv & & \begin{tabular}{l}
Corresponding wavenumber/wavelength/frequency at which the optical spatial resolution is given \\
Unit: in unit defined by "parameters_instrument_spectral_unit" \\
- converted and stored in ' \(\mathrm{cm}-1\) ' unit in the database but provided to user in the unit specified in "parameters_instrument_spectral_unit"
\end{tabular} \\
\hline & & & & & & Variable: for Spectrum \\
\hline & & & & & & Note: \\
\hline parameters_instrument_spatial_co blob mments & & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]} \\
{[\mathrm{V}: \mathrm{m}]}
\end{gathered}
\] & ParIns & \[
\begin{gathered}
\mathrm{V} / \mathrm{Vv} \\
{[\mathrm{Ver}]} \\
\mathrm{Aj}
\end{gathered}
\] & & Additional information on spatial parameters: spot shape, spatial resolution function, variable spatial resolution (law of variation, ...), ... \\
\hline
\end{tabular}

\section*{13. EXPERIMENTS}

\subsection*{13.1 Definition}

An Experiment is first defined as "a series (or one) spectrum measurements of a single sample with a unique instrument and only one of its technique".
If there are (quasi-)simultaneous measurements of a same sample with 2 or more different instruments or techniques they can be in the same experiment but with different instrument and instrument parameters, and referring to the same sample.
Multiple types of experiment ("experiment_type") are allowed in a single experiment, but then it is necessary to tell for each spectrum of which type it is.
Also, for field and remote sensing measurements, all the spectra should be on the same planetary body and within the same global area (but its size can be large on the planetary body!), and not scattered at the surface of the body, in order to be able to define a pertinent geolocalization of this area.
An experiment describes a series of measurements (spectra) with a single set of homogeneous variable parameter(s) of the sample (from the same category, such as "sample temperature", "annealing_temperature" and "annealing_time") or/and one or more variable parameters of the instrument/technique (such as incidence/emergence/azimuth angles, ...).
An experiment is characterized by some measurement parameters that are fixed during an experiment (such as the "spectral range", "spectral sampling" and "spectral resolution" ...), and by a small set (0 to 3) of main variable sample parameters (only in "sample table") and/or several main variable instrument parameters that can be selected within a limited list (tagged Exp \(=\) ' \(\mathrm{V}+\) ' (most frequently variable parameters) or ' V '). A few 'secondary' parameters (taged 'Vc') may change "by consequence".
All the parameters that vary during an experiment are described as "spectrum parameters" and their values are given for each spectrum. (TBC).
In addition to the "sample and instrument variables parameters" the experiment table contains information on "sample and instrument parameters links" and on "date and experimentalist".

These main types of experiments identified are described below.

\subsection*{13.2 Different cases of experiments}

\subsection*{13.2.1 Experiments with changes in physical conditions of the sample}

During such an experiment a sample can be subjected to several types of changes in physical conditions.

In order to have a simple and tracable history of the sample we have limited these experiments to changes in physical conditions of the sample (thermal, pressure and fluid processings) that induce no major irreversible chemical or physical changes in the sample before each spectrum recording. i.e., no significant change should occur at the Layer/Material/Constituent or Species levels.

They are:
- a temperature cycling without phase change (variable sample temperature and possibly annealing temperature and time)
- a mechanical/hydrostatic pressure cycling without phase change (variable sample pressure and possibly maximum pressure)
- a gas/liquid pressure cycling of the sample (variable fluid composition and its temperature/pressure) for adsorption/absorption studies.

Two other types of experiments based on series of measurements have also been defined:
- a series of Raman or fluorescence measurements with laser pulses (variable total time ?) (TBC)
- a series of microscopic measurements performed in differents places of a sample (see 5.4)

In the cases of Raman or fluorescence measurements the irradiation effects are directly linked with the measurement technique and the irradiation variable parameters (noted '(V)') need to be used as variables. Possible sample amteration should be noted in "sample_processing_comments"

In practical cases some "real experiments" can be more complex series of physical and/or chemical changes (and corresponding series of spectral measurements) but here such complex real experiments should be cut in several "simple (database) experiments" each time the process applied to the sample changes (e.g. temperature cycling after a pressure cycling) or when the sample is strongly and irreversibly physically (phase change, ...) or chemically altered (new species, ...). A new sample, but linked to the previous one (the "parent sample") needs then to be created with some changes in its description (phase, composition, proccessing, ...) and thus a new simple experiment can start again.

\subsection*{13.2.2 Experiments with changes in measurements parameters}

During an experiment several types of instruments (measurements) parameters can be changed (e.g. goniometer angles, microscope spatial extent, polarization angles, ...) . Their number and combinations are not restricted as they are all "reversible" and have no effect on the sample (except some Raman or fluorescence measurements with laser pulses).

However we prefer to limit the variable instrument parameters within an experiment to an homogeneous set of parameters (e.g. the 3 goniometer angles, the polarization type and the 2 polarization angles, \(\ldots\)) and to those who did not imply many other parameters changes.

\subsection*{13.2.3 Case of heterogeneous matters at the microscopic level}

A special case occurs with series of microscopic measurements of samples with very heterogenous composition at the microscopic scale. Each spectral measurement at a different location can see another/others constituent(s).
Such a series of microscopic spectra on a single sample is defined as an "experiment" with the unique variable "sample_primary_constituent_index_list".

\subsection*{13.3 Limitation of "experiments"}

For the following 2 special types of laboratory experiments we decided to consider that they are a series of simple experiments (one spectrum), not a single one, because major changes occur in the sample before each spectrum recording:
- Samples with a thickness varying between each spectrum (e.g. during thin film deposition): in this case the main changes occur at the material level (material_mole, material_mass) and at the layer level (layer_thickness, layer_mass) with some possible changes "by consequence" in layer texture (texture, porosity, density).
- Samples subjected to a series of irradiations: in this case some strong chemical changes may occur at the constituent and species levels, in particular the species present in the constituent may change as well as their abundance and possibly their state
Note: in such case it may be good to define a series of samples (and experiments) that have all the species present in the final sample (precursors and products, + eventual impurities) declared for all samples but with the product species set initially to zero abundance and then varying with irradiation dose.

The parent experiment can be tracked using "experiment_parent_experiment_uid", its sample with "sample_parent_sample_uid" and the first experiment of the series of experiments with "sample_first_parent_experiment_uid".

\subsection*{13.4 Experiment Table}

\section*{Root of the table: experiment}

Data type: 'Experiment and spectra'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{Experiment import mode and indexes} \\
\hline \multirow[t]{2}{*}{experiment_import_mode} & \multirow[t]{2}{*}{enum(text)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!\_\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Exp} & \multirow[t]{2}{*}{(V)} & -- & \begin{tabular}{l}
Mode of import of the Experiment/Instrument parameters data \\
Enum: \{first import, ignore, draft, no change, correction\} \\
Definitions: see "sample_import_mode"
\end{tabular} \\
\hline & & & & & & Note: a 'new version' of the experiment is triggered by "spectrum_import" = 'new version' \\
\hline \multirow[t]{2}{*}{experiment_xml_filename [-xml]} & \multirow[t]{2}{*}{\begin{tabular}{l}
varchar(255) \\
[virtual KW]
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[!!\mathrm{vc}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Exp} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & -- & \begin{tabular}{l}
Name of the storage copy of the xml import file of the experiment metadata \\
\(\rightarrow\) determined automatically during import (from "experiment_uid»?)
\end{tabular} \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction \\
\hline experiment_index [**][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{\left[!!\_\mathrm{g}\right]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Automatic random but unique number (internal ID) given to new experiment and to a new version \\
\hline \multirow[t]{2}{*}{experiment_uid [**]} & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Exp} & \multirow[t]{2}{*}{F} & -- & \begin{tabular}{l}
Unique identifier code (UID) given to the experiment table (to be created) \\
Nomenclature: Create this code name with 'EXPERIMENT_' very accurately in order to be simple and unique
\end{tabular} \\
\hline & & & & & & It should be of the form 'EXPERIMENT_AB_yyyymmdd_1234' where 'AB' are the initials of the person preparing the import, 'yyyymmdd' is the full date of the day (or the day of the experiment), and ' 1234 ' is an order number for that day with a maximum of 4 digits from ' 0001 to ' 9999 ' (or 1 to 9 , or 01 o \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
experiment_sshade_doi \([-\mathrm{xml}]\) \\
[experiment_sshade_doi]
\end{tabular} & varchar(255) & \[
\begin{gathered}
\text { S1 } \\
{[!!\text { c }]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
DOI code of the experiment \\
automatically generated using the UID of the experiment \\
\(\Rightarrow 10.26302 /\) SSHADE."experiment_uid".V"experiment_version" \\
Definition: http://en.wikipedia.org/wiki/Digital_object_identifier \\
Notes: \\
- The DOI is determined with "experiment_uid" and "experiment_version" \\
- the prefix ' \(1 \overline{0} .26302\) ' has been attributed by INIST to OSUG-DC, who will manage the doi creations. \\
- the url of the doi is obtained by adding 'https://doi.org/' (note: the former standard whas 'http://dx.doi.org/') \\
- the DOI will redirect to the SSHADE page displaying the experiment metadata (through a landing page)
\end{tabular} \\
\hline experiment_sshade_url [-xml] & \begin{tabular}{l}
\(\operatorname{varchar}(255)\) \\
[Virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{U} \\
{\left[!\_\mathrm{c}\right]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Direct web link to the SSHADE experiment page displaying the experiment metadata \\
automatically generated and in practice not stored in database \\
\(\Rightarrow\) https://www.sshade.eu/data/experiment/'experiment_uid'/'experim ent_version'
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- can be determined by knowing the UID (not restricted to experiment) \\
- can be also obtained by copying the URL when viewing an experiment details page.
\end{tabular} \\
\hline
\end{tabular}

99, or 001 to 999).
Ex: 'EXPERIMENT_BS_20181006_059', 'EXPERIMENT_OB_20000101_01'
Note DOI: requested in "Identifier" (for 'experiment')
- DOI code of the experiment
\(\rightarrow\) automatically generated using the UID of the experiment \(\Rightarrow 10.26302 /\) SSHADE. "experiment_uid".V"experiment_version"
Definition: http://en.wikipedia.org/wiki/Digital_object_identifier
Notes:
- The DOI is determined with "experiment_uid" and "experiment_version"
the prefix ' 10.26302 ' has been attributed by INIST to OSUG-DC, who
- the url of the doi is obtained by adding 'https://doi.org/' (note: the former standard whas 'http://dx.doi.org/')
- the DOI will redirect to the SSHADE page displaying the experiment metadata (through a landing page)
\(E x: 10.26302 / S S H A D E . E X P E R I M E N T \_L B \_20170721 \_001 . V 2\)
Direct web link to the SSHADE experiment page displaying the experiment metadata
\(\rightarrow\) automatically generated and in practice not stored in database
\(\Rightarrow\) https://www.sshade.eu/data/experiment/'experiment_uid'/'experim ent_version'

Notes:

Ex:
\begin{tabular}{llccc}
experiment_import_verification & boolean & S2 & Exp & V \\
{\([\mathrm{pi}]\)} & {\([\mathrm{Vitual} \mathrm{KW}]\)} & {\(\left[!!\mathrm{d} \_\mathrm{m}\right]\)} & & {\([\mathrm{Ver}] ?\)}
\end{tabular}

L1
-- Verification state of an imported experiment
BoolEnum: \{yes, no\} or \{true, false\}
Default: "false'/‘no'
Constraints:
- 'false'/'no' is the only and default value when
"experiment_import_mode" \(=\{\) first import \(\}\)
Definitions:
- 'false' or 'no': imported experiment metadata not yet verified in the database
- 'true' or 'yes': experiment metadata verified in database

Notes:
- it is not a 'scientific' validation, but rather the verification of the correctness of the imported data.
- The 'non-verified' state allows importing data in the database and taking time to fully check them online.
Note: implemented directly in the 'provider interface' with computer controlled data access rights, not through xml.
£: databases which own and manage this experiment
- Link to the existing UID of the database which owns this experiment and manages its information (with associated spectra)

Condition: at least one database
Note: this KW will be used to define the list of databases to who the experiment belong
Note: For experiments from external laboratories, not managed by a partner database, we will create specific database(s) (ex: ‘DB_external') managed by the SSHADE managers

\section*{Experiment experimentalists}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_experimentalists & List [L2] & \multicolumn{3}{|l|}{[!]} & & £: experimentalists that conducted this experiment and/or processed its spectra \\
\hline experiment_experimentalist_uid [*] & \multirow[t]{2}{*}{varchar(255)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 1 / \mathrm{S} 1 \mathrm{~s} \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\]} & \begin{tabular}{l}
Exp \\
Exper
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Link to the existing UID of the experimentalist who recorded and/or processed the spectra \\
\hline & & & L2 & & & \begin{tabular}{l}
Note DOI: \\
- mandatory as "Creator / creatorName" (2.1): "experimentalist_first_name" (2.1.2) \& "_family_name" (2.1.1)
\end{tabular} \\
\hline
\end{tabular}

\section*{Experiment description}
experiment_types
experiment_type
- 'low altitude field measurement: experiment performed using an
instrument aboard a low altitude flying device, like a plane, helicopter, UAV, drone, \(\ldots\) to record spectra of surfaces

Note: same as for 'field measurement' but from flying devices
- 'satellite remote sensing': observation experiment performed using an instrument aboard an orbiting satellite or an exploration satellite to record spectra of surfaces...

Note: The aim is to provide a selection of a few typical observation spectra of (simple) solid/liquid surfaces/grains/... of objects, or of typical area of objects.
Ex:
Reflectance spectrum of \(\mathrm{CO}_{2}\) ice slab on Mars
- Reflectance spectra of \(\mathrm{N}_{2}\)-rich: \(\mathrm{CH}_{4}\) :CO ice on Pluto.
- 'telescopic remote sensing': observation performed using an instrument in a Earth based telescope to record spectra of the surface

Note: same as for 'satellite remote sensing' but from Earth based observatories
Ex:
Hemispherical integrated reflectance spectrum of Pluto
Reflectance spectra of typical asteroids
- Transmission spectra of typical interstellar cloud
- 'numerical modeling': experiment performed with a numerical model (radiative transfert, ...) that simulate some type of spectra.

Note: One aim is to provide reference simulated spectra comparable to observations where laboratory and field measurements currently fail to provide data.
Ex:
- Reflectance spectra of \(\mathrm{CH}_{4}\) ice at 40 K simulated from optical constants.
- Series of reflectance spectra of \(\mathrm{H}_{2} \mathrm{O}\) ice with different temperatures and grain sizes.
- 'theoretical modeling': experiment performed with a theoretical model (ab-initio, ..., ...) that simulate some type of spectra.

Note: One aim is to provide theoretical simulated spectra comparable to laboratory measurements and also spectra where laboratory currently fail to provide data (unstable solids, ...)
- Raman spectra of minerals (ex: Wurm database)
spectra of Polyynes: \(\mathrm{H}-[\mathrm{C} \equiv \mathrm{C}-] \mathrm{n}-\mathrm{H}\).
- 'other': any other experiment type not listed above. Describe it in "experiment_comments"
- 'unknown': unknown experiment type! (should be only for very exceptional cases)

\section*{Notes:}
- Multiple types of experiment ("experiment_type") are allowed in a single experiment, but then it is necessary to tell for each spectrum of which type it is.
- When "experiment_type" \(=\{\) field measurement, low altitude field measurement, satellite remote sensing, telescopic remote sensing\} are combined with "experiment type" = \{laboratory measurement, numerical modeling, theoretical modeling\} it is necessary that these last measurements and modeling are directly linked with the field measurements to share the global geolocation of the experiment.
- 'satellite remote sensing' and 'telescopic remote sensing' are observations rather than experiments or field measurements but are added here only to provide a few typical reference spectra of objects or of types of terrains of an object
\begin{tabular}{llll}
experiment_title & varchar(255) & S0/S0s \\
& {\(\left[!!\_\mathrm{m}\right]\)}
\end{tabular} \(\mathrm{Exp} \quad\)\begin{tabular}{c}
V \\
{\([\mathrm{Ver}\)}
\end{tabular}
- Title describing the experiment (with main variable parameters)

Notes:
- it should contain the main info on the sample and (or series of samples) and spectra obtained during the experiment
- it will be displayed as search result

Ex: 'NIR reflectance spectra of 2 olivine/iron mixtures with 2 grain sizes (20 , \(30 \mu \mathrm{~m}\)) at 50 and 60 K ', 'Vis-NIR absorption coefficient spectrum of CH4 phase-I crystal at 30 K '
\({ }^{\prime}\) MIR transmission spectrum of Portlandite at \(-10^{\circ} \mathrm{C}\) under 2 b CO 2 gas 60 min '
Note DOI:
- (absolute-)mandatory as "Title" (3), option as "Title/titleType" (3.1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_description & blob & \[
\begin{gathered}
\mathrm{U} \\
\text { [!o_m] }
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Detailled description of the experiment. \\
Condition: mandatory when there are more than one value in "experiment_variable_parameters_type" \\
Notes: \\
- it should contain complete info on the sample (or series of samples) and the variable parameters (with values or range of values) of this experiment, and also on the spectra types/range. \\
- it should describe the organization of the series and subseries of samples (described details in "experiment_structure") \\
- information on possible variations of the samples may be also given \\
- it will be displayed as detailed info on search result. \\
Ex: 'Near-IR reflectance spectra of 3 mixtures of olivine and iron minerals with relative abundances of \(90 / 10,80 / 20\) and \(70 / 30 \mathrm{w} \%\). These mixtures are studied for 3 grain size ranges (\(25-50,100-150\) and \(250-300 \mu \mathrm{~m}\)) at 12 temperatures between 100 and 270 K.' \\
Note DOI: \\
- Recommended option as "Description / descriptionType=Abstract" (17)
\end{tabular} \\
\hline Experiment history & & & & & & \\
\hline experiment_date_begin & date & \[
\begin{gathered}
\text { S1/S1bs } \\
{\left[!\_\mathrm{m}\right]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { YYY } \\
\text { Y- } \\
\text { MM- } \\
\text { D }
\end{gathered}
\] & \begin{tabular}{l}
Starting date of the experiment \\
Note DOI: \\
- recommended as "Date/dataType=Collected" (8) for 'Experiment' \\
o Convention: "experiment_date_begin"/"experiment_date_end" for date ranges
\end{tabular} \\
\hline experiment_date_end & date & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { YYY } \\
& \text { Y- } \\
& \text { M- }
\end{aligned}
\] & Ending date of the experiment Note DOI: \\
\hline
\end{tabular}


```

status ("spectrum_access_right")

```

Notes:
- However if the modification of a spectrum produces a radical new spectral product at higher level, it is better to enter it as new spectrum of this experiment, or in a new experiment with this one as a parent, rather than as a new version of the spectrum.
- It is tolerated to replace a spectrum by a new one but under the condition it is of same "spectrum_type", it uses the same (or very similar) sample and (almost) the same instrument parameters. These parameter values will be modified in 'spectrum' but not in 'experiment'
- no new version number is generated when "spectrum import mode" = 'correction'

\section*{Experiment links}
\begin{tabular}{|c|c|c|c|c|c|}
\hline experiment_parent_experiment_ui varchar(255) d [*] & \begin{tabular}{l}
S2/S2s \\
[£o_m]
\end{tabular} & \[
\begin{aligned}
& \operatorname{Exp} \\
& \operatorname{Exp}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Link to the existing UID of a possible parent experiment performed just before this one and that created the initial conditions of the current experiment. \\
Recommendation: Strongly recommended when already exist in the database
\end{tabular} \\
\hline experiment_first_parent_experime varchar(255) nt_uid [*] [-xml] & \[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\mathrm{o} \_\mathrm{c}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Exp} \\
& \operatorname{Exp}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Link to the existing UID of a possible first parent experiment, i.e., the first experiment in a series. \\
Condition: when "experiment_parent_experiment_uid" \(\neq \Phi\) \\
\(\rightarrow\) calculated recursively using "experiment_parent_experiment_uid" \\
Note xml: not in xml
\end{tabular} \\
\hline
\end{tabular}

\section*{Experiment geolocation or laboratory}

Notes:
- For all 'field experiments' and 'remote sensing' (on Earth or other bodies) it is mandatory to use a "matter_planetary" to describe the matter at its original place, and provide its geolocalisation (the body and where it is measured).
o The sample then uses the matter and adds the environment (+

\begin{tabular}{lcc}
experiment_body_coordinate_syst openum(text) & U & Exp \\
em & [!!o_m] & \\
[matter_body_coordinate_system] & &
\end{tabular}
[matter_body_coordinate_system]
experiment_geolocations \(\quad\) List [L4] [!O_m]

List [L4] [!O_m]
- constraint: only data from a single body par experiment
- This body is already in all the 'matter'
("matter_xxx_geolocation_body_uid") of the sample of the spectra of the experiment, but for easy and univoque access it is also defined (repeated) here.
this body could refer to a solar system body with the experiment remotely sampling part of that body
-- Coordinate system on the planetary body used for the geographic location of this experiment

OpenEnum: \(\{\) WGS84, Mars 2000, Moon 2000, Pluto 2015, ... \}
Condition \#1: absolute mandatory only when "experiment_type" = \{field measurement, low altitude field measurement, satellite remote sensing, telescopic remote sensing)
AND
Condition \#2: when "experiment_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}
Definitions:
- 'WGS84': World Geodetic System 1984 for Earth (EPSG 4326)
- 'Mars 2000': planetocentric latitude with east longitude for Mars
- 'Pluto 2015’:

Notes:
- constraint: an unique coordinate system per body
- It is best to use the same coordinate system as the one used to locate the individual matters measured in this experiment
- Prefer 'Planetocentric latitude with east longitude' coordinate systems for planetary bodies (approved by the International Astronomical Union)
- Use only 'WGS84' planetographic system for Earth
\(£:\) List of the geolocations of the area on the planetary body where the experiment was performed (for field and remote sensing experiments)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_geolocation_place [matter_geolocation_place] & varchar(255) & \[
\begin{gathered}
\text { S1b } \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \[
\operatorname{Exp}
\]
L4 & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Name or description of the general geologic formation and geographic location on the planetary body where the experiment was performed (for field and remote sensing experiments) \\
\hline & & & & & & Condition: mandatory only when "experiment_type" \(=\{\) field measurement, low altitude field measurement, satellite remote sensing, telescopic remote sensing \(\}\) \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
- This geolocation place should cover globally all the geolocations described in each sample matter of each spectrum of the experiment \\
- They should be all on the same planetary body, which is given in each matter ("matter_planetary_body_uid") and repeated in "experiment_body_uid"
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'Western Keivy Massif, Kola Peninsula’ (Earth) \\
- 'Etna volcano' (Earth) \\
- 'South part of Sputnik Planitia' (Pluto) \\
- 'Mare Tranquilitatis' (moon),
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note DOI: \\
- recommended option as "GeoLocation / geoLocationPlace" (18.3)
\end{tabular} \\
\hline experiment_geolocation_region [matter_geolocation _region] & varchar(255) & \[
\begin{gathered}
\text { S1b } \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Exp } \\
\text { L4 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Region, state, province or county (administrative location) on Earth of the experiment \\
\hline & & & & & & Condition: mandatory and only when "experiment_body_uid" = ‘BODY_planet_Earth' \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'Murmanskaja Oblast', ‘Sicilia', 'Rhône-Alpes', ‘Arizona', 'Zambezi'
\end{tabular} \\
\hline experiment_geolocation_country_ code & enum(text) & \[
\begin{gathered}
\text { S1b } \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Exp \\
L4
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & 2-digit code of the country of the geographic location on Earth of the experiment \\
\hline [matter_geolocation_country_cod e] & & & & & & Enum: \(\{\mathrm{CH}, \mathrm{DE}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{HU}, \mathrm{IT}, \mathrm{PL}, \ldots\}\) \\
\hline & & & & & & Label (code): see "laboratory_address_country_code" \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
experiment_geolocation_type & enum(text) & U & Exp & V \\
& & {\(\left[!!\mathrm{o} \_\mathrm{m}\right]\)} & L 4 & [Ver]
\end{tabular}
experiment_geolocation_coordina

\section*{List [L5]}
[!O]
tes
[matter_geolocation_coordinates]

Condition: mandatory and only when "experiment_body_uid" = ‘BODY_planet_Earth'

Definitions: see "laboratory_address_country_code"
-- Type of geographic location where the experiment was performed (for field and remote sensing experiments)
Enum: \{point, line, box, polygon\}
Condition: mandatory only when "experiment_type" \(=\{\) field measurement, low altitude field measurement, satellite remote sensing, telescopic remote sensing\}
AND
Condition \#2: when "experiment_body_uid" / "body_family" = \{planet, dwarf planet, satellite\}

Condition: absolute mandatory and only when
"experiment_geolocation_coordinate_latitude" \(\neq \varnothing\)

\section*{Definitions:}
- 'point': punctual location defined by a single point (when all spectra are measured within a very small area, typically < few 10 s m)
- 'line': linear location defined by its two extreme points, or polyline defined by a series of points (line of flight, line of sight, ...)
- 'box': rectangular geographic location defined by two points: SW \& NE coordinates
- 'polygon': spatial limit of a place defined by an ordered series of points (image, footprint)

Note DOI:
- recommended option as "GeoLocation / geoLocationPoint" (18.1) or "/ geoLocationBox" (18.2) or "/ geoLocationPolygon" (18.4)
£: Geolocation on the planetary body of the place where the experiment was performed (for field and remote sensing experiments)
Condition \#1: mandatory only when "experiment_type" = \{field measurement, low altitude field measurement, satellite remote sensing, telescopic remote
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{8}{*}{\begin{tabular}{l}
experiment_geolocation_coordinat \\
e_latitude \\
[matter_geolocation_coordinate_1 \\
atitude]
\end{tabular}} & \multirow{9}{*}{float} & & & & & \begin{tabular}{l}
sensing \(\}\) \\
AND \\
Condition \#2: when "experiment_body_uid" / "body_family" = \{planet, dwarf planet, satellite \(\}\)
\end{tabular} \\
\hline & & & & & & Condition \#3: absolute mandatory when "experiment_geolocation_type" \(\neq \varnothing\) \\
\hline & & & & & & \begin{tabular}{l}
Conditions: on the number of long/lat couple: \\
- = ' 1 ' when "experiment_geolocation_type" = \{point \(\}\) \\
- = ' 2 ': when "experiment_geolocation_type" = \{box\} \\
- = ' \(2-\mathrm{n}\) ': when "experiment_geolocation_type" = \{line \(\}\) \\
- = '3-n': when "experiment_geolocation_type" = \{polygon \(\}\)
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
- For box it is recommended to give first the NW corner and then the SE corner. \\
- These geolocation coordinates should contain all the geolocation coordinates described in the sample matter of each spectrum of the experiment
\end{tabular} \\
\hline & & & & & & Note \(D B\) : will be stored in shapefile format ? \\
\hline & & & & & & \begin{tabular}{l}
Note DOI: \\
- recommended option as: \\
o "GeoLocation / geoLocationPoint" (18.1) when "experiment_geolocation_type" = \{point \} \\
o "GeoLocation / geoLocationBox" (18.2) when "experiment_geolocation_type" = \{box \(\}\) \\
o "GeoLocation / geoLocationPolygon" (18.4) when "experiment_geolocation_type" = \{polygon\}
\end{tabular} \\
\hline & & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { S3 } \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\]} & \[
\begin{gathered}
\operatorname{Exp} \\
\mathrm{L} 4
\end{gathered}
\] & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { V } \\
{[\text { Ver }]}
\end{gathered}
\]} & deg & Latitude of one of the point defining the place where the experiment was performed \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { L4 } \\
& \text { L5 }
\end{aligned}
\]} & & & Format: in N 'decimal degrees' in "experiment_body_coordinate_system" \\
\hline & & & & & & \begin{tabular}{l}
Note DOI: \\
- for point: as "GeoLocation / geoLocationPoint / pointLatitude" (18.1.2) \\
- for box: as "GeoLocation / geoLocationBox / southBoundLatitude"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
experiment_geolocation_coordinat e_longitude \\
[matter_geolocation_coordinate_1 ongitude]
\end{tabular} & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!\mathrm{o} \_\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
\(\operatorname{Exp}\) \\
L4 \\
L5
\end{tabular} & V [Ver] & & \begin{tabular}{l}
Longitude of one of the point defining the place where the experiment was performed \\
Format: in E 'decimal degrees' (in the E direction only) in "experiment_body_coordinate_system" \\
Note DOI: \\
- for point: as "GeoLocation / geoLocationPoint / pointLongitude" (18.1.1) \\
- for box: as "GeoLocation / geoLocationBox / westBoundLongitude" (18.2.1) \& "/ eastBoundLongitude" (18.2.2) \\
- for polygon: as "GeoLocation / geoLocationPolygon / polygonPoint / pointLongitude" (18.4.1.1)
\end{tabular} \\
\hline ```
experiment_geolocation_coordinat
e_altitude
[matter_geolocation_coordinate_a
ltitude]
``` & float & \[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{~m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Exp } \\
\text { L4 } \\
\text { L5 }
\end{gathered}
\] & V [Ver] & m & \begin{tabular}{l}
Altitude of one of the point defining the place where the experiment was performed \\
Format: in 'meter' in "experiment_body_coordinate_system" \\
Notes: \\
- from the body reference ellipsoid (planetographic coordinates) \\
- or from the reference sphere (planetocentric coordinates) (altitude 0 )
\end{tabular} \\
\hline ```
experiment_geolocation_comment
S
[matter_geolocation_comments]
``` & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp L4 & V [Ver] & -- & \begin{tabular}{l}
Any additional information or comments about the geolocation of this experiment \\
Ex: 'measurements points of this experiment were located inside this polygon', 'very approximate coordinates \(\left(+/-0.2^{\circ}\right)^{\prime} \ldots\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Experiment variables}

Note: only a maximum of 3 sample, environment and/or instrument/spectrum variables should change during an experiment. The definition of an experiment is wider than just the case of a single initial sample with or whitout textural, phase or composition evolution. It also encompasses homogeneous series of samples
with progressive values in texture (grains size, ...), phase or composition. Its organization according to these paramters is described with the "structure" table.
\begin{tabular}{|c|c|c|c|}
\hline experiment_variable_parameters_List [L6] & \multicolumn{3}{|l|}{[!_m]} \\
\hline types ---. & & & \\
\hline ```
experiment_variable_parameters_t openum(text)
ype
``` & \[
\begin{gathered}
\text { S1b/S1bs } \\
\text { /Uu } \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\] & Exp
L6 & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] \\
\hline
\end{tabular}
£: Types of sample, environment or instrument/spectrum variable parameters of the experiment.
-- Type of sample, environment, instrument or spectrum variable parameters of the experiment.

OpenEnum: \{no, sample composition, sample abundance, sample size, sample thickness, sample texture, sample grain size, sample phase, constituent, chemical variability, formation condition, temperature, pressure, mechanical stress, reactant, time, irradiation type, irradiation energy, irradiation dose, spectrum type, spectral range, illumination-observation geometry, incidence angle, emergence angle, phase angle, azimuth angle, polarization, observation mode, other\}

\section*{Definitions:}
- ' \(n o\) ': for the case when there is only one spectrum in the experiment (i.e. without any varying sample, environment, instrument or spectrum parameter)
Sample series
- 'sample composition': any variation in composition at sample, layer, material, constituent or species scale
- 'sample abundance':
- 'sample size': volume,
- 'sample thickness': thickness, ...
- 'sample texture': prosity, surface texture, ...
- 'sample grain size': size, shape ... of material grains
- 'sample phase': phase of the constituting material or constituents
- 'constituent': (type of) constituent in microscopic measurements
- 'chemical variability': variability of composition intra-sample, such as various spots on a meteorite sample.
- 'formation condition': any formation condition sucha as temperature, formation rate, ...
Environment parameters
- 'temperature': temperature of the sample
- 'pressure': machanical pressure on the sample
- 'mechanical stress': type or values of stress applied to the sample
- 'reactant': type, composition of a chemical reacting with the sample
- 'time': time in kinetics chemical or physical processes (at constant other parameters)
- 'irradiation type': type/energy of irradiation or particle bombardment
- 'irradiation energy':
- 'irradiation dose': dose of irradiation

Instrument and Spectrum parameters
'spectrum type': type of spectrum or spectral product
- 'spectral range': spectral range (also spectral resolution ?)
- 'illumination-observation geometry': at least two of incidence, emergence, azimuth (or phase) angles
- 'incidence angle': only incidence illumination angle
- 'emergence angle': only emergence observation angle
- 'phase angle': incidence, emergence, and/or azimuth angles but expressed as phase angle
- 'azimuth angle': only azimuth angle
- 'polarization': type or values of polarization
- 'observation mode': mostly mode of microscopic observation
- 'other': for other types of variables not listed in the Enum. The type of variable should then be given in "experiment_variables_comments"
Notes:
- coherent 'series' of samples with a maximum of 3 varying parameters could be combined in a single experiment.
- the number of variable environment and/or instrument/spectrum parameters for a single initial sample should also be limited to 3 .
- the total number of spectra should not be too extensive (as a rule of thumb: < 50 ?).
- in such cases the "experiment_structure" bloc should be used to describe the sections and possibly subsections of the experiment corresponding to these series.
Exemples:
- Series of samples: mixtures of olivine powder with coal => 'sample
composition'
- Series of tholins samples formed with varying initial CH4/N2 ratios => 'sample composition'
- Series of olivine powder samples with varying grain sizes of = 'sample texture'
- Series of crystalline phases of nitrogen ice \(=>\) 'sample phase'
- NIR and MIR spectra of CH4 ice at various temperatures => 'spectral range' \& 'temperature'
- Transmission and absorption coefficient spectra of CH4 ice at various temperatures \(=>\) 'spectral product' \& 'temperature'
- Full BRDF: 'illumination-observation geometry'
- BRDF in principal plane: 'incidence angle' \& 'emergence angle'
experiment_variable_parameters_ blob
comments \(\quad\)\begin{tabular}{c}
U \\
{\([\mathrm{m}]\)}
\end{tabular}\(\quad\) Exp \begin{tabular}{c}
V \\
{\([\mathrm{Ver}\)}
\end{tabular}
\(\begin{array}{ccc}\mathrm{U} & \text { Exp } & {[\mathrm{Ver}]}\end{array}\)
-- Additional or synthetic information on the sample, environment or instrument parameters varying in the experiment.

Ex: temperature/pressure cyclings, gas/liquid exposure, angular variations in the principal plane, ...

\section*{ lexred spectiol)}

Note: these instrument parameters are 'multiple' because it is possible to run a single experiment with several types of spectral measurements in parallel, either with different instruments, or different techniques on a same instrument. This allows to have all these spectra in the same experiment.
Ex:
- Infrared and raman spectra
- NIR and MIR spectral ranges
- several microscopic spectra and a global macroscopic spectrum of a sample

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{experiment_preview_x_unit} & \multirow[t]{3}{*}{enum(text)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Exp} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\]} & & Unit of the X axis, if different from the original import unit, in which the preview is plotted \\
\hline & & & & & & Enum: \(\{\mathrm{m}-1, \mathrm{~cm}-1\), angstrom, nm , micron, \(\mathrm{mm}, \mathrm{m}, \mathrm{km}, \mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}, \mathrm{GHz}\), eV, keV\} \\
\hline & & & & & & Note xml: see "experiment_preview_x_axis" \\
\hline \multirow[t]{3}{*}{experiment_preview_x_min} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Exp} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { V } \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & var & \begin{tabular}{l}
Minimum value of X axis in the preview plot of selected spectra \\
- Unit: given by default by "parameters_instrument_spectral_unit" or by "experiment_preview_x_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit unit if no "experiment_preview_x_unit" \\
\hline & & & & & & Note xml: see "experiment_preview_x_axis" \\
\hline \multirow[t]{3}{*}{experiment_preview_x_max} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Exp} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & var & \begin{tabular}{l}
Maximum value of X axis in the preview plot of selected spectra \\
- Unit: given by default by "parameters_instrument_spectral_unit" or by "experiment_preview_x_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit unit if no "experiment_preview_x_unit" \\
\hline & & & & & & Note xml: see "experiment_preview_x_axis" \\
\hline \multirow[t]{3}{*}{experiment_preview_y_axis} & \multirow[t]{3}{*}{enum(text)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Exp} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & & Type of Y axis in the preview plot of selected spectra of the experiment Enum: \(\{\operatorname{lin}, \log \}\) \\
\hline & & & & & & Definitions: see "experiment_preview_x_axis" \\
\hline & & & & & & \begin{tabular}{l}
Note xml: the following 5 KW \\
("experiment_preview_y_axis/_unit/_min/_max/_offset") are grouped as tags of "experiment_preview_y": <y axis="" unit=""" min="" max="" offset="" />
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_preview_y_unit & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Unit of the Y axis (intensity), if different from the original import unit, in which the preview is plotted \\
OpenEnum: \(\{\mathrm{cm}-1, \mathrm{~m}-1, \mathrm{~cm} 2 . \mathrm{g}-1, \mathrm{~m} 2 . \mathrm{kg}-1, \mathrm{~mL} . \mathrm{g}-1 \cdot \mathrm{~cm}-1, \mathrm{~cm} 2 \cdot \mathrm{~mol}-1\), \(\mathrm{m} 2 \cdot \mathrm{~mol}-1\), L•mol \(-1 \cdot \mathrm{~cm}-1\), percent, permille, deg, count.s-1, count.nm-1, S, ohm, dB, sr-1, m-1.sr-1, m2.sr-1, W.m-2, kW.m-2, W.m-2.sr-1, kW.m-2.sr-1, W.m-2.sr-1.cm-1, W.m-2.sr-1.micron-1, AU, no unit, unknown, ...\} \\
Notes: \\
- The unit of the intensity of the spectrum depends on the spectrum type and thus only a few pairs of conversions are allowed \\
- all spectra without intensity unit: \{no unit, percent, permille\} [ 1 percent \(=10\) permille] \\
- reflectance/radiance factor: \(\{\) no unit, sr-1 \} \([1 \mathrm{sr}-1=\pi]\) \\
- absorption coefficient: \(\{\mathrm{cm}-1, \mathrm{~m}-1\}\) \\
[ \(1 \mathrm{~cm}-1=100 \mathrm{~m}-1\) ] \\
- mass absorption coefficient: \(\{\mathrm{cm} 2 . \mathrm{g}-1, \mathrm{~m} 2 . \mathrm{kg}-1\}\) \\
[ \(1 \mathrm{~m} 2 . \mathrm{kg}-1=10 \mathrm{~cm} 2 . \mathrm{g}-1\) ] \\
- molar absorption coefficient: \(\{\mathrm{cm} 2 \cdot \mathrm{~mol}-1, \mathrm{~m} 2 \cdot \mathrm{~mol}-1\}\) \\
[1 m2.mol-1 \(=10000 \mathrm{~cm} 2 . \mathrm{mol}-1]\) \\
- thermal radiance: \(\{\) W.m-2.sr-1, kW.m-2.sr-1 \(\}\) \\
[1 kW.m-2.sr-1 = 1000 W.m-2.sr-1] \\
- thermal emittance: \{W.m-2, kW.m-2 \} \\
[1 kW.m-2 = 1000 W.m-2]
\end{tabular} \\
\hline & & & & & & Note xml: see "experiment_preview_x_axis" \\
\hline \multirow[t]{3}{*}{experiment_preview_y_min} & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Minimum value of Y axis in the preview plot of selected spectra \\
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit if no "experiment_preview_y_unit" \\
\hline & & & & & & Note xml: see "experiment_preview_y_axis" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_preview_y_max & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Maximum value of Y axis in the preview plot of selected spectra \\
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit unit if no "experiment preview y unit" \\
\hline & & & & & & Note xml: see "experiment_preview_y_axis" \\
\hline experiment_preview_y_offset & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Value of the cumulative Y offset applied to each spectrum in the preview \\
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: offset by default in the original import unit unit if no "experiment_preview_y_unit" \\
\hline & & & & & & Note xml: see "experiment_preview_y_axis" \\
\hline & & & & & & Ex: ' 0.1 ' will give offsets of \(\{0 ; 0.1 ; 0.2 ; 0.3 ; \ldots\}\) \\
\hline experiment_preview_y2_axis & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Type of the second Y axis (only for the real part of complex spectra) in the preview plot of selected spectra of the experiment \\
\hline & & & & & & Enum: \(\{\operatorname{lin}, \log\) \} \\
\hline & & & & & & Limitation (but cannot be constrained easily): only for "spectrum_files_parameter_type" \(=\{\) complex spectrum, polarimetric spectrum, scattering spectrum\} \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
i.e., for "spectrum_type" = \{optical constants, complex admittance, complex impedance, relative complex permittivity, relative complex permeability, complex reflectance ratio, polarization parameters \}
\end{tabular} \\
\hline & & & & & & Definitions: see "experiment_preview_x_axis" \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
only for complex spectra to set different parameters to the Y axis for 'imaginary part' (y axis) and 'real part' (y2 axis) \\
- for "spectrum_type":
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline experiment_preview_y2_min & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Minimum value of the second Y axis in the preview plot of selected spectra \\
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Notes: \\
- The unit of y2 axis is always the same as for the y axis \\
- plotted by default in the original import unit unit if no "experiment_preview_y_unit"
\end{tabular} \\
\hline & & & & & & Note xml: see "experiment_preview_y2_axis" \\
\hline experiment_preview_y2_max & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Maximum value of the second Y axis in the preview plot of selected spectra \\
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Notes: see notes of "experiment_preview_y2_min" Note xml: see "experiment_preview_y2_axis" \\
\hline experiment_preview_y2_offset & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & Value of the cumulative Y offset of the second Y axis applied to each spectrum in the preview \\
\hline & & & & & & - Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided \\
\hline & & & & & & Notes: see notes of "experiment_preview_y2_min" \\
\hline
\end{tabular}
```

optical constants: 'n index'
complex admittance: 'conductance'
complex impedance: 'resistance'
relative complex permittivity: 'dielectric constant'
relative complex permeability: 'magnetic constant'
complex reflectance ratio: 'amplitude component'
polarization parameters: 'polarization position angle'

```

Note xml: the following 4 KW are grouped as tags of "experiment preview y2":
"experiment_preview_y2_axis/_min/_max/_offset".
- Unit: given by "spectrum_intensity_unit" of the first spectrum or by "experiment_preview_y_unit" when provided

Notes:
The unit of \(y 2\) axis is always the same as for the \(y\) axis
plotted by default in the original import unit unit if no
"experiment preview y unit"
Note xml: see "experiment_preview_y2_axis"
- Unit: given by "spectrum intensity unit" of the first spectrum or by "experiment_preview_y_unit" when provided

Notes: see notes of "experiment_preview_y2_min"
Note xml: see "experiment_preview_y2_axis"

Value of the cumulative Y offset of the second Y axis applied to each the preview
"experiment_preview_y_unit" when provided

Notes: see notes of "experiment_preview_y2_min"

Note xml: see "experiment_preview_y2_axis"
\(E x\) : ' 0.1 ' will give offsets of \(\{0 ; 0.1 ; 0.2 ; 0.3 ; \ldots\}\)
\begin{tabular}{llcccc}
\hline experiment_preview_filename & CS- & S3 & Exp & V \\
& varchar(255) & {\([\mathrm{mc}]\)} & & [Ver]
\end{tabular}

Name of the file containing the preview plot of selected spectra to be displayed
\(\rightarrow\) plot generated automatically during import if there is no file
Image formats: .png, .jpg, (.gif)
Note:
- this plot will replace the automatically generated plot
- it should include the full "experiment_title" on top of the figure
- image size should be preferably around \(\mathrm{HxV}=650 \mathrm{x} 460\) pixels (note: will be resized automatically)
- it will be displayed in the result page for quick look at the experiment results

Note \(D B\) : this file should be zipped with the "experiment-spectra" import xml file for import.

\section*{Experiment images and results}
\begin{tabular}{llccc} 
experiment_images & List \([\mathbf{L 8}]\) & {\([\mathrm{O}]\)} & & \\
experiment_image_filename & varchar(255) & U & Exp & V \\
& & {\([\mathrm{m}]\)} & L 8 & [Ver]
\end{tabular}
\(£:\) Pictures of the experiment and of overviews of its results
-- File name (with extension) of the picture of the experiment or of its results Image formats: .png, .jpg, (.gif)

Note:
- These files can include pictures of the whole experiment but also plots of spectra (or zooms) or produced results of the whole (or part of the) experiment.
- Note that there is already a preview plot (for search results display purpose) with a limited selection of spectra (5-8) of the experiment that is generated automatically during import using the flag
"spectrum_experiment_preview_flag". It can be also prepared and
\begin{tabular}{lllll} 
& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Experiment references} & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{£: Publications in which the experiment and the whole spectral data set are published}} \\
\hline \multirow[t]{2}{*}{experiment_publications} & \multirow[t]{2}{*}{List [L10]} & \multirow[t]{2}{*}{[£o]} & & & & \\
\hline & & & & & & \begin{tabular}{l}
Note: The experiment should be at least described in some details in the paper or ALL the spectra should be ploted (or at least part of each spectrum, \\
\(E x\) : for a BRDF curve versus phase angle at one given wavelength
\end{tabular} \\
\hline \multirow[t]{4}{*}{experiment_publication_uid [*]} & \multirow[t]{4}{*}{varchar(255)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{S} 2 / \mathrm{S} 2 \mathrm{~s} \\
& {\left[\mathrm{fo}_{\mathrm{o}} \mathrm{~m}\right]}
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Exp \\
Publi \\
L10
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{--} & Link to the existing UID of the publication in which the experiment or the whole spectral data set are published \\
\hline & & & & & & Condition: at least one compulsory when the experiment or all spectra are already published in a publication \\
\hline & & & & & & Note: these papers should be in the publications database, and should have "publication_content" = 'spectral data' or 'BRDF data' (or 'instrumenttechnique') \\
\hline & & & & & & \begin{tabular}{l}
Note DOI: \\
- recommended option as "RelatedIdentifier / relationType=IsReferencedBy" (12.2): "publication_doi"
\end{tabular} \\
\hline experiment_publication_comment s & & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Comments about the experiment or spectral dataset in the publication \\
Note: for exemple which part of the dataset of the experiment is published, ...
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Experiment sponsors} \\
\hline \multirow[t]{2}{*}{experiment_sponsors} & \multirow[t]{2}{*}{List [L11]} & \multirow[t]{2}{*}{[O]} & & & & £: List of organizations that provided ponctual financial support to the experiment \\
\hline & & & & & & \begin{tabular}{l}
Note DOI: \\
- recommended option as "ContributorType=Sponsor" (7.1)
\end{tabular} \\
\hline experiment_sponsor_acronym & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Exp & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Acronym of the organization that provided ponctual financial support to the \\
\hline
\end{tabular}


\subsection*{13.5 Experiment structure Table}

\section*{Root of the table: structure}

Data type: in 'Experiment and spectra'
Notes:
- This structure is used to organize the experiment in sections and subsections when we want to put in a single experiment a homogeneous series of samples (or a single sample) with one to three varying sample, environment or instrument parameters (eg. mixtures of 2 materials in different proportions; same material with different grain sizes...). The organization is made according to these parameters.
- It is not used when a single initial sample (evolving or not during the experiment) has only one varying parameter during the experiment: the "spectra" structure id sufficient for this simple case. However it may be used to split the experiment in several sections 1 ) when at least 2 environment or instrument parameters vary successively during the experiment (e.g. several heating/cooling sequences, or pressure stages coupled with heating/cooling sequences, \(\ldots\)... or 2 ) when spectra of a single initial sample have been recorded simultaneously with several instrument-techniques, or 3 ) when several levels of spectral products are proposed.
- The experiment, the sections and the subsections will be displayed in SSHADE in the order and with the structure defined here together with their title and the information on their type of variable parameters (variable sample, environment or instrument parameters). The section and subsection titles are subtitles of the general title of the experiment ("experiment_title").

some processing) with a second varying parameter.
- when there are two varying parameters, , the subdivision along the first parameter is done in "structure_sections" and that of the second parameter is done in "structure_section_spectra"
- when there are three varying parameters, the subdivision along the second parameter is done in "structure_section_subsections" and that of the third parameter in "subsection_spectra"
\begin{tabular}{llccc}
\begin{tabular}{l} 
structure_sections_variable_para \\
meter
\end{tabular} & openum(text) & U & Struct & V \\
[!_m] & & [Ver]
\end{tabular}
-- Type of sample, environment, instrument or spectrum parameter varying between the sections of the experiment.
OpenEnum: \{no, sample composition, sample abundance, sample size, sample thickness, sample texture, sample grain size, sample phase, constituent, chemical variability, formation condition, temperature, pressure, mechanical stress, reactant, time, irradiation type, irradiation energy, irradiation dose, spectrum type, spectral range, illumination-observation geometry, incidence angle, emergence angle, phase angle, azimuth angle, polarization, observation mode, other\}

\section*{Definitions: see "experiment_variable_parameters_type"}

Note xml: this KW is a tag at each block "structure_subsections" Exemples:
- Series of mixtures of olivine powder with coal => 'sample composition'
- Series of tholins samples formed with varying initial CH4/N2 ratios => 'sample composition'
- Series of olivine powder samples with varying grain sizes of = ‘sample texture'
- Series of crystalline phases of nitrogen ice => 'sample phase'
- NIR and MIR spectra of CH4 ice at various temperatures => 'spectral range’
- Transmission and absorption coefficient spectra of CH4 ice at various temperatures \(=>\) 'spectral product'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline structure_sections & List [L1] & [!o] & & & & £: Main sections of the experiment \\
\hline \multirow[t]{2}{*}{structure_section_order [-xml]} & \multirow[t]{2}{*}{\(\operatorname{int}(4)\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!_\mathrm{c}\right]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Struct L1} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\text { Ver }]}
\end{gathered}
\]} & \multirow[t]{2}{*}{--} & \begin{tabular}{l}
Order of the sections \\
- determined automatically during import from the order of the "structure_section" blocs
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
it should be used to sort the samples, series of samples, or environment, instrument or spectrum parameters values in order of increasing values of the first varying parameter (grain size, concentration of one material, temperature, ...).
\end{tabular} \\
\hline structure_section_title & \(\operatorname{varchar(255)~}\) & \[
\begin{gathered}
\mathrm{U} \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Struct \\
L1
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Title describing the sample and the fixed and variable sample, environment, instrument or spectrum parameters of this section of the experiment \\
\hline & & & & & & \begin{tabular}{l}
Note: \\
- it should contain global info on the sample (or subseries of samples), on the type/range of spectra, on the varying sample, environment, instrument or spectrum parameters and on the value taken by the varying parameter in this experiment section \\
- it will be displayed as search result.
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
Ex: \\
- 'Olivine/iron mixture ( \(90 / 10 \mathrm{w} \%\) ) with two grain sizes \((20,30 \mu \mathrm{~m})\) at 50 and 60 K ' \\
- 'Olivine/iron mixture ( \(70 / 30 \mathrm{w} \%\) ) with two grain sizes \((20,30 \mu \mathrm{~m})\) at 50 and \(60 \mathrm{~K}^{\prime}\) \\
- 'Near-IR transmission spectra of solid and liquid CH4 between 10 and \(120 \mathrm{~K}^{\prime}\) \\
- 'Mid-IR transmission spectra of solid and liquid CH4 between 10 and \(120 \mathrm{~K}^{\prime}\)
\end{tabular} \\
\hline structure_section_description & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Struct \\
L1
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Detailled description of the sample and the fixed and variable sample, environment, instrument or spectrum parameters of this section of the experiment \\
\hline
\end{tabular}

\section*{Notes:}
- it should contain complete info on the sample (or subseries of samples), or on the spectra types/range, and in particular the value taken by the varying parameter in this experiment section, as well as possible other variable parameters (with values or range of values).
- it will be displayed as detailed info on search result.

Ex:
- 'This experiment section contains the olivine and iron minerals mixture with relative abundance of \(90 / 10 \mathrm{w} \%\). The mixture is studied for two grain size ranges ( \(20+/-5\) and \(30+/-6 \mu \mathrm{~m}\) ), each at two temperatures: 50 and \(60 \mathrm{~K}^{\prime}\)
- 'This experiment section contains the olivine and iron minerals mixture with relative abundance of \(70 / 30 \mathrm{w} \%\). The mixture is studied for two grain size ranges ( \(20+/-5\) and \(30+/-6 \mu \mathrm{~m}\) ), each at two temperatures: 50 and \(60 \mathrm{~K}^{\prime}\)
- 'Near-IR transmission spectra of solid and liquid CH4 at temperatures between 10 and 120 K with a step of 10 K . Phase I at 10 and 20 K , phase II between 30 and 90 K , liquid above 90 K '
- Mid-IR transmission spectra of solid and liquid CH4 at temperatures between 10 and 120 K with a step of 10 K . Phase I at 10 and 20 K , phase II between 30 and 90 K , liquid above 90 K '

\section*{Structure: subsections}

Definition: The "subsections" are the secondary subdivision of the series of samples, along the second varying parameter, when there are three varying parameters.
Condition: "subsections" is mandatory when there are three "experiment_variable_parameters_type"
Note: i.e. mandatory when there is a triple series of varying sample, environment, instrument or spectrum parameters
Notes:
- a subsection can contain either measurements on a series of samples, or measurements of one single initial sample (but it may evolve upon some processing) with a third varying parameter.
\begin{tabular}{|c|c|c|c|c|c|}
\hline structure_section_subsections_var openum(text) iable_parameter & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{m}]}
\end{gathered}
\] & \begin{tabular}{l}
Struct \\
L1
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Type of sample, environment, instrument or spectrum parameter varying between the subsections of this section of the experiment. \\
OpenEnum: \{no, sample composition, sample abundance, sample size, sample thickness, sample texture, sample grain size, sample phase, constituent, chemical variability, formation condition, temperature, pressure, mechanical stress, reactant, time, irradiation type, irradiation energy, irradiation dose, spectrum type, spectral range, illumination-observation geometry, incidence angle, emergence angle, phase angle, azimuth angle, polarization, observation mode, other\} \\
Definitions: see "experiment_variable_parameters_type" \\
Note xml: this KW is a tag at each block "structure_subsections" \\
Ex: see "structure_sections_variable_parameter"
\end{tabular} \\
\hline structure_section_subsections List [L2] & [!o] & & & & £: Subsections of the experiment \\
\hline structure_section_subsection_ord int(4) er [-xml] & \[
\begin{gathered}
\mathrm{P} \\
{[!\mathrm{c}]}
\end{gathered}
\] & \begin{tabular}{l}
Struct \\
L1 \\
L2
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Order of the subsections \\
- determined automatically during import from the order of the "structure_subsection" blocs
\end{tabular} \\
\hline & & & & & Note: it should be used to sort the sample (for sample series), environment, instrument or spectrum parameters values (for single initial sample) in order of increasing values of the second varying parameter (grain size, concentration of one material, temperature, ...). \\
\hline structure_section_subsection_title varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[!\mathrm{m}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Struct } \\
\text { L1 } \\
\text { L2 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
{[\text { Ver }]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Title describing the sample and the fixed and variable sample, environment, instrument or spectrum parameters of this subsection of the experiment Note: \\
it should contain global info on the sample, on the type/range of spectra, on the varying sample, environment, instrument or spectrum
\end{tabular} \\
\hline
\end{tabular}
structure_section_subsection_des blob
cription
\begin{tabular}{llccc} 
structure_section_(subsections)_s & openum(text) & U & Struct & V \\
pectra_variable_parameter & {\(\left[!_m\right]\)} & L1 & [Ver]
\end{tabular}
structure_section_(subsection)_sp List [L3]
ectra
\begin{tabular}{lccc} 
structure_section_(subsection)_sp int(4) & P & Struct & V \\
ectrum_order [-xml] & {\(\left[!_c\right]\)} & L1 & [Ver] \\
& & L2 & \\
& & L3 &
\end{tabular}
-- Type of sample, environment, instrument or spectrum parameter varying between the spectra of this (sub)section of the experiment.

OpenEnum: \{no, sample composition, sample abundance, sample size, sample thickness, sample texture, sample grain size, sample phase, constituent, chemical variability, formation condition, temperature, pressure, mechanical stress, reactant, time, irradiation type, irradiation energy, irradiation dose, spectrum type, spectral range, illumination-observation geometry, incidence angle, emergence angle, phase angle, azimuth angle, polarization, observation mode, other \(\}\)

\section*{Definitions:}
- see "experiment_variable_parameters_type"
- ' \(n o\) ': for the case when there is only one spectrum for a series or subseries of sample (i.e. without any varying environment, instrument or spectrum parameter)

\section*{\(£:\) List of the spectra}
-- Order of the spectrum in this list
- determined automatically during import from the order of the "structure_section_(subsection)_spectrum_uid"

Note:
this order should be used to sort the samples, or environment, instrument or spectrum parameters values in order of increasing values of the second (in "section_spectra") or third (in "subsection_spectra") varying parameter (temperature, ...).
-- Link to the existing UID of the spectrum belonging to this experiment (sub)section

Note:
They should be in the order you want they appear in SSHADE
- The spectra are described in the "spectrum" table...


\section*{14. Spectroscopic Data}

\subsection*{14.1 SPECTRAL DATA}

The spectroscopic data currently identified come from 5 different instrument types (plus their microscopic variants) and have different corresponding 'calibrated spectra' (level 1) and higher levels of products (levels 2 to 4 ):

\section*{Transmission spectroscopy \\ Level}
'Transmission'
'Absorbance'
'normalized absorbance'
'Optical density’
'Absorption coefficient' (unit: cm-1)
'Optical constants'
(level 1)
(level 2) (math transformation)
(level 2) (math transformation)
(level 2) (math transformation)
(level 3) (fundamental solid parameter)
(level 4) (fundamental solid parameter set)
(level 1) (calibrated spectrum + correction)
(level 2) (calibrated spectrum + correction)
(level 2) (calibrated spectrum + normalizedto \(\cos (\mathrm{i})\) )
(level 2) (4D calibrated spectrum data set)
(level 3) (integrated or not ?)
(level 2-3) (measured or angular integration)
(level 2-3) (measured or angular integration)
(level 3) (3D data extraction + inter/extrapolation)
(level 4) (radiative transfer parameter set)

\section*{Operation}
(calibrated spectrum + correction)

And their different polarization variants

\section*{Emission spectroscopy}
'Thermal emission' (unit: ?)
'Thermal emittance'
(level 1) (calibrated spectrum + correction)
'Spectral directional emittance distribution function' (SDEDF)
'Directional thermal emissivity'
(level 2) (math transformation)
(level 2) (2D calibrated spectrum data set)
'Directional emittance distribution function at \(\lambda\) ' (DEDF)
(level 3) (fundamental parameter)
'Spectral directional emissivity distribution function' (SDEyDF)
(level 3) (1D data extraction + inter/extrapolation)
'Directional emissivity distribution function at \(\lambda\) ' (DEyDF)
(level 4)
'radiance factor'
'specular reflectance'
'reflectance factor' (include biconical, any integrated)
'Spectral bidirectional reflectance distrib. function' (SBRDF)
'Anisotropy factors
'Hemispherical-directional reflectance'
'Directional-hemispherical albedo'
'Bidirectional reflectance distribution function at \(\lambda\) ' (BRDF)
'Scattering coefficients'
(fundamental parameter)
(fundamental parameter - 1D extraction)
'Hemispherical thermal emissivity'

\section*{ATReflection spectroscopy}
'Transmission'
'Absorbance'
'Frequency corrected absorbance' (name?)
Products: ? (kn, ...)

\section*{Raman spectroscopy}
'Raman scattering'
'Normalized Raman scattering'
'Raman scattering efficiency'
'Raman scattering efficiency'

\section*{Fluorescence spectroscopy}
'Fluorescence emission'
'Normalized fluorescence emission'
'Fluorescence emission efficiency’
(level 4) (integrated fundamental parameter)
(level 1) (calibrated spectrum + correction)
(level 2) (math transformation)
(level 3) (math transformation)
(level 1) (calibrated spectrum + correction)
(level 2) (corrected and normalized spectrum)
(level 4) (fundamental solid parameters)
(level 1) (calibrated spectrum + correction)
(level 2) (corrected and normalized spectrum)
(level 4) (fundamental solid parameters)

Note: "raw signal spectra" (level 0 product), i.e. before instrument response calibration, are not intended to be stored in this database, except special case where they may be needed as the unique source data of a product.

Definitions: cf. «spectrum_type»

\subsection*{14.2 Description}

The spectroscopic data consist of a "spectrum file" and some "file and spectrum information". The spectrum is linked with an "experiment" which connects to the "sample" and to the "instrument parameters" used. A spectrum can also have some specific values for a limited number of variables parameters in the "sample" (processing) and/or "instrument parameters" tables, listed in the "experiment". These values are given in this spectrum table.

Each type of spectral measurement (linked with instrument type and technique used) can deliver a different type of "calibrated spectrum" (level 1 product) which can have a different intensity unit (e.g. transmission spectra, reflection spectra, emission spectra, ...).

In addition several types of "calibrated spectra" are frequently simply and individually normalized or converted (mathematically) in another unit (level 2 product) for convenience (linearization of absorption, normalization of Raman spectra (when not an absolute measurement), ...) and sometimes with additional individual processing (such as baseline removing, ...). These spectra keep all the parameters of the level 1 product from which they are derived.

At higher levels of analysis (level \(\mathbf{3} \boldsymbol{\&} \mathbf{4}\) products) it is possible to combine several spectra either from different spectral ranges (e.g., Vis + NIR + MIR)
and/or from different but very similar samples (e.g. same samples but with different thicknesses for absorption coefficient or optical constants spectra).
Some high level spectral products are also the result of angular integrations of a set of illumination or observation geometries (e.g. spectra at various emergence angles for directional-hemispherical albedo spectra).

Although these products strongly depend on the instrument type and technique used we have keep their metadata in a single table with most of their parameters common and a few specific to some techniques. The main changes for different instrument types and techniques will be in the instrument parameters table (fixed or variable).

The spectrum table contains the "spectrum links", information on "spectrum type", and "spectrum origin and history", the values of the "spectrum variable parameters" (sample and instrument), some information on "spectrum analysis and validation" and "references" as well as links and information on the associated "spectrum file".
- "Calibrated spectra" (level 1 product) or spectra directly derived from them (level 2 products; simple transformation of level 1 spectra) are directly connected with one sample and one set of instrument parameters (trough the experiment). They can have a few sample and instrument variable parameters within an experiment.
These variable parameters give the values specific to the spectrum for some instrument measurement parameters (e.g., incidence/emergence/azimuth angles, Raman irradiation time, ...), and sample processing parameters (temperature, annealing temperature and time, interaction with atmospheric gas (pressure, composition), ...).
- For more evolved spectral products, such as absorption coefficient (level 3 product) or optical constants (level 4 product) that can be the combination of several spectra either coming from measurements with different instrument parameters, or on similar samples (same composition, same intensive state parameters) but with different extensive physical state parameters (different thicknesses, ...) there is no more direct link between the spectrum and one unique sample and/or one set of instrument parameters. It is thus necessary to define a "generic sample" (e.g., a sample with a variable thickness) and a simplified "generic instrument parameter set" (e.g., to redefine the spectral parameters: range, resolution and sampling) that have no real existence in order to use the same "sample table" and "instrument parameter table" than for a spectrum measured with a real instrument on a real sample.

\subsection*{14.3 Microscopic measurements on heterogeneous matters}

A special case occurs with the microscopic measurements of samples with very heterogenous composition at the microscopic scale. A global description of the sample is not fully relevant for spectral measurements that are peformed at the constituent scale. It is thus necessary to know on which constituent each spectral measurement is made. An accurate description of the constituents (at least those measured) should thus be done and a "pointer" ("sample_primary_constituent_index") should tell in the spectrum table which constituent(s) is(are) probed by each microscopic spectrum.

Note: it is not always possible to have the knowledge of which constituents are effectively probed if several constituents are in the measurement spot. Their relative proportion is also generally extremely difficult to estimate, given the difficulty to define precisely the spatial resolution, horizontal and vertical, of microscope spots (probed volume).

\subsection*{14.4 Spectrum Table}

Root of the table: spectrum
Data type: 'Experiment and spectra'
Note: common to all instruments and all product levels


\section*{Spectrum of the experiment}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_import_mode & enum(text) & P & Exp & V & & Mode of import of the "spectrum" data and metadata \\
\hline & & [!!_m] & & & & Enum: \{first import, inherited, ignore, draft, no change, correction, new version, invalidate \(\}\) \\
\hline & & & & & & Constraint: 'invalidate' only when "spectrum_access_right" is already \\
\hline
\end{tabular}

\section*{'public'}

\section*{Definitions:}

There are 2 levels of import:
- 'first import': for first import of the metadata and data
- 'use existing': use an existing table specified by its UID. Need only to give this UID and some values of KW
- Note: not used in spectrum, mostly in sample and matters)

There are 2 levels of 'no correction':
- 'ignore': fully ignore this metadata table.
- 'no change': when there is no change in this table (for correction in others tables) but it exists already in the database (checked)
- 'use existing': allow to use an already imported spectrum in another experiment.
There are 3 levels of correction:
- 'correction': used to correct/add values of metadata, links, or associated files for data already imported in the database. For spectra it only modifies values/links/files on the current (last) version of the metadata. It should not be used to change a spectrum file which has data modified inside its valid spectral range (or only very minor changes). But it can be used when values of the spectrum data file are modified outside the valid spectral range
- 'new version': used when values of the spectrum data file are changed within the valid spectral range. This change may be simply a local or global improvement of the analysis of the data (but within the same 'spectrum_type'), a spectral extension of the data, ... but it may be also a correction of a local or global error. All this will be described using the "spectrum_analysis", "spectrum_history" and/or "spectrum_comments" KWs with possible increase of the value of the "spectrum_quality" KW. It will automatically increment the version number of the spectrum (spectrum_version) and of the experiment ("experiment_version").
- 'invalidate': used when a public spectrum is found to be mostly or fully invalid but there is no way to correct it and import a new version. This import mode did not wait for a new spectrum.
There is one general mode:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{spectrum_xml_filename [-xml]} & \multirow[t]{2}{*}{\begin{tabular}{l}
varchar(255) \\
[virtual KW]
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[!!, \mathrm{vc}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Spectr} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & & Name of the storage copy of the xml import file of the spectrum metadata determined automatically during import (from "spectrum_uid»?) \\
\hline & & & & & & Note: this file is stored in order to be able to retrieve it when it is necessary to apply correction or import a new version \\
\hline spectrum_index [**][-xml] & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{\left[!!_g\right]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Automatic random but unique number (internal ID) given to new spectrum \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { spectrum_uid [**] } \\
& \text { [spectrum_uid] }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\operatorname{varchar(255)~}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Spectr} & \multirow[t]{2}{*}{F} & -- & \begin{tabular}{l}
Unique identifier code (UID) given to the spectrum table (to be created) \\
Nomenclature: Create this code name with 'SPECTRUM_' very accurately in order to be simple and unique
\end{tabular} \\
\hline & & & & & & It should be of the style 'SPECTRUM_AB_yyyymmdd_123...' where 'AB' is initial of people preparing the import, 'yyyymmdd' is the full date of the day, and ' \(123 . .\). ' should be alphanumeric (only with ' \(\quad\) '), and up to 10 characters. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
spectrum_sshade_url [-xml] \\
[spectrum_sshade_url]
\end{tabular} & \begin{tabular}{l}
varchar(255) \\
[Virtual KW]
\end{tabular} & \[
\begin{gathered}
\mathrm{U} \\
{\left[!_c\right]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Direct web link to the SSHADE spectrum page displaying the spectrum data and its metadata \\
\hline & & & & & & \(\rightarrow\) automatically generated and in practice not stored in database Note: can be determined by knowing the UID (not restricted to spectra) \\
\hline & & & & & & \(\Rightarrow\) https://www.sshade.eu/data/"spectrum_uid"/"spectrum_version" \\
\hline & & & & & & Note: can be also obtained by copying the URL when viewing a spectrum or looking at its details. \\
\hline
\end{tabular}


magnetic loss tangent, bidirectional reflectance, bidirectional reflectance distribution function, radiance factor, reflectance factor, normalized reflectance, albedo, anisotropy factor, complex reflectance ratio, Stokes parameters, normalized Stokes parameters, polarization parameters, thermal emission, thermal radiance, thermal emittance, thermal emissivity, scattering intensity, differential scattering cross section, normalized differential scattering cross section, scattering cross section parameters, scattering efficiency factor parameters, single scattering albedo, Raman scattering intensity, normalized Raman scattering intensity, Raman scattering coefficient, Raman scattering efficiency, fluorescence emission, normalized fluorescence emission, fluorescence emission efficiency, radiative transfer model parameters\}
Constraint: for "spectrum_import_mode \(=\{\) correction, new version \(\}\) "spectrum type" can be changed only to a type with the same "spectrum_files_parameter_type"

Ex:
- can change 'absorbance' to 'absorption coefficient'
- cannot change 'absorbance' to 'optical constants'

\section*{Definitions:}
- 'raw': for any raw measurement, i.e. raw detector signal before division by a background or reference spectrum.

Note: This case is rarely used and not recommended. It is mostly used to provide the background or reference spectrum for first level products. It is also used to provide the measurements used for higher levels when the first level is missing. (e.g. raw spectra to calculate the polarization degree, angle and Pq when reflectance spectra not available).
- 'transmission': simple ratio of transmited to incident intensity of light, I/Io
- 'absorbance': it is the common logarithm of the ratio of incident to transmitted spectral radiant power through a material \((\mathrm{A}=-\log (\mathrm{T}))\).
- 'normalized absorbance': It is the absorbance normalized to ' 1 ' at a given wavelength/wavenumber/frequency, to be defined in "spectrum_reference_position". Formerly called 'optical density'
(discouraged use).
- 'optical depth': it is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material ( \(O D=-\ln (T)\) ).

Note: OD = A * \(\ln (10)\)
- 'absorption coefficient': absorption/attenuation coefficient in various units. Include 'mass absorption/attenuation coefficient' and 'molar attenuation coefficient'

Note: unit to be defined in "spectrum_intensity_unit").
- 'optical constants': real and imaginary parts of the refractive index
- associated with "spectrum_files_parameter_type"='complex spectrum'
- 'ATR transmission': Attenuated Total Reflectance transmission spectra trough an ATR crystal
- 'ATR absorbance': Attenuated Total Reflectance spectra converted to absorbance
- 'corrected ATR absorbance': ATR absorbance spectra corrected from the effects caused by the dependence of penetration depth on wavelength (relative band intensity distortion), by dispersion of the refractive index (shift of bands to lower wavenumber) and by nonpolarization effects (deviation from Beer's Law).

Note: they are model dependent, so it is good to tell in
"spectrum_analysis" which model is used.
- 'complex admittance': \(\mathrm{Y}=\) 'conductance' G (real part) + 'susceptance' B (imaginary part)
- associated with "spectrum_files_parameter_type"='complex spectrum'
- 'complex impedance': \(\mathrm{Z}=\) 'resistance' R (real part) + 'reactance' X (imaginary part)
- associated with "spectrum_files_parameter_type"='complex spectrum'
- 'relative complex permittivity': \(\varepsilon_{\mathrm{r}}\) relative complex permittivity (ratio relative to the permittivity of vacuum \(\varepsilon_{0}\) called the 'electric constant') \(=\) 'dielectric constant' \(\varepsilon_{r}^{\prime}\) (real part) + 'relative electric conductivity' \(\varepsilon^{\prime \prime}{ }_{r}\) (imaginary part)
- associated with "spectrum_files_parameter_type"='complex

\section*{spectrum'}
- 'dielectric loss tangent': dielectric loss tangent \(\tan \delta_{\mathrm{e}}=\varepsilon\) " / \(\varepsilon\) ' (for mm-\(\mathrm{cm}-\mathrm{m}-\mathrm{km}\) wavelengths)
- 'relative complex permeability': \(\mu_{\mathrm{r}}\) relative complex permeability (ratio relative to the permeability of vacuum \(\mu_{0}\) called the 'magnetic constant') = 'magnetic constant' \(\mu_{r}^{\prime}\) (real part) + 'relative magnetic conductivity?' \(\mu_{r}{ }_{r}\) (imaginary part)
- associated with "spectrum_files_parameter_type"='complex spectrum'
- 'magnetic loss tangent': magnetic loss tangent \(\tan \delta_{\mathrm{m}}=\mu\) " \(/ \mu\) ' (for \(\mathrm{mm}-\mathrm{cm}-\mathrm{m}-\mathrm{km}\) wavelengths)
'bidirectional reflectance': \(\mathrm{r}(\mathrm{i}, \mathrm{e}, \mathrm{g})\). The bidirectional reflectance is the ratio of the radiance of a surface at a given illumination and viewing geometry, \(\mathrm{L}(\mathrm{i}, \mathrm{e}, \mathrm{g})\), to the collimated incident irradiance, F , perpendicular to the direction of travel of the light.

\section*{Notes:}
- unit: \(\mathrm{sr}^{-1}\)

Constraint: used only with
"parameters_instrument_angle_observation_geometry" = \{specular, bidirectional\}
'bidirectional reflectance distribution function': \(\operatorname{BRDF}(\mathrm{i}, \mathrm{e}, \mathrm{g}), \mathrm{r}_{\text {brdf }}\). The bidirectional reflectance distribution function is the ratio of the radiance of a surface at a given illumination and viewing geometry, \(\mathrm{L}(\mathrm{i}, \mathrm{e}, \mathrm{g})\), to the incident irradiance on the surface, \(\mathrm{E}(\mathrm{i})=\mathrm{F} \cdot \cos (\mathrm{i})\)

Notes:
- unit: \(\mathrm{sr}^{-1}\)
- it is the 'bidirectional reflectance' divided by the cosine of the incident illumination: BRDF(i,e,g) \(=\mathrm{r}(\mathrm{i}, \mathrm{e}, \mathrm{g}) / \cos (\mathrm{i})\)
Constraint: same as for 'bidirectional reflectance'
- 'radiance factor': \(\operatorname{RADF}(0, \mathrm{e}, \mathrm{g}), \mathrm{r}_{\mathrm{f}}\). The (bidirectional) radiance factor is the ratio of the radiance of a surface at a given illumination and viewing geometry, L(i,e,g), to the radiance of a perfect Lambert surface illuminated and viewed normally \(\left(\mathrm{i}=\mathrm{e}=0^{\circ}\right), \mathrm{L}_{\mathrm{Lamb}}(0,0,0)\).

Notes:
- it has no unit
- frequently called 'I/F', or the 'apparent albedo'
- it is the reflectance factor for normal illumination: \(\operatorname{REFF}(0, \mathrm{e}, \mathrm{g})\)
- \(\operatorname{RADF}(0, \mathrm{e}, \mathrm{g})=\pi \cdot \mathrm{r}(\mathrm{i}, \mathrm{e}, \mathrm{g})=\pi \cdot \cos (\mathrm{i}) . \operatorname{BRDF}(\mathrm{i}, \mathrm{e}, \mathrm{g})\) Constraint: can be of any type of illumination-observation geometry (i,e,g)
- 'reflectance factor': \(\operatorname{REFF}(\mathrm{i}, \mathrm{e}, \mathrm{g}), \mathrm{r}_{\mathrm{c}}\). The (bidirectional) reflectance factor is the ratio of the radiance of a surface at a given illumination and viewing geometry, \(\mathrm{L}(\mathrm{i}, \mathrm{e}, \mathrm{g})\), to that of a Lambertian surface illuminated and viewed in the same geometry \(L_{\text {Lamb }}(\mathrm{i}, \mathrm{e}, \mathrm{g})\)

Notes:
- it has no unit
- it is the radiance factor divided by the cosine of the incident illumination: \(\operatorname{REFF}(\mathrm{i}, \mathrm{e}, \mathrm{g})=\operatorname{RADF}(0, \mathrm{e}, \mathrm{g}) / \cos (\mathrm{i})\)
- \(\operatorname{REFF}(\mathrm{i}, \mathrm{e}, \mathrm{g})=\pi . \operatorname{BRDF}(\mathrm{i}, \mathrm{e}, \mathrm{g})=\pi \cdot \mathrm{r}(\mathrm{i}, \mathrm{e}, \mathrm{g}) / \cos (\mathrm{i})\)
- sometimes called the 'Radiance coefficient', the 'Lambert albedo', or the 'reflectance coefficient' \(r_{c}\)
Constraint: can be of any type of illumination-observation geometry (i,e,g)
- 'normalized reflectance': any type of the above reflectance normalized to ' 1 ' at a given wavelength/wavenumber/frequency, to be defined in "spectrum_reference_position"
- 'albedo': all types of albedos, including spectrally integrated reflectance factors.

Note: The different albedos are mostly differentiated by their type of angular integration, which will be defined by
"parameters_instrument_angle_observation_geometry", but they all bear the same global definition.
- Normal albedo, \(\mathrm{A}_{\mathrm{n}}(0,0,0)\) (or normal reflectance \(\mathrm{r}_{\mathrm{n}}\) ): case for a surface illuminated and viewed perpendicularly; \(\mathrm{L}(0,0,0)\)
- \(\quad \mathrm{A}_{\mathrm{n}}(0,0,0)=\operatorname{REFF}(0,0,0)=\operatorname{RADF}(0,0,0)\)
- It is a particular bidirectional reflectance
- Directional-hemispherical albedo, \(\mathrm{A}_{\mathrm{h}}(\mathrm{i})\) (or reflectance \(\mathrm{r}_{\mathrm{h}}\) ): ratio of the total reflected power, in all directions in the upper hemisphere, to the collimated irradiance incident from a given
direction on the surface:
- also called hemispherical albedo, or plan albedo
- case of the angular integration of the illumination over the hemisphere.
- Hemispherical-directional albedo, \(\mathrm{A}_{\mathrm{hd}}(\mathrm{e})\) (or reflectance \(\mathrm{r}_{\mathrm{hd}}\) ): ratio of the reflected radiance in a given direction, in all directions, to to the total incident power on the surface:
- case of the angular integration of the reflectance over the hemisphere.
- Bihemispherical albedo, \(\mathrm{A}_{\mathrm{s}}\) (or reflectance \(\mathrm{r}_{\mathrm{s}}\) ): ratio of the total reflected power, in all directions in the upper hemisphere, to the total incident power on the surface:
- also called spherical albedo
- case of the angular integration of both the illumination and reflectance over the hemisphere.

\section*{Notes:}
- The type and spectral range of integration should be specified in "parameters_instrument spectral observation mode" and "experiment/_spectrum_spectral_comments"
- The type and angular range of integration should be specified in
"parameters_instrument_angle_observation_geometry" and "experiment/_spectrum_angle_comments"
- 'complex reflectance ratio': composed of an 'amplitude component' and the 'phase difference' (for ellipsometry)
- 'Stokes parameters': set of the four Stokes parameters: I, Q, U, V
- Stokes parameter \(\mathrm{I}=\mathrm{I}\left(0^{\circ}, 0^{\circ}\right)+\mathrm{I}\left(90^{\circ}, 0^{\circ}\right)\). Total intensity.
- Stokes parameter \(\mathrm{Q}=\mathrm{I}\left(0^{\circ}, 0^{\circ}\right)-\mathrm{I}\left(90^{\circ}, 0^{\circ}\right)\)
- Stokes parameter \(\mathrm{U}=2 \mathrm{I}\left(45^{\circ}, 0^{\circ}\right)-\mathrm{I}\left(0^{\circ}, 0^{\circ}\right)-\mathrm{I}\left(90^{\circ}, 0^{\circ}\right)\)
- Stokes parameter \(\mathrm{V}=2 \mathrm{I}\left(45^{\circ}, 90^{\circ}\right)-\mathrm{I}\left(0^{\circ}, 0^{\circ}\right)-\mathrm{I}\left(90^{\circ}, 0^{\circ}\right)\)

Notes:
- used for spectro-angular files containing all or part of these 4 parameters, instead to have them in separate files
- sometimes the parameter ' I ' is given separately in its intensity type (e.g. transmission, reflectance, ...)
- associated with "spectrum_files_parameter_type"='polarimetric spectrum'
- 'normalized Stokes parameters': set of the three normalized Stokes parameters: I, Q/I, U/I, V/I
- used for spectro-angular files containing all these 3 parameters, instead to have them in separate files
- associated with "spectrum_files_parameter_type"='polarimetric spectrum'
- 'polarization parameters': set of the (3 or) 4 polarization parameters: contrast, linear polarization (DoLP), position angle, and circular polarization
- 'polarization contrast': It is equal to the reduced Stokes parameter Pq which is the ratio between the Stokes parameter Q and the total intensity of light \((\mathrm{I}=\mathrm{I} 0+\mathrm{I} 90) .(\mathrm{Pq}=\mathrm{Q} / \mathrm{I})\)
Note: may be also called: reduced Stokes parameter Pq, contrast, fraction of linear polarization Q , degree of linear polarization Q . polarization (\%), Q, Pq
- 'degree of linear polarization': Fraction of light which is polarized. \(\left(\mathrm{DolP}=\left(\mathrm{Q}^{2}+\mathrm{U}^{2}\right)^{1 / 2} / \mathrm{I}\right)\)
Note: may be also called: total degree of linear polarization, PL, fraction of linear polarization, \(\operatorname{DoLP}, \mathrm{m}_{\mathrm{L}}\)
- 'polarization position angle': is the angle between the direction of maximum polarization and the direction perpendicular to the scattering plane. \((\chi=1 / 2 \cdot \operatorname{atan}(\mathrm{U} / \mathrm{Q}))\)
Note: may be also called: Angle of polarization, AoP, or position angle
- 'degree of circular polarization': It is equal to the reduced Stokes parameter Pv which is the ratio between the Stokes parameter V and the total intensity of light \(\left(\mathrm{I}=\mathrm{I} 0^{\circ}+\mathrm{I} 90^{\circ}\right)\). ( \(\mathrm{Pv}=\mathrm{V} / \mathrm{I}\) )
Note: may be also called: reduced Stokes parameter Pv, fraction of circular polarization V , degree of circular polarization V , circular polarization (\%), V, DoCP, \(\mathrm{m}_{\mathrm{C}}\)
Notes.
- used for spectro-angular files containing all or part of these 4
parameters, instead to have them in separate files
- associated with "spectrum_files_parameter_type"='polarimetric spectrum'
- 'thermal emission': Thermal radiation power per unit area of radiating surface per unit of solid angle and per unit frequency
- 'thermal radiance': Radiant flux emitted by a surface, per unit area of radiating surface per unit solid angle. It is a directional quantity.
- 'thermal emittance': or radiant exitance (or radiant emittance) is the radiant flux emitted by a surface per unit area
- 'thermal emissivity': is the effectiveness of a surface in emitting energy as thermal radiation
- 'scattering intensity': intensity scattered by a medium (particles, solid, liquid) and collected by a detector
- 'differential scattering cross section’: angular dependence of scattering cross section \(\left(\mathrm{dC}_{\text {sca }} / \mathrm{d} \alpha\right)\) of a particle
- 'normalized differential scattering cross section', \(p\) : angular dependence of scattering cross section ( \(\mathrm{dC}_{\text {sca }} / \mathrm{d} \alpha\) ) of a particle normalized to its total cross section \(\mathrm{C}_{\text {sca }}\)
- 'scattering cross section parameters': set of the 3 scattering cross section parameters: scattering, absorption, extinction
- 'scattering cross section', \(\mathrm{C}_{\text {sca: }}\) : total scattering cross section Note: It is the hemispherical integral of the differential scattering cross section'
- 'absorption cross section', \(\mathrm{C}_{\mathrm{abs}}\) : total absorption cross section Note: Related with the absorption coefficient \(\alpha\) : \(\sigma=\alpha / N(\mathrm{~N}\) : molecule or particles number density)
- 'extinction cross section', \(\mathrm{C}_{\text {ext }}\) : sum of the absorption and scattering cross sections of a particle, \(\mathrm{C}_{\mathrm{sca}}+\mathrm{C}_{\mathrm{ab}}\).
- associated with "spectrum_files_parameter_type"='scattering spectrum'
- 'scattering efficiency factor parameters': set of the 3 scattering efficiency factor parameters: scattering, absorption, extinction
- 'scattering efficiency factor', \(\mathrm{Q}_{\mathrm{sca}}\) : which is defined as the ratio of the scattering cross-section to the geometrical cross-section \(\pi \mathrm{a}^{2}\).

Note: Also simply called 'scattering efficiency'
- 'absorption efficiency factor', \(\mathrm{Q}_{\mathrm{abs}}\) : which is defined as the ratio of the absorption cross-section to the geometrical cross-section \(\pi \mathrm{a}^{2}\).
Note: Also simply called 'absorption efficiency'
- 'extinction efficiency factor', \(\mathrm{Q}_{\mathrm{ext}}\) : which is defined as the ratio of the extinction cross-section to the geometrical cross-section \(\pi a^{2}\).
Note: Also simply called 'extinction efficiency'
- associated with "spectrum_files_parameter_type"='scattering spectrum'
- 'single scattering albedo': total fraction of light reflected by a single particle. It s the ratio of scattering efficiency factor to the extinction efficiency factor.
- 'Raman scattering intensity': intensity inelastically scattered (Raman scattering) by a medium (particles, solid, liquid) and collected by a detector
- 'normalized Raman scattering intensity': Raman scattering intensity normalized to ' 1 ' at a given wavelength/wavenumber/frequency, to be defined in "spectrum_reference_position".
- 'Raman scattering coefficient': ratio of the total scattered intensity per unit distance traveled by the exciting incident beam in the scattered media to the incident intensity
- 'Raman scattering efficiency' (or cross section): ratio of the number of photons scattered by Raman process to the total number of scattered photons
- 'fluorescence emission': intensity emitted by fluorescence by a medium (particles, solid, liquid) and collected by a detector
- 'normalized fluorescence emission': fluorescence emission normalized to ' 1 ' at a given wavelength/wavenumber/frequency, to be defined in "spectrum reference position".
- 'fluorescence emission efficiency': ratio of the number of photons emitted to the number of photons absorbed
- 'radiative transfer model parameters': set of parameters used in radiative transfer models
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
spectrum_intensity_unit \\
[spectrum_intensity_unit]
\end{tabular} & openum(text) & \[
\stackrel{\mathrm{U}}{\left[!!\mathrm{o} _\mathrm{m}\right]}
\] & Spectr & \[
\begin{gathered}
\mathrm{Vc} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Unit of the intensity of the spectrum, depending on the spectrum type \\
OpenEnum: \(\{\mathrm{cm}-1, \mathrm{~m}-1, \mathrm{~cm} 2 . \mathrm{g}-1, \mathrm{~m} 2 . \mathrm{kg}-1, \mathrm{~mL} . \mathrm{g}-1 \cdot \mathrm{~cm}-1, \mathrm{~cm} 2 \cdot \mathrm{~mol}-1\), \(\mathrm{m} 2 \cdot \mathrm{~mol}-1\), \(\mathrm{L} \cdot \mathrm{mol}-1 \cdot \mathrm{~cm}-1\), percent, permille, deg, count.s-1, count.nm-1, S , ohm, dB, sr-1, micron2, mm2, m2, m-1.sr-1, m2.sr-1, W.m-2, kW.m-2, W.sr1, kW.sr-1, W.m-2.sr-1, kW.m-2.sr-1, W.m-2.sr-1.cm-1, W.m-2.sr-1.micron-1, AU, no unit, unknown, ...\} \\
Condition: absolute mandatory only when "spectrum_type" = \{absorption coefficient, complex admittance, complex impedance, bidirectional reflectance, bidirectional reflectance distribution function, thermal emission, thermal radiance, thermal emittance, scattering intensity, differential scattering cross section, normalized differential scattering cross section, scattering cross
\end{tabular} \\
\hline
\end{tabular}
section parameters, Raman scattering intensity, Raman scattering coefficient, Raman scattering efficiency, fluorescence emission, fluorescence emission efficiency, radiative transfer model parameters \}

\section*{Definitions:}
- 'cm-1', 'm-1': for 'metric absorption coefficient' \(\left(\mathrm{cm}^{-1}, \mathrm{~m}^{-1}\right)\)
- 'cm2.g-1', 'm2.kg-1', 'mL.g-1•cm-1': for mass attenuation coefficient \(\left(\mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}, \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-1}, \mathrm{~mL} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~cm}^{-1}\right)\)
- 'cm2 \(\cdot \mathrm{mol}-1\) ', \(\mathrm{m} 2 \cdot \mathrm{~mol}^{-1}\) ', ' \(\mathrm{L} \cdot \mathrm{mol}-1 \cdot \mathrm{~cm}^{-1}\) ': for molar attenuation coefficient \(\left(\mathrm{cm}^{2} \cdot \mathrm{~mol}^{-1}, \mathrm{~m}^{2} \cdot \mathrm{~mol}^{-1}, \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)\)
- 'percent': \%
- 'permille': \%
- 'deg': angular \({ }^{\circ}\)
- 'count.s-1': count/s
- 'count.nm-1': count/nm
- 'S': Siemens
- 'ohm': \(\operatorname{Ohm}(\Omega)\)
- 'dB': decibel (dB)
- 'sr-1': sr \({ }^{-1}\)
- 'micron2', 'mm2', 'm2': \(\mu \mathrm{m}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\)
- 'm-1.sr-1': \(\mathrm{m}^{-1} / \mathrm{sr}\)
- 'm2.sr-1': m²/sr
- 'W.m-2', 'kW.m-2': W/m², kW/m²
- 'W.sr-1', 'kW.sr-1': W/sr, kW/sr
- 'W.m-2.sr-1', 'kW.m-2.sr-1': W/m²/sr, kW/m²/sr,
- 'W.m-2.sr-1.cm-1': W/m²/sr/cm \({ }^{-1}\)
- 'W.m-2.sr-1.micron-1': W/m²/sr/um
- 'AU': Arbitrary Unit (generally simple detector signal)
- 'no unit':
- 'unknown': there is a unit but it is unknown (quite similar to AU). Typical case for "spectrum_type" = 'raw'

\section*{Notes:}
- The following spectrum types have always no unit:
- absorbance, normalized absorbance, optical depth, optical constants, ATR absorbance, corrected ATR absorbance,
relative complex permittivity, relative complex permeability, normalized reflectance, thermal emissivity, scattering efficiency factor parameters, single scattering albedo, anisotropy factor, normalized Raman scattering intensity, normalized fluorescence emission
- The following spectrum types have generally no unit but may be sometimes expressed as ' \(\%\) ' (percent):
- transmission, ATR transmission, reflectance, radiance factor, reflectance factor, albedo, anisotropy factor, complex reflectance ratio, normalized Stokes parameters, polarization contrast, degree of circular polarization, degree of linear polarization
- The following spectrum types have generally no unit but may be sometimes expressed as 'decibel' (db):
- dielectric loss tangent, magnetic loss tangent
- A few ones have (or may have) specific units:
- Absorption/attenuation coefficient:
- metric \(\left\{\mathrm{cm}^{-1}, \mathrm{~m}^{-1}\right\}\)
- mass \(\left\{\mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}, \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-1}, \mathrm{~mL} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~cm}^{-1}\right\}\)
- molar \(\left\{\mathrm{cm}^{2} \cdot \mathrm{~mol}^{-1}, \mathrm{~m}^{2} \cdot \mathrm{~mol}^{-1}, \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right\}\)
- complex admittance: (Siemens: \(\mathbf{S}\) ),
- complex impedance (ohm),
- bidirectional reflectance, bidirectional reflectance distribution function: \(\left\{\mathrm{sr}^{-1}\right\}\)
- Stokes parameters: \(\{\mathrm{AU}\}\)
- thermal emission: \(\left\{\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}^{2} / \mathrm{cm}^{-1}, \mathrm{~W} / \mathrm{m}^{2} / \mathrm{sr} / \mu \mathrm{m},\right\}\)
- thermal radiance: \(\left\{\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}, \mathrm{kW} / \mathrm{m}^{2} / \mathrm{sr}\right\}\)
- thermal emittance: \(\left\{\mathrm{W} / \mathrm{m}^{2}, \mathrm{~kW} / \mathrm{m}^{2}\right\}\)
- scattering intensity: \(\left\{\right.\) count \(/ \mathrm{nm}, \mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}, \mathrm{kW} / \mathrm{m}^{2} / \mathrm{sr}, \mathrm{W} / \mathrm{sr}\), \(\mathrm{kW} / \mathrm{sr}\}\) but absolute values are rarely used
- differential scattering cross section: \(\left\{\mathrm{m}^{2} / \mathrm{sr}\right\}\)
- normalized differential scattering cross section: \(\left\{\mathrm{sr}^{-1}\right\}\)
- scattering cross section parameters: \(\left\{\mu \mathrm{m}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right\}\)
```

spectrum_reference_position float
float

```
[spectrum_reference_position]
\begin{tabular}{lll}
U & Spectr & V
\end{tabular}
var. Reference position (wavenumber/wavelength/frequency) of the band to which the normalized (or relative) intensity is calculated
Unit: in unit defined by "parameters_instrument_spectral_unit"
- Converted and stored in ' \(\mathrm{cm}-1\) ' unit in the database but displayed to the user in the unit specified by the user in SSHADE

Condition: Mandatory when "spectrum_type" = \{normalized absorbance, normalized reflectance, normalized Raman scattering, normalized fluorescence emission \(\}\)

\section*{Notes:}
- should be generally the strongest band, or a standard reference band.
- set to intensity \(=1\) at this reference position.
- used in particular to derive the 'normalized Raman emission' and 'normalized fluorescence emission' spectra.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_reference_spectra & List [L1] & [O] & & & & £: reference spectra used to produce a relative spectrum \\
\hline \multirow[t]{2}{*}{spectrum_reference_spectrum
\[
[*]
\]} & varchar(255) & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \begin{tabular}{l}
Spectr \\
Spectr \\
L1
\end{tabular} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & & \begin{tabular}{l}
Link to the existing UID of the reference spectrum(a) (if already in the database) used to produce this relative spectrum \\
Note: \\
only for a spectrum relative to a reference spectrum (of level 1+), i.e. when a transmission/absorbance/... spectrum is divided/substracted from/by this transmission/absorbance/...reference spectrum. \\
- not for 'raw instrument transfer function spectra' (level 0) such as the reference spectrum taken with white 'Spectralon 99 ' as calibration target for reflectance spectra. But you can put a true reflectance spectrum (level 1) of 'Spectralon 99'.
\end{tabular} \\
\hline & & & & & & \(E x\) : you substract the initial absorbance spectrum of an ice mixture from your absorbance spectrum taken after irradiation in order to display only the spectrum of the products \\
\hline \multirow[t]{6}{*}{spectrum_model_parameters} & \multirow[t]{6}{*}{blob} & \multirow[t]{6}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{6}{*}{Spectr} & \multirow[t]{6}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{6}{*}{--} & Model parameters for a simulated spectrum (+ errors for model fit) \\
\hline & & & & & & Condition: strongly recommended when "instrument_type" \(=\{\) radiative transfer simulation, quantum mechanical simulation...\} \\
\hline & & & & & & Note: LaTeX can be used \\
\hline & & & & & & Notes: \\
\hline & & & & & & \begin{tabular}{l}
- You can provide here information and parameters values (+errors) used in radiative transfer or quantum mechanic simulations (direct or spectrum fit). This excludes the info/parameters directly linked to the "sample" (composition, grain size, ...) or the "instrument" (spectral, angular, spatial ... info). \\
- When the spectrum is simulated (direct):
\end{tabular} \\
\hline & & & & & & \begin{tabular}{l}
o the radiative transfer or quantum mechanic model should be described as an "instrument" and linked in "experiment" with "experiment_parameters_instrument_uid". \\
o the optical constants used to simulate the sample should be noted in "sample_material_comments" or
\end{tabular} \\
\hline
\end{tabular}
"sample_constituent_comments" (depending on the level of mixing and type of optical constants) and its reference given in "sample_publication".
o The grain size of the sample material(s) should be given in "sample_material_grain_size_min/max/fraction"
o The fixed model parameters (wavelength independent) are given here. For ex: the mean macroscopic roughness ' \(\Theta\) ', Henyey-Greenstein phase function ' \(g\) ' (or ' \(b\) ' and ' \(c\) '), opposition peak height ' \(B o\) ' and width ' \(h\) '. You can also repeat the name and reference of the RT/QM model used (but already in "instrument") and the optical constants used (but also in a "sample" comment).
- Ex: ‘Spectrimag model, Dout\$'e\$ and Schmitt (1998): optical constants by Grundy and Schmitt (1998). Mean macroscopic roughness \(\$\) theta \(=10^{\circ} \$\), simple HenyeyGreenstein phase function \(\$ \mathrm{~g}=0.4 \$\), no opposition peak'
- If you want to put a model fit of a laboratory spectrum in the database:
o create new (sample) and experiment with the model as the instrument and link the model spectrum to the lab spectrum with "spectrum_parent_spectrum_uid".
o or do it in the same experiment by declaring 2 instruments in "experiment_parameter_instrument_uid": the true one and the model, and then for each spectrum you can choose with "spectrum_parameter_instrument_uid" between the true instrument (measured spectrum) and the model (simulated spectrum).
o you can provide here the absolute uncertainty ( \(\pm\) errors) on the 'non-spectral' fit parameters of your spectrum.
- Ex: ‘Hapke surface reflectance model (1986): optical constants by Grundy and Schmitt (1998). Single scattering albedo \(\$\) lomega \(=0.82 \backslash \mathrm{pm} 0.02 \$\) ( \(@\) 1200 nm ), mean macroscopic roughness \(\$ \$\) theta \(=\) \(15.5^{\wedge}\{\mathrm{lcirc}\} \backslash \mathrm{pm} 2.5^{\wedge}\{\) \circ \(\} \$\), Henyey-Greenstein
\begin{tabular}{llll}
\hline spectrum_level [-xml] & enum(text) & \begin{tabular}{c} 
S3/Uu \\
{\(\left[!!_c\right]\)}
\end{tabular} & Spectr
\end{tabular} \begin{tabular}{c} 
V \\
{\([\) Ver \(]\)}
\end{tabular}
- Level of the spectrum product

Enum: \(\{0,1,2,3,4\}\)
Notes:
' 0 ' corresponds to "raw signal"
- ' 1 ' corresponds to "spectrum"
- ' 2 ' corresponds to "intermediate spectrum": only simple math operation (normalization, ...)
- ' 3 ' correspond to "advanced_spectrum": moderately complex math operations (ratio between spectra, ...)
- '4’ correspond to "advanced_spectrum": complex math operations
- (' 5 ' to ' 8 ' are reserved to "bandlist_level")
\(\rightarrow\) Determined from "spectrum_type" (correspondence table below)
- ' 0 ': raw
- ' 1 ': transmission, ATR transmission, complex admittance, complex impedance, bidirectional reflectance, radiance factor, thermal emission, thermal radiance, scattering intensity, Raman scattering intensity, fluorescence emission
- ' 2 ': absorbance, normalized absorbance, optical depth, ATR absorbance, corrected ATR absorbance, relative complex permittivity, relative complex permeability, bidirectional reflectance distribution function, reflectance factor, normalized reflectance complex reflectance ratio, Stokes parameters, normalized Stokes parameters, thermal emittance, differential scattering cross section, normalized Raman scattering intensity, normalized fluorescence emission
- ' 3 ': absorption coefficient, dielectric loss tangent, magnetic loss tangent, albedo, anisotropy factor, polarization parameters, normalized differential scattering cross section, scattering cross section parameters, Raman scattering coefficient
- ' 4 ': optical constants, thermal emissivity, scattering efficiency factor
parameters, single scattering albedo, Raman scattering efficiency, fluorescence emission efficiency, radiative transfer model parameters

\section*{Spectrum version}

Notes:
- the level may change if the spectrum type is upgraded to an upper product level of the same category of physical measurement

Exemples:
- absorbance \(=>\) absorption coefficient \(\left(\mathrm{cm}^{-1}\right)\)

\section*{Experiment and spectra links}


\section*{Spectrum sample}

- 'destruction of CH 4 and formation of C 2 H 2 and higher hydrocarbons during sample irradiation by VUV light',
- 'transformation from alpha-N2 to beta-N2 ice phase during warmup',
- 'sintering and small sublimation of the sample',
- 'sputtering of sample surface', ...
\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_sample_comments blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & F & -- & Additional or general information on the sample \\
\hline \multicolumn{4}{|l|}{Spectrum variable parameters: probed materials and constituents} & \multicolumn{2}{|r|}{Condition: specific to microscopic and imaging spectra} \\
\hline \multirow[t]{2}{*}{spectrum_sample_primary_materi List [L3a] als} & \multirow[t]{2}{*}{[!o]} & & \multirow[t]{2}{*}{F} & & £: primary material(s) of the sample probed by a pixel or some average of an imaging measurement \\
\hline & & & & & Condition: Mandatory only when "instrument_microscopy_imaging" = \{imaging\} \\
\hline \multirow[t]{3}{*}{spectrum_sample_primary_materi varchar(255) al_uid [*]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{S} 1 \mathrm{i} \\
& {[\mathrm{~m}]}
\end{aligned}
\]} & \begin{tabular}{l}
Spectr \\
Mater
\end{tabular} & \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{--} & Link to the existing UID of the "primary material" of the sample probed by a pixel or some average of an imaging measurement \\
\hline & & L3a & & & Format: see "material_uid" \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- specific to macroscopic imaging spectra. For macroscopic measurements the spectrum or the whole spectro-image is generaly recorded globaly on all materials of the sample. \\
- for pixel or pixel average (ex: ROI, Region Of Interest) of imaging measurements the spectrum is recorded on one or more specific material(s) of the sample. \\
- the location of the pixels or pixel averages probing this/these materials can be given with a picture in "spectrum_images" \\
- these "material_uid" should be among those in the list of "material material uid" of the sample description.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_sample_primary_materi blob al_comments & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L3a
\end{tabular} & F & & Additional information on the primary material(s) of the sample probed by a a pixel or some average of an imaging measurement \\
\hline spectrum_sample_primary_constit List [L3b] uents & [!o] & & F & & £: primary constituent(s) of the sample probed by a microscopic measurement Condition: Mandatory only when "instrument_microscopy_imaging" = \{microscopy, micro-imaging\} \\
\hline spectrum_sample_primary_constit varchar(255) uent_uid [*] & \[
\begin{aligned}
& \mathrm{S} 1 \mathrm{i} \\
& {[\mathrm{~m}]}
\end{aligned}
\] & \begin{tabular}{l}
Spectr \\
Const \\
Solid \\
Miner \\
Solut \\
L3b
\end{tabular} & F & & \begin{tabular}{l}
Link to the existing UID of the "primary constituent" of the sample probed by a microscopic measurement \\
Format: see "constituent_uid", "solid_uid", "mineral_uid", "liquid_uid" \\
Notes: \\
Specific to microscopic and micro-imaging spectra. For macroscopic and imaging measurements the spectrum or whole spectro-image is generaly recorded globaly on all constituents/materials of the sample. for microscopic measurements the spectrum is recorded on one or more specific constituent(s) of the material/sample. But it can also correspond to a pixel, a pixel average, or to the whole spectral image, depending on the value of "parameters_instrument_spatial_observation_mode". \\
- the location of the pixels or pixel averages probing this/these constituents can be given with a picture in "spectrum_images" \\
- these "constituent_uid" should be among those in the list of "material_constituent_uid" of the sample description.
\end{tabular} \\
\hline spectrum_sample_primary_constit blob uent_comments & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L3b
\end{tabular} & F & & Additional information on the primary constituent(s) of the sample probed by a microscopic measurement \\
\hline
\end{tabular}

\section*{Spectrum variable parameters: sample environment and instrument}

Environment: Used either for multi-spectra experiments (allow to modify for each spectrum the values of the variable sample parameters first defined in sample_parameters_environment"), or for a high-level spectral product (allow to make the synthese of a set of \(n\) samples by using the sample of one of the parent spectrum and modifying the variable sample parameter environment values). But in this case, it is highly recommended to define a 'generic sample' to make the

\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_parameters_instrument_ int(11)
index \([* \S][-\mathrm{xml}]\)\(\quad[\) Virtual Link \(]\) & \[
\begin{gathered}
\text { B } \\
{[\text { £o_v] }}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
ParIns \\
L4
\end{tabular} & &  & \begin{tabular}{l}
ID of the set of instrumental parameters specific to this spectrum \\
Conditions: it is compulsory to fill only the instrument parameters that changed \\
Note: "parameters_instrument_instrument_sample_holder" did not appear in the xml in "spectrum_parameters_instrument" as it should be fixed in "experiment_parameters_instrument" for all spectra made with this instrument Note xml: in practice the "parameters_instrument" table is directly included in the spectrum table
\end{tabular} \\
\hline Spectrum origin and history & & & & & \\
\hline spectrum_date_begin date & \[
\begin{gathered}
\mathrm{S} 1 \\
{\left[!_\mathrm{m}\right]}
\end{gathered}
\] & Spectr & F & \begin{tabular}{l}
YYYY \\
-MM- \\
DD
\end{tabular} & \begin{tabular}{l}
Starting date of collection of the raw spectrum or creation date of the spectrum product \\
Notes: \\
- for raw and calibrated spectra (level 1, 2): record date \\
- for spectrum products (levels 3 and above): date of creation of product
\end{tabular} \\
\hline spectrum_time_begin time & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & F & \[
\begin{aligned}
& \mathrm{HH}: \mathrm{M} \\
& \mathrm{M}: \mathrm{SS}
\end{aligned}
\] & \begin{tabular}{l}
Starting time of collection of the raw spectrum (at the above collection date) Notes: \\
- only for raw and calibrated spectra ("spectrum_level" \(=\{1,2\}\) ): starting time of the record \\
- this time allows following kinetics monitored by spectra.
\end{tabular} \\
\hline spectrum_date_end date & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & F & \[
\begin{aligned}
& \text { YYYY } \\
& \text {-MM- }
\end{aligned}
\] & \begin{tabular}{l}
Ending date of collection of the raw spectrum \\
Notes: \\
- only for raw and calibrated spectra ("spectrum_level" = \(\{1,2\}\) ): ending date of the record \\
- useful in particular for sets of SBRDF or SDEDF data that can be recorded over more than one day \\
- you can keep it void if ending date is the same as starting date
\end{tabular} \\
\hline
\end{tabular}

U Spectr
[m]

F HH:M Ending time of collection of the raw spectrum (at the above collection date) M:SS

Notes:
- only for raw and calibrated spectra ("spectrum_level" \(=\{1,2\}\) ): ending time of the record
- this time allows following kinetics monitored by spectra.

\section*{Spectrum versions and verification}
\begin{tabular}{ll} 
spectrum_import_verification [- & boolean \\
xml [ pi ] & [Vitual KW] \\
[from provider interface] & \\
[spectrum_import_verification] &
\end{tabular}
\begin{tabular}{lc}
\begin{tabular}{l} 
S1b/Uu Spectr \\
{\(\left[!!d _m\right]\)}
\end{tabular} & {\([\) Ver] }
\end{tabular}
enum(text)
S2/Uu Spectr V
\(\stackrel{\mathrm{V}}{\text { [Ver] }}\)
-- Verification state of an imported spectrum
BoolEnum: \{yes, no\} or \(\{\) true, false \(\}\)
Default: 'false'/‘no'
Constraints:
- 'false'//no' is the only and default value when "spectrum_import_mode" = \{first import\}

\section*{Definitions:}
- false' or 'no': imported spectrum data and metadata not yet verified in the database
- 'true' or 'yes': spectrum data and metadata verified in database

Notes:
- it is not a 'scientific' validation (should be done before import!), but rather the verification of the completeness and correctness of the imported data.
- The 'non-verified' state allows importing data in the database and taking time to fully check them online.

Note SSHADE: implemented directly in the 'provider interface' with computer-controlled data access rights, not through xml.



Initialy set to the date of entry of the spectrum in the database (first import w. upload) and modified at each change (modification/upgrade) of the spectrum data file (i.e. when "spectrum_import_mode" = 'new version')
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_date_updated [-xml] [spectrum_date_updated] & date & \[
\begin{gathered}
\mathrm{S} 1 \mathrm{~b} \\
{[!!\mathrm{c}]}
\end{gathered}
\] & & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & \begin{tabular}{l}
YYYY
-MM- \\
DD
\end{tabular} & \begin{tabular}{l}
Date of update of the metadata of a version of the spectrum in the database \\
determined automatically by the data ingestion software. \\
Initialy set to the date of entry of the spectrum/product in the database (i.e. when "spectrum_import_mode" = 'first import') and modified at each change (update) of spectrum metadata (i.e. when "spectrum_import_mode" = 'correction') until (not included) a new version is created "spectrum_import_mode" = 'first import' or 'new version') \\
Note: \\
- each "spectrum_version" has its "spectrum_date_updated" \\
- in the code "spectrum.date_updated" correspond to "spectrum version.date updated" of the last version
\end{tabular} \\
\hline \begin{tabular}{l}
spectrum_date_released [-xml] \\
[spectrum_date_released]
\end{tabular} & date & \[
\begin{gathered}
\mathrm{S} 1 \mathrm{~b} / \mathrm{Uu} \\
{[!!\mathrm{c}]}
\end{gathered}
\] & & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & YYYY -MM DD & \begin{tabular}{l}
Date of opening the access to the spectrum to the public (current version) \\
determined automatically by the interface when "spectrum_access_right" is set to 'public'. Initialy set to the date of release of the spectrum and modified at each change of the spectrum data file (i.e. when "spectrum_import_mode" = 'new version') \\
Note:
\end{tabular} \\
\hline \begin{tabular}{l}
spectrum_version [-xml] \\
[spectrum_version]
\end{tabular} & \(\operatorname{int}(3)\) & \[
\begin{gathered}
\mathrm{S} 3 \\
{[!!\mathrm{c}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] &  & \begin{tabular}{l}
Version number of the spectrum data \\
incremented automatically by the data ingestion software when "spectrum_import_mode" = 'new version'. Set to ' 1 ' at first spectrum data file ingestion and then incremented at each major change of the spectrum data file. \\
Notes: \\
- no new version number generated when "spectrum_import_mode" = 'correction' \\
- there could be several reasons to upgrade a spectrum
\end{tabular} \\
\hline
\end{tabular}
\(\checkmark\) improvement of the data in term of spectral and/or photometric calibration, better baseline correction, \(\mathrm{S} / \mathrm{N}\), removal of spurious features or atmospheric absorption, ...
- affect mostly the spectrum file and a few spectrum KW: _analysis, _history...
\(\checkmark\) change of the way to make spatial average in case of roi or rastered average on images
- affect mostly several KW of "parameters_instrument_spatial" as well as possibly some KW such as _title, _analysis
\(\checkmark\) extension of the spectral range, in particular for optical constants
- affect mostly several KW of "parameters_instrument_spectral" as well as KW such as _title, _analysis, _history...
\(\checkmark\) upgrade of the data to an upper product level of the same type of measurement, such as baseline correction, normalization, quantification, ...
- affect KW such as spectrum_title, _type,
_intensity_unit, _level,__analysis..., and can affect KWsuch as _reference_position, parent_spectrum_uid,...
-- Validity status of the previous version
Enum: \{obsolete version, partly invalidated version, invalidated version, partly invalidated data, invalidated data \(\}\)
Condition: only and absolute mandatory when "spectrum_import_mode" = \{new version, invalidate \}
AND
when at least one "spectrum_access_right" = 'public'

\section*{Constraints:}
- For "spectrum_import_mode" = 'new version' , this KW is archived with the previous version
- For "spectrum_import_mode" = 'invalidate' AND
```

spectrum_previous_version_com blob
ments

```
\(\underset{\text { [!!o_m] }}{\text { U }}\) Spectr \(\underset{[V e r]}{\text { V }}\)
"spectrum_previous_version_status" \(=\{\) obsolete version, partly invalidated version, invalidated version \} this KW is stored with the current version.
- For "spectrum_import_mode" = 'invalidate" AND "spectrum_previous_verrsion_status" \(=\{\) partly invalidated data, invalidated data\} this KW is stored with the current version and all previous versions.

\section*{Definitions:}
- 'obsolete version': This version is still scientifically valid but the new version improved at least part of the spectrum inside its valid spectral range, or extended its valid spectral range.
- 'partly invalidated version': This version is still scientifically valid over most of the valid spectral range but an error was found that is corrected in the new version
- 'invalidated version': An error was found over most or all the valid spectral range of this version that is corrected in the new version
- 'partly invalidated data': An error was found over part of the valid spectral range of the original data, but the data cannot be corrected there. The new version of the spectrum has a reduced valid spectral range.
- 'invalidated data': An error was found over most or all the valid spectral range of the original data, but the data cannot be corrected. There is no new version of the spectrum. It invalidates all previous versions.

Note SSHADE: This status will be clearly displayed (bold) at the beginning of the page of the previous version of the spectrum ('new version') or on all versions for 'invalidate'
-- Description of the reason for the change of version or for the data invalidation Condition: only and absolute mandatory when "spectrum_import_mode" = \{new version, invalidate\}
AND
when at least one "spectrum_access_right" = 'public'
spectrum_previous_version_new_ varchar(255) spectrum_uid [*]

Constraints: same as "spectrum_previous_version_status"
Note SSHADE: This comment will be clearly displayed after the status at the beginning of the previous version spectrum page
Exemples:
- 'OBSOLETE VERSION:' 'improved baseline correction and removal of CO2 gas absorption in version \#2'
- 'PARTLY INVALIDATED VERSION:' 'invalidated above \(3.5 \mu \mathrm{~m}\) due to misscorrected thermal emission. Corrected in version \#2'
- 'INVALIDATED VERSION:' 'invalidated spectrum due to a severe calibration error. Corrected in version \#2'
- 'PARTLY INVALIDATED DATA:' data partly invalidated due to a calibration error. Original raw no more available for recalibation. No fully valid version available.‘
- 'INVALIDATED DATA:' original raw data fully invalidated due to a severe measurement error. No valid version available. Replaced by and linked to a newly recorded spectrum'
-- Link to the existing UID of a spectrum in another experiment (if already in the database) that replaces the old spectrum in case there is no new version Constraint: only when "spectrum_import_mode" = \{invalidate\}
Recommendation: strongly recommended when "spectrum_import_mode" = \{invalidate\} when this new spectrum already exist in the database

Note:
- In the cases of invalidated raw data (or lost raw data), no new analysis can correct the spectrum, but another spectrum in another similar experiment may have been uploaded to replace this one.
- Another case can be that we have uploaded a better spectrum in another newest experiment and we want to redirect to this spectrum and set the older spectrum 'obsolete'
- This link allows redirecting to this new spectrum instead to a new spectrum version, not available here.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_validators & List [L5a] & [O] & & & & £: Experimentalist(s) who processed and validated the spectrum \\
\hline spectrum_validator_experimentali st_uid [*] & \(\operatorname{varchar(255)}\) & \[
\begin{gathered}
\mathrm{S} 1 / \mathrm{Uu} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
Exper \\
L5a
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Link to the existing UID of the experimentalist who processed and validated the spectrum (for data provider tracking) \\
\hline spectrum_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & General comments on the spectrum, measurements conditions or analysis \\
\hline
\end{tabular}

\section*{Spectrum references}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_publications & List [L5b] & [!o] & & & & \(£:\) Publications in which the spectrum is published \\
\hline spectrum_publication_uid [*] & varchar(255) & \[
\begin{gathered}
\mathrm{S} 2 \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
Publi \\
L5b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Link to the existing UID of the publication in which the spectrum has been published \\
Condition: Mandatory only when "experiment_publication_uid" = Ø \\
Notes: \\
- at least one when the spectrum is already published in a publication (and when not already listed in "experiment_publications") \\
- these papers should be in the publications database, with "publication_content" = 'spectral data' \\
Note DOI: \\
- recommended option as "RelatedIdentifier / relationType=IsReferencedBy" (12.2): "publication_doi"
\end{tabular} \\
\hline spectrum_publication_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Comments about the spectrum or multi-angle dataset in the publication Note: for exemple which part of the spectrum or of the multi-angle spectra dataset is published, ... \\
\hline
\end{tabular}

\section*{Spectrum file format description}

impedance, relative complex permittivity, relative complex permeability
- "spectrum_files_parameter_type" = 'polarimetric spectrum' only for "spectrum_type" \(=\{\) Stokes parameters, normalized Stokes parameters, polarization parameters\}
- "spectrum_files_parameter_type" = 'scattering spectrum' only for "spectrum_type" \(=\{\) scattering cross section parameters, scattering efficiency factor parameters
- "spectrum_files_parameter_type" = 'model parameters spectrum' only for "spectrum_type" \(=\) \{radiative transfer model parameters \}
- all the other values of "spectrum_files_parameter_type" are only for the other values of "spectrum_type"
Constraint: when "spectrum_import_mode" \(=\{\) correction, new version \(\}\) "spectrum_files_parameter_type" cannot be changed

\section*{Definitions:}
- 'single spectrum': file containing a single mono intensity spectrum (transmission, ...)
- 'complex spectrum': file containing a spectrum expressed with a real and an imaginary part, such as 'optical constants', 'complex impedance' or 'complex reflectance ratio' ("spectrum_type")
- 'polarimetric spectrum': file containing a spectrum for a set of 3-4 polarization parameters such as "spectrum_type":
- 'Stokes parameters’: \{Stokes parameter I, Stokes parameter Q, Stokes parameter U, Stokes parameter V \}
- 'normalized Stokes parameters': \{normalized Stokes parameter Q/I, normalized Stokes parameter U/I, normalized Stokes parameter V/I\}
- 'polarization parameters': \{polarization contrast, degree of linear polarization, polarization position angle, degree of circular polarization \(\}\)
Note: the unit of 'polarization position angle' is 'deg' (cannot be specified in "spectrum_intensity_unit" because the other parameters have no unit)
- 'scattering spectrum': file containing a spectrum for a set of 3
scattering parameters such as "spectrum_type":
- 'scattering cross section parameters': \{scattering cross section, absorption cross section, extinction cross section\}
- 'scattering efficiency factor parameters': \{scattering efficiency factor, absorption efficiency factor, extinction efficiency factor\}
- 'model parameters spectrum': file containing a series of wavelengthdependent (spectra) model parameters
- 'photometric data': file containing multi-angular photometric data at a single wavelength
- 'spectra of multiangle dataset: series of files containing each a spectrum at single geometry in a multiangle dataset.
\(E x\) : spectra at sereral illumination-observation geometries
- 'photometric data of multispectral dataset': series of files containing each multi-angular photometric data at a single wavelength in a multispectral dataset.

Ex: photometric curves at sereral wavelengths
- 'spectro-photometric data': file containing a set of multi-angular spectro-photometric data expressed either as:
- a single bloc of spectro-photometric data for all values of the angular and spectral parameters
- a series of blocs of photometric data ordered by wavelengths (for multi-wavelengths photometric data)
- a series of blocs of spectra ordered by angular geometry (mostly for multi-angles spectra)
- 'spectral image': file containing an (hyper)spectral image at a single geometry

Note: the emergence angle may slightly vary in the image
- 'photometric images': file containing multi-angular photometric images at a single wavelength
- 'spectral images of multiangle dataset: series of files containing each a (hyper)spectral image at single geometry in a multiangle dataset.
- 'photometric images of multispectral dataset': series of files containing each multi-angular photometric image at a single wavelength in a multispectral dataset.
- 'spectro-photometric images': file containing a set of multi-angular
spectro-photometric images expressed either as:
- a single bloc of spectro-photometricimages for all values of the angular and spectral parameters
- a series of blocs of photometric images ordered by wavelengths (for multi-wavelengths photometric images)
- a series of blocs of spectral images ordered by angular geometry (mostly for multi-angles spectral images)

Notes:
- 'images' can have one (line) or two dimensions (array)
- in addition to all types of spectra with and without angular variation or spatial dimension we added photometric data and photometric images at a single wavelength or wavelength average ('photometric data/images')
- but we did not include simple data and images without angular dimension at a single wavelength (or wavelength average).
- Correspondance (indicative only) with
"parameters_instrument_spectral_observation_mode",
" angle observation mode" and " spatial observation mode" and "-spectrum type":

For 'single spectrum, complex spectrum, polarimetric spectrum, scattering spectrum, model parameters spectrum' with:
- "_spectral_observation_mode" = \{spectrum, multi wavelengths, multi spectral averages \(\}\)
- "_angle_observation_mode" \(=\) \{fixed angles \(\}\)

○ "_spatial_observation_mode" = \{single spot, averaged, roi averaged, rastered
\(=\) spectrum without angular variation nor spatial dimension
- 'single spectrum':
- "spectrum_type" = \{raw, transmission, absorbance, normalized absorbance, optical depth, absorption coefficient, ATR transmission, ATR absorbance, corrected ATR absorbance, dielectric loss tangent, magnetic loss tangent, bidirectional reflectance, radiance factor, reflectance factor, normalized reflectance, albedo, anisotropy factor, thermal emission,
thermal radiance, thermal emittance, thermal emissivity, scattering intensity, differential scattering cross section, normalized differential scattering cross section, single scattering albedo, Raman scattering intensity, normalized Raman scattering intensity, Raman scattering coefficient, Raman scattering efficiency, fluorescence emission, normalized fluorescence emission, fluorescence emission efficiency
- 'complex spectrum':
- "spectrum_type" = \{optical constants, complex admittance, complex impedance, relative complex permittivity, relative complex permeability, complex reflectance ratio \}
- 'polarimetric spectrum':
- "spectrum_type" \(=\{\) Stokes parameters, normalized Stokes parameters, polarization parameters\}
- 'scattering spectrum':
- "spectrum_type" = \{scattering cross section parameters, scattering efficiency factor parameters \}
- 'model parameters spectrum':
- "spectrum_type" = \{radiative transfer model parameters \}

For 'spectra of multiangle dataset, photometric data of multispectral dataset, spectro-photometric data' with:
- "_angle_observation_mode" = \{one variable angle, two variable angles, three variable angles, fixed phase angle, monoangular function, bi-angular function, tri-angular function, fixed phase angle function, other geometry set \(\}\)
- "_spatial_observation_mode" \(=\{\) single spot, averaged, roi averaged, rastered \(\}\)
- 'spectra of multiangle dataset, photometric data of multispectral dataset' for:
- " spectral observation mode" \(=\{\) spectrum, multi wavelengths, multi spectral averages
- "spectrum_type" = \{raw, transmission, absorbance, normalized absorbance, optical depth, ATR transmission, ATR absorbance, corrected ATR absorbance, bidirectional reflectance, radiance factor, reflectance factor, normalized reflectance, anisotropy
factor, thermal emission, thermal radiance, thermal emittance, thermal emissivity, scattering intensity, differential scattering cross section, normalized differential scattering cross section, Raman scattering intensity, normalized Raman scattering intensity, Raman scattering coefficient, fluorescence emission, normalized fluorescence emission\}
- 'photometric data, spectro-photometric data' for:
- "_spectral_observation_mode" \(=\{\) single wavelength, single spectral average \(\}\)
- "spectrum type" = same as 'spectro-photometric data' For 'spectral image, spectral images of multiangle dataset, spectrophotometric images' with:
- "_spectral_observation_mode" \(=\{\) spectrum, multi wavelengths, multi spectral averages \(\}\)
- " spatial observation mode" \(=\) \{line, image, rastered image \(\}\)
- 'spectral image' for:
- "_angle_observation_mode" = \{fixed angles \(\}\)
- "-spectrum type" = same as 'spectro-photometric data'
- 'spectral images of multiangle dataset, spectro-photometric images' for:
- "_angle_observation_mode" \(=\) \{one variable angle, two variable angles, three variable angles, fixed phase angle, monoangular function, bi-angular function, tri-angular function, fixed phase angle function, other geometry set \(\}\)
- "spectrum_type" = same as 'spectro-photometric data'

For 'photometric images, photometric images of multispectral dataset' with:
- "_spectral_observation_mode" \(=\{\) single wavelength, single spectral average\}
- "_angle_observation_mode" = \{one variable angle, two variable angles, three variable angles, fixed phase angle, monoangular function, bi-angular function, tri-angular function, fixed phase angle function, other geometry set\}
- "spectrum_type" = same as 'spectro-photometric data'

Enum: \{ascii-intensity, ascii-columns, ascii-nicolet, bin-nicolet, bin-spanicolet, bin-spc-grams, bin-opus-brucker, ascii-sbrdf-ipag, ascii-sbrdf-bern, ascii-sbrdf-isep, ...\}

Constraint: "spectrum_files_parameter_format" = \{ascii-sbrdf-ipag, ascii-sbrdf-bern, ascii-sbrdf-isep \(\}\) only when "spectrum_files_parameter_type" = \{photometric data, spectro-photometric data\}

\section*{Definitions:}

For simple spectral files:
- 'ascii-intensity': simple ascii files for intensity with 2 mandatory columns and 2 optionals in the following order: [position, intensity, (intensity error [+/-], intensity quality)] with 2 lines header by default or with ' n ' header lines ("spectrum_file_header_lines_number").

Note: Columns can be separated by spaces or tabs, but other types
need to be specified in "spectrum_file_column_separator". No other column should be present.
- 'ascii-columns': multi-columns ascii files that should be described using the "spectrum_file_columns" versatile structure below.

Notes:
- It allows to specify the format for
"spectrum_files_parameter_type" \(=\{\) simple spectrum, complex spectrum, polarimetric spectrum, scattering spectrum, photometric data, spectra of multiangle dataset, photometric data of multispectral dataset \(\}\)
- the selected columns of the file to be read should be described with "spectrum_file_column_type".
- The "spectrum_file_column_total_number" should be given to avoid to read all other columns
- No header line by default.
- "spectrum_file_column_separator" should be specified.
- 'ascii-nicolet': ascii format of Nicolet spectra (with small fixed header) produced by the IGOR export routine
- 'bin-spa-nicolet': binary .SPA format of the Nicolet spectrometers (Nicolet/Thermo OMNIC)
spectrum_files_parameter_header int(11)
lines_number
\(\underset{\text { [!!o_m] }}{\mathrm{P}} \mathrm{Spectr} \underset{[\mathrm{Ver}]}{\mathrm{V}}\)
- 'bin-nicolet': binary format (.SPTR or any other as it was free) of the Nicolet spectrometer (Nicolet 700/800)
- 'bin-spc-grams': binary format (.SPC) of the Nicolet spectrometer (Grams / "Essential FTIR" software)
- 'bin-opus-brucker': binary (.0, .1, ...) format of OPUS software for Brucker spectrometers
For multi-angular spectral or multispectral files:
- 'ascii-sbrdf-ipag': multi-columns ascii file with formatted header containing all the geometries
- It is of the type "spectrum_files_parameter_type" = 'spectrophotometric data'
- 'ascii-sbrdf-bern': multi-columns ascii files of Bern University
- It is of the type "spectrum_files_parameter_type" = 'spectrophotometric data'
- 'ascii-sbrdf-isep': multi-columns ascii file with 2 header lines and containing a single bloc of data either 'mean', 'median' or 'stdev', with one line for each wavelength and one column for each angular geometry. The values of \(\{i, e, g, a z\}\) are given in this order in the last 4 lines.

Notes:
It is of the type "spectrum_files_parameter_type" = 'spectrophotometric data'
- The 3 types of data should be read with the file option "data_type"
- The "spectrum_file_header_lines_number" is set to ' 2 ' by default, if not filled.

Note: the unit of the position values (wavelength/wavenumber/frequency) is given in "instrument_spectral_unit"
-- Number of lines of the header before the first data line in the spectrum data file to be uploaded (for data import)

Condition: absolute mandatory and only when
"spectrum_files_parameter_format" = \{ascii-columns \}
Notes:
- default is ' 2 ' for 'ascii-intensity'
- for multi-angles spectral data, all the files in
"spectrum_file_multiangles" should have the same size of the header
\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_files_parameter_nodata varchar(255) & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & & Value of the 'nodata' code in the spectrum data file to be uploaded (for data import) \\
\hline & & & & & \begin{tabular}{l}
Note: \\
for multi-angles spectral data, all the files in "spectrum_file_multiangles" should have the same 'nodata'
\end{tabular} \\
\hline \multirow[t]{3}{*}{spectrum_files_parameter_column enum(text) _separator} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Spectr} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { V } \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & \begin{tabular}{l}
Type of separator between columns in the spectrum data file (for data import) \\
Enum: \{space, tab, comma, semi-colon\}
\end{tabular} \\
\hline & & & & & Condition: absolute mandatory and only for "spectrum_files_parameter_format" \(=\{\) ascii-columns \(\}\) \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- default is 'space' or 'tab' for 'ascii-intensity'
\end{tabular} \\
\hline \multirow[t]{3}{*}{spectrum_files_parameter_column int(3) _total_number} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{P} \\
{\left[!!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Spectr} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & Total number of columns in the spectrum data file \\
\hline & & & & & Condition: absolute mandatory and only for "spectrum_files_parameter_format" \(=\) \{ascii-columns \(\}\) \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- allow to determine the number of non-used columns
\end{tabular} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { spectrum_files_parameter_column List [L6] } \\
& s
\end{aligned}
\]} & \multirow[t]{3}{*}{[!!o]} & & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & & £: Description of the columns of ascii data files and their type \\
\hline & & & & & Constraint: only when "spectrum_files_parameter_type"= \{single spectrum, complex spectrum, model parameters spectrum, photometric data, spectra of multiangle dataset, photometric data of multispectral dataset, spectrophotometric data\} \\
\hline & & & & & Note: for 'spectra of multiangle dataset' and 'photometric data of multispectral dataset' all the files in "spectrum_files" should have exactly the same format \\
\hline
\end{tabular}

\begin{tabular}{llll}
\begin{tabular}{l} 
spectrum_files_parameter_column enum(text) \\
type
\end{tabular} & \begin{tabular}{c} 
P
\end{tabular} & Spectr & V \\
{\(\left[!!\mathrm{o} _\mathrm{m}\right]\)} & L6 & {\([\) Ver \(]\)}
\end{tabular}
-- Type of data contained in the column of the data file
Enum: \{position, incidence angle, emergence angle, azimuth angle, phase angle, intensity, intensity mean, intensity median, intensity stdev, intensity min, intensity max, intensity error, intensity error minus, intensity error plus, intensity quality, date, time, relative time\}

Condition: at least one of \{position, incidence angle, emergence angle, azimuth angle, phase angle \} AND one of \{intensity, intensity mean, intensity median, variable \(\}\) are absolute mandatory when "spectrum_files_parameter_format" = 'ascii-columns'
Notes:
- For simple spectra ("spectrum_files_parameter_type" = \{single spectrum, photometric data, spectra of multiangle dataset, photometric data of multispectral dataset, spectro-photometric data\}) the type of intensity is defined by "spectrum_type"
- For multipart spectra ("spectrum_files_parameter_type" \(=\{\) complex spectrum, polarimetric spectrum, scattering spectrum, model parameters spectrum \}) the type of intensity is defined by "spectrum_file_column_intensity_type" below.

\section*{Definitions:}
- 'position': wavelength, wavenumber or frequency position
- 'intensity': nominal intensity or mean intensity (when averaged spatialy or with time)
- 'intensity mean': mean intensity (when averaged spatialy or with time)
- 'intensity median': median intensity (when averaged spatialy or with time)
- 'intensity stdev': standard deviation \(( \pm 1 \sigma)\) of the intensity. Used in particular for spatial average of spectra in a spectro-image and correspond to the variability of the spectra.

- when "spectrum_file_column_type" = \{intensity, intensity mean, intensity median, intensity stdev, intensity min, intensity max, intensity error, intensity error minus, intensity error plus, intensity quality\}

\section*{Constraints:}
- should be \{real part, imaginary part\} when "spectrum_type" = \{optical constants, complex admittance, complex impedance, relative complex permittivity, relative complex permeability\}
- should be \{Stokes parameter I, Stokes parameter Q, Stokes parameter U, Stokes parameter V\} when "spectrum_type" = \{Stokes parameters \}
- should be \{normalized Stokes parameter Q, normalized Stokes parameter U, normalized Stokes parameter V \} when "spectrum_type" \(=\{\) normalized Stokes parameters \(\}\)
- should be \{polarization contrast, degree of linear polarization, polarization position angle, degree of circular polarization \(\}\) when "spectrum_type" \(=\) \{polarization parameters \(\}\)
- should be \{scattering cross section, absorption cross section, extinction cross section\} when "spectrum_type" \(=\{\) scattering cross section parameters \(\}\)
- should be \{scattering efficiency factor, absorption efficiency factor, extinction efficiency factor \(\}\) when "spectrum_type" = \{scattering efficiency factor parameters \(\}\)
- should be \{single scattering albedo, b(HG), c (HG), opposition peak height, opposition width, mean roughness \(\}\) when "spectrum_type" = \{radiative transfer model parameters \}
- not for the other values of "spectrum_type"

\section*{Definitions:}

Used for multipart spectra with a global name in "spectrum_type" but expressed with several components, such as the real and imaginary parts for 'optical constants',
For "spectrum_files_parameter_type" = 'complex spectrum':
For "spectrum_type" = 'optical constants:
- 'real part': refractive index n
- 'imaginary part': extinction coefficient k

For "spectrum_type" = 'complex admittance':
o 'real part': conductance G
o 'imaginary part': susceptance B
For "spectrum_type" = 'complex impedance':
o 'real part': resistance R
o 'imaginary part': reactance X For "spectrum_type" = 'relative complex permittivity':
o 'real part': dielectric constant \(\varepsilon^{\prime}\) r
o 'imaginary part': relative electric conductivity \(\varepsilon{ }^{\prime}{ }_{r}\) For "spectrum_type" = 'relative complex permeability':
o 'real part': magnetic constant \(\mu^{\prime}\)
o 'imaginary part': relative magnetic conductivity \(\mu^{\prime}{ }_{r}\)
For "spectrum_files_parameter_type"= 'polarimetric spectrum':
For "spectrum_type" = 'Stokes parameters'
- 'Stokes parameter I':
- 'Stokes parameter Q':
- 'Stokes parameter U':
- 'Stokes parameter \(V\) ':

For "spectrum_type" = 'normalized Stokes parameters'
- 'normalized Stokes parameter Q': Stokes parameter ratio Q/I
- 'normalized Stokes parameter \(U\) ': Stokes parameter ratio U/I
- 'normalized Stokes parameter \(V\) ': Stokes parameter ratio V/I

For "spectrum_type" = 'polarization parameters':
- 'polarization contrast': polarization contrast
- 'degree of linear polarization': degree of linear polarization DoLP
- 'polarization position angle': angle of linear polarization AoLP (degree)
- 'degree of circular polarization': degree of circular polarization DoCP

For "spectrum_files_parameter_type" = 'scattering spectrum':
For "spectrum_type" = 'scattering cross section parameters':
- 'scattering cross section', \(\mathrm{C}_{\text {sca }}\) : total scattering cross section
o It is the hemispherical integral of the differential scattering cross section'
- 'absorption cross section', \(\mathrm{C}_{\mathrm{abs}}\) : total absorption cross section
o Related with the absorption coefficient \(\alpha\) : \(\sigma=\alpha / N\) ( \(N\) : molecule

\section*{or particles number density)}
- 'extinction cross section', \(\mathrm{C}_{\mathrm{ext}}\) : sum of the absorption and scattering cross sections of a particle, \(\mathrm{C}_{\text {sca }}+\mathrm{C}_{\text {abs }}\).
For "spectrum_type" = 'scattering efficiency parameters':
- 'scattering efficiency factor', \(\mathrm{Q}_{\text {sca: }}\) ratio of the scattering cross-section to the geometrical cross-section \(\pi \mathrm{a}^{2}\).
- Also, simply called 'scattering efficiency'
- 'absorption efficiency factor', \(\mathrm{Q}_{\text {abs }}\) : ratio of the absorption crosssection to the geometrical cross-section \(\pi \mathrm{a}^{2}\).
- Also, simply called 'absorption efficiency'
- 'extinction efficiency factor', \(\mathrm{Q}_{\text {ext: }}\) ratio of the extinction cross-section to the geometrical cross-section \(\pi a^{2}\).
- Also, simply called 'extinction efficiency'

For "spectrum_files_parameter_type" = 'model parameters spectrum':
For "spectrum_type" = 'radiative transfer model parameters'
- 'single scattering albedo': Single scattering albedo ( \(\omega\) )
- ' \(\underline{b(H G)}\) ': asymmetry parameter ' \(b\) ' of the Henyey-Greenstein function with 1 or 2 lobes ('b', or ' \(b\) ', ' \(c\) ').
- 'c(HG)': retrodiffusion fraction parameter ' \(c\) ' of the HenyeyGreenstein function with 2 lobes (' \(b\) ', ' \(c\) ').
- 'opposition peak height': amplitude 'Bo' of the opposition peak
- 'opposition width': FWHM ' h ' the opposition peak (degree)
- 'mean roughness': Mean macroscopic roughness \((\Theta)\) of the surface (in degree)
Notes:
- Mandatory columns are underlined
- The 'radiative transfer model parameters' are those of the model of Hapke (1986) and also used in Douté and Schmitt (1999)

Models and their parameters:
- 'Hapke model parameters’ file: position, single scattering albedo, \(\underline{\mathrm{b}}\) (HG), c (HG), opposition width, opposition peak height, mean roughness
- 'Doute and Schmitt model parameters' file: position, single scattering albedo, \(b(\mathrm{HG})\), mean roughness

\section*{Spectrum geometries}
\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_geometries_number [- \(\operatorname{int}(10)\) \(\mathrm{xml}]\) & \[
\begin{gathered}
\mathrm{S} 3 \\
{\left[!_c\right]}
\end{gathered}
\] & \[
\begin{array}{lc}
\text { Spectr } & \mathrm{V} \\
& {[\mathrm{Ver}]}
\end{array}
\] & no & \begin{tabular}{l}
Number \\
\(\rightarrow\) calcu
\end{tabular} & \begin{tabular}{l}
er of geometries of the spectrum \\
culated from: \\
the list of "spectrum_file_angle" for "spectrum_files_parameter_type" \(=\{\) spectra of multiangle dataset \(\}\) \\
the list of "spectrum_file_position" for \\
"spectrum_files_parameter_type" = \{photometric data of multispectral dataset \(\}\) \\
the list of geometries inside the file for \\
"spectrum_files_parameter_type" \(=\) \{photometric data, spectro- \\
photometric data\} \\
"spectrum_geometries_number" = ' 1 ' for \\
"spectrum_files_parameter_type" = \{single spectrum, complex \\
spectrum, polarimetric spectrum, scattering spectrum, model \\
parameters spectrum \(\}\)
\end{tabular} \\
\hline & & & & Notes: & \begin{tabular}{l}
This number will allow to determine the number of spectra of the experiment by multiplying it by the number of 'data sets' of the experiment, but only for those with \\
"spectrum_parameters_instrument_spectral_observation_mode" = \{spectrum, multi wavelengths, multi spectral averages\}
\end{tabular} \\
\hline
\end{tabular}

\section*{Spectrum file(s)}
spectrum_files List [L7]

\footnotetext{
V
[Ver]
}
\(£\) : single file or set of files containing the spectrum or the spectro-angular data (for data import)

Notes:
- For files of various type
- single spectrum file
o set of spectra at single geometry in a multiangle dataset
- set of photometric data at single wavelength in a multispectral dataset (or single photometric data at single wavelength)
o single multi-angles spectrum file
spectrum_file_filename
[spectrum_file_filename]...

CS-varchar(255) S2/Pu Spectr V [!!o_m] L7 [Ver]
-- Name of the file containing the spectrum or all, or part of, the spectrophotometric dataset (for data import)
Condition: absolute mandatory only when when "spectrum_import_mode" = \{first import, new version\}

\section*{Constraints:}
- absolute mandatory to fill and to zip a file when "spectrum_import_mode" = \{first import, new version\}
- optional to fill and to zip a file when "spectrum_import_mode" \(=\) \{correction\}
- absolute mandatory to keep void when "spectrum_import_mode" = \{invalidate\}.
File format: It will depend on "spectrum_files_parameter_format"
The data will be stored:
- in simple spectrum format when "spectrum_files_parameter_type" = \{single spectrum, complex spectrum, polarimetric spectrum, scattering spectrum, model parameters spectrum
- in spectro-angular format when "spectrum_files_parameter_type" = \{photometric data, spectra of multiangle dataset, photometric data of multispectral dataset, spectro-photometric data\}
Note:
- for series of spectra of multiangle dataset (ex:
"spectrum_type"='bidirectional reflectance') you have the choice between single spectrum or multi-angle storage formats
- the data will be imported in the database after conversion to homogeneous wavenumber unit \(\left(\mathrm{cm}^{-1}\right)\)
- the original file itself will be stored for track back by data provider.

Note DB: this file should be zipped with the 'experiment-spectra' import xml file at first import and for new versions

\section*{Definition:}
- For series of files that have the data at different angular geometries stored each in a different file containing the spectral values of the data (a spectrum) at a single angular geometry.
Notes:
- These files must contain several columns providing the wavelength/wavenumber/frequency of the spectrum (position) and the values of the different data types (intensity, error, ...).
- the number of the wavelength/wavenumber/frequency column and of the columns containing the different data types (intensity, error, ...) should be described in "spectrum file_columns"
- the set of angles (i, e, az, (g)) corresponding to each file is provided with "spectrum_file_angle_incidence/_emergence/_azimuth(/_phase)"
- if you choose this option the series of spectra of the multiangle dataset will be stored in spectro-photometric format (instead in a series of spectra).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_file_angle_incidence & float & \[
\begin{gathered}
\mathrm{P} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & Incidence angle of illumination of the spectrum (part of a multi-angles spectral dataset) contained in the file \\
\hline & & & & & & \begin{tabular}{l}
Condition/Constraint: mandatory and only when "spectrum_files_parameter_type" \(=\) 'spectra of multiangle dataset' AND \\
when "parameters_instrument_angle_observation_geometry" = \{specular, bidirectional, directional-conical, conical-directional, biconical, directionalhemispherical, conical-hemispherical\}
\end{tabular} \\
\hline spectrum_file_ angle_emergence & float & \[
\begin{gathered}
\mathrm{P} \\
\text { [!o_m] }
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & Emergence angle of observation of the spectrum (part of a multi-angles dataset) contained in the file \\
\hline & & & & & & Condition/Constraint: mandatory and only when "spectrum_files_parameter_type"= 'spectra of multiangle dataset' AND when "parameters_instrument_angle_observation_geometry" \(=\{\) specular, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_file_ angle_azimuth & float & \[
\begin{gathered}
\mathrm{P} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7
\end{tabular} & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & deg & Azimuth angle of observation of the spectrum (part of a multi-angles dataset) contained in the file \\
\hline & & & & & & \begin{tabular}{l}
Condition/Constraint: mandatory and only when "spectrum_files_parameter_type" \(=\) 'spectra of multiangle dataset' AND \\
when "parameters_instrument_angle_observation_geometry" = \{bidirectional, directional-conical, conical-directional, biconical\}
\end{tabular} \\
\hline & & & & & & Notes: \\
\hline spectrum_file_angle_phase & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr L7 & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & Phase angle of observation of the spectrum (part of a multi-angles dataset) contained in the file \\
\hline & & & & & & Constraint: only when "spectrum_files_parameter_type"= 'spectra of multiangle dataset' \\
\hline & & & & & & Notes: \\
\hline
\end{tabular}

\section*{Option \#2 for series of photometric data files at single wavelength in a multispectral dataset}

\section*{Definition:}
- For series of files that have the data at different wavelengths (single wavelength or multispectral) stored each in a different file containing the angular values of the data (a photometric curve) at a single wavelength/wavenumber/frequency.
Notes:
- These files must contain several columns providing the different angles (i, e, az, (g)), and the values of the different data types (intensity, error, ...).
- the number of the different angles columns and of the columns containing the different data types should be described in
"spectrum_file_columns"
- the position (wavelength/wavenumber/frequency) corresponding to each file is provided with "spectrum_file_position"
(wavelength/wavenumber/frequency) of the angular data (part of a multi-wavelengths dataset) contained in the file
- Unit: given by "parameters_instrument_spectral_unit

Condition/Constraint: mandatory and only when
"spectrum_files_parameter_type" \(=\{\) photometric data, photometric data of multispectral dataset \(\}\)

Option \#3 for series of spectro-photometric data files with a single data type in each file

\section*{Definition:}
- For series of files that have the different types of photometric data (intensity, error, stdev, ...) stored each in a different file containing the spectro-angular values (a spectro-photometric curve) for a single type of data.

Notes:
- ONLY for 'ascii-sbrdf-isep' file format
- the type of data contained in each file is defined with "spectrum_file_data_type"
\begin{tabular}{lllll} 
spectrum_file_photometric_type & enum(text) & \begin{tabular}{c} 
P \\
{\(\left[!!\mathrm{o} _\mathrm{m}\right]\)}
\end{tabular} & Spectr & L7 \\
& & {\([\) Ver \(]\)}
\end{tabular}
-- Type of photometric data contained in the file (only for IRAP format !) Enum: \{intensity, intensity mean, intensity median, intensity stdev, intensity error \(\}\)

Condition: only and absolute mandatory when
"spectrum_files_parameter_format"= \{ascii-sbrdf-isep \(\}\)
Note: the type of intensity is defined by "spectrum_type"
Definitions: see "spectrum_file_column_type"
-- Generic name of the data and metadata files and preview image for data export File extension: without format extension

Notes:
- this name needs to be the most explicit for the user, but in a condensed form (should include info as 'typical spectral range', 'spectrum type', 'sample name', 'value of main variable parameter' (put at the end of name to allow ordering), ...).
- do not use blank (space) in this name. Use instead '-‘ or '_' to link the different parts.
- it will be the default name for export but the user will have the possibility to rename it, at its own risk
- this filename will get different extensions: .dat, .txt, .xml, ... depending on the export format chosen for the spectrum and metadata.
- for "multiangle" spectra exported in a series of files (a possible option), the file name may get an extension characterizing either the wavelength (for single wavelength multiangle data) or the geometry (for individual spectra), or the type of values (for single value type of multiangles spectra)
Ex:
- SBRDF: "BRDF_Vis+NIR_chocolat_noir_99\%"
- BRDF: "BRDF_Vis+NIR_chocolat_noir_99\%_1063nm"
- Spectra: "BRDF_Vis+NIR_chocolat_noir_99\%_i30_e20_az0" - Value: "BRDF_Vis+NIR_chocolat_noir_99\%_mean"
- It will get .png extension for the preview image of the spectrum (full scale over full valid range) that will be automatically generated during data export.
- For spectro-images it may give a preview image with several typical spectra with different colors.

Note Interface: it is necessary to append automatically a version number ( \(E x\) : ' v2') using "spectrum version" when there is more than one version

Ex:
- 'optcte-NIR_CH4-1\%-betaN2_38K'
- 'refl-NIR-SWy2+H2O_243K_i0-e30_16'

\section*{Preview of the spectrum}
spectrum_preview
spectrum_preview_x_axis
[O] V [Ver]

P Spectr V
[m] [Ver]
£: parameters of the automatically generated preview plot of the spectrum
Notes:
- these parameters are optional and are used to optimize the individual generation of the spectrum plots (but the X and Y units are forced to be the same than the spectrum or the experiment preview)
- if "spectrum_preview" is not specified, the parameters of the "experiment_preview" will be used, if specified.
- if none are specified the generation tool will do its best to optimize the plot:
- use "parameters_instrument_spectral_range_min/max" for X limits
- detect Ymin/max from the data and add some margin.
- However for plots that require Y log scales (such as optical constants) the optimization is random and controlled by noise level !
Notes xml:
- the 4 KW ("spectrum_preview_x_axis"/ "_unit"/"_min"/ "_max") are grouped as tags of "spectrum - preview \(\overline{\mathrm{x}}\) ": \(<\mathrm{x}\) axis \(=\overline{" \prime}\) unit \(="\) " \(\min =" "\) max="" \(/>\)
- the 4 KW ("spectrum_preview_y_axis" / "_unit" / "_min" / "_max") are grouped as tags of "spectrum preview \(\overline{\mathrm{y}}\) ": \(<\mathrm{y}\) axis \(=\) "" unit \(=\bar{"}\) "

-- Type of X axis in the preview plot of the spectrum
Enum: \(\{\operatorname{lin}, \log \}\)

\section*{Definitions:}
- 'lin': linear axis
- 'log': logarithmic axis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_preview_x_min & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Minimum value of X axis in the preview plot of the spectrum \\
- Unit: given by default by "parameters_instrument_spectral_unit" or by "experiment_preview_x_unit" when provided or by "spectrum_preview_x_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline \multirow[t]{2}{*}{spectrum_preview_x_max} & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Maximum value of X axis in the preview plot of the spectrum \\
- Unit: given by default by "parameters_instrument_spectral_unit" or by "experiment_preview_x_unit" when provided or by "spectrum_preview_x_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline \multirow[t]{2}{*}{spectrum_preview_y_axis} & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & Type of Y axis in the preview plot of the spectrum Enum: \(\{\operatorname{lin}, \log \}\) \\
\hline & & & & & & Definitions: see "spectrum_preview_x_axis" \\
\hline \multirow[t]{2}{*}{spectrum_preview_y_min} & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Minimum value of Y axis in the preview plot of the spectrum \\
- Unit: given by "spectrum_intensity_unit" or by "experiment_preview_y_unit" when provided or by "spectrum_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline \multirow[t]{2}{*}{spectrum_preview_y_max} & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & var & \begin{tabular}{l}
Maximum value of Y axis in the preview plot of the spectrum \\
Unit: given by "spectrum_intensity_unit" or by "experiment_preview_y_unit" when provided or by "spectrum_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline spectrum_preview_y2_axis & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & & Type of the second Y axis (only for the real part of complex spectra) in the preview plot the spectrum \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_preview_y2_min & float & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & var & \begin{tabular}{l}
Minimum value of the second Y axis in the preview plot of the spectrum \\
- Unit: given by "spectrum_intensity_unit" or by "experiment_preview_y_unit" when provided or by \\
"spectrum_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline \multirow[t]{2}{*}{spectrum_preview_y2_max} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Spectr} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{var} & \begin{tabular}{l}
Maximum value of the second Y axis in the preview plot of the spectrum \\
- Unit: given by "spectrum_intensity_unit" or by "experiment_preview_y_unit" when provided or by "spectrum_preview_y_unit" when provided
\end{tabular} \\
\hline & & & & & & Note: plotted by default in the original import unit \\
\hline \multirow[t]{3}{*}{spectrum_preview_filename} & \multirow[t]{3}{*}{CS-varchar(255)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[\mathrm{mc}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Spectr} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & Name of the file containing the preview plot of the spectrum (or spectra) or photometric curve to be displayed \\
\hline & & & & & & \(\rightarrow\) plot generated automatically during import if there is no file filename \\
\hline & & & & & & Image formats: .png, .jpg, (.gif) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_experiment_preview_fla float g_multiangle_angle_incidence & \[
\begin{gathered}
\mathrm{P} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & \begin{tabular}{l}
Incidence angle of illumination of the spectrum selected to be part of the spectral preview and dynamic plot of the multi-angles data set(s) \\
Condition: mandatory and at least one when "parameters_instrument_angle_observation_geometry" = \{specular, bidirectional, directional-conical, conical-directional, biconical, directionalhemispherical, conical-hemispherical\}
\end{tabular} \\
\hline spectrum_experiment_preview_fla float g_multiangle_angle_emergence & \[
\begin{gathered}
\mathrm{P} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & \begin{tabular}{l}
Emergence angle of observation of the spectrum selected to be part of the spectral preview and dynamic plot of the multi-angles data set(s) \\
Condition: mandatory and at least one when "parameters_instrument_angle_observation_geometry" = \{specular, bidirectional, directional-conical, conical-directional, biconical, hemisphericaldirectional, hemispherical-conical, directional, conical\}
\end{tabular} \\
\hline spectrum_experiment_preview_fla float g_multiangle_angle_azimuth & \[
\begin{gathered}
\mathrm{P} \\
{\left[!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L7b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & \begin{tabular}{l}
Azimuth angle of observation of the spectrum selected to be part of the spectral preview and dynamic plot of the multi-angles data set(s) \\
Condition: mandatory and at least one when \\
"parameters_instrument_angle_observation_geometry" = \{bidirectional, directional-conical, conical-directional, biconical\} \\
AND \\
when "spectrum_experiment_preview_flag_multiangle_angle_phase" = \(\{\varnothing\), NULL \(\}\)
\end{tabular} \\
\hline spectrum_experiment_preview_fla float g_multiangle_angle_phase & \[
\begin{gathered}
\mathrm{P} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & deg & Phase angle of observation of the spectrum selected to be part of the spectral \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{L7b}} & & preview and dynamic plots of the multi-angles data set(s) \\
\hline & & & & & Condition: mandatory when "spectrum_experiment_preview_flag_multiangle_angle_azimuth" = \{ \(\varnothing\), NULL\} \\
\hline \multirow[t]{3}{*}{spectrum_experiment_preview_fla boolean g_multiangle_angle_spectrum} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} 3 \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{Spectr} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & Flag telling if the spectrum with this geometry will be part of the spectrum spectral preview \\
\hline & & & & & BoolEnum: \{yes, no\} or \{true, false\} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- need to select a series of 6-8 spectra maximum and well representing the spectral variations of the multi-angle dataset
\end{tabular} \\
\hline \multirow[t]{4}{*}{spectrum_experiment_preview_fla boolean g_multiangle_angle_experiment} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { S3 } \\
{[!!\mathrm{o} \text { _m }]}
\end{gathered}
\]} & \multirow[t]{4}{*}{Spectr} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\]} & \multirow[t]{4}{*}{--} & Flag telling if the spectrum with this geometry will be part of the experiment spectral preview \\
\hline & & & & & BoolEnum: \(\{\) yes, no\} or \{true, false\} \\
\hline & & & & & \begin{tabular}{l}
Condition: absolute mandatory when all other \\
"spectrum_experiment_preview_flag_multiangle_angle_experiment" = \{ , NULL\}
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- need to select 0-3 spectra of this multi-angle dataset for a series of 6-8 spectra maximum over the whole experiment well representing the spectral variations observed during the whole experiment
\end{tabular} \\
\hline ROI files & & & & & \begin{tabular}{l}
Condition: mandatory only when \\
"parameters_instrument_spatial_observation_mode" \(=\{\) roi averaged \(\}\)
\end{tabular} \\
\hline & & & & & \begin{tabular}{l}
Notes: \\
- for rastered image it can be only a single ROI file that will be linked only with the first ROI spectrum. \\
- the location of the pixels or pixel averages probing this/these materials can be given with a picture in "spectrum_images"
\end{tabular} \\
\hline spectrum_roi_export_suffix varchar(255) & P & Spectr & V & -- & Suffix that will be added to the generic spectrum name to automatically create \\
\hline SSDM Data Model Page & & & & & \\
\hline
\end{tabular}


Notes:
- Currently the content of the file is not read and uploaded in the data base. Only the file is stored as it is.

\section*{Spectrum auxilliary data}
\begin{tabular}{llccc} 
& & & & \\
spectrum_images \([\) V8a] & {\([\mathrm{O}]\)} & & {\([\mathrm{Ver}]\)} \\
spectrum_image_filename & varchar(255) & U & Spectr & V \\
& & {\([\mathrm{m}]\)} & L8a & {\([\mathrm{Ver}]\)}
\end{tabular}
\(£:\) images corresponding to this spectrum
-- File name (with extension) of image corresponding to this spectrum (for upload)
Image formats: .png, .jpg, (.gif)
Note: It can be:
- \(\quad \operatorname{plot}(\mathrm{s})\) of the spectrum, or part of it
- picture(s) of the sample corresponding to this spectrum, in particular when the sample displays visible changes relative to the sample picture given in "sample_image_filename"
- for "instrument_microscopy_imaging" \(=\) \{micro-imaging, imaging \(\}\) it could be pixels map(s) of the area probed by the micro-imaging or imaging measurement

This/these pixel map(s) could be:
- the pixel map (binary/coded) of the constituent(s) (UID, code,
...) of a compact sample (meteorite, rock, ...) inhomogeneous at the scale of the pixel
- the pixel map (binary/coded) of the material(s) (UID, code, ...) of a granular sample inhomogeneous at the scale of the pixel
- the pixel map (binary) of the location of a sample smaller than the image
- the pixel map (binary) of the location of a ROI (Region Of

Interest) of the sample over which the spectra have been averaged
- the pixel map of the elevation (DEM) of a sample with
topography at the scale of the pixel
- the pixel map of a spectral characteristic of the sample - any other type of pixel map ...

Note: the pixel map image(s) should have the same x and y dimentions than the corresponding spectro-image. It/they should be either binary image(s) \((0,1)\) or coded grey tone or RGB binary images (code given in caption)
Note \(D B\) : this file should be zipped with the 'experiment-spectra' import xml file for import.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_image_caption & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L8
\end{tabular} & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & & Caption of the image corresponding to this spectrum \\
\hline spectrum_documentations & List [L8b] & [O] & & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
£: Documentations about the spectrum \\
Notes: \\
- can contain original spectrum data file, log file of the spectrum, ... \\
- may be useful for BRDF measurements to provide original acquisition and \(\log\) files of the whole BRDF data \\
- these documentations can be downloaded or viewed inside another window of the web browser but cannot be viewed directly into SSHADE.
\end{tabular} \\
\hline spectrum_documentation_name & \(\operatorname{varchar(255)}\) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L8b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
Name of the documentation describing the spectrum \\
Note: this name will appear as the documentation title in the database \\
Ex: 'Experimental protocol of Mid-IR monitoring of CH4 ice sample under VUV irradiation’
\end{tabular} \\
\hline spectrum_documentation_filenam e & \(\operatorname{varchar(255)~}\) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L8b
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & -- & \begin{tabular}{l}
File name (with extension) of the documentation about the spectrum File formats: .pdf, .png, .jpg, .gif, .tiff, .txt, ... \\
Note: this file will be imported in the database. \\
Note \(x m l\) : this file should be zipped with the xml file
\end{tabular} \\
\hline
\end{tabular}

\section*{Spectrum band lists links}


\begin{tabular}{|c|c|c|c|c|c|}
\hline spectrum_band_peak_intensity_re float lative & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
L10
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Relative intensity at band peak compared to the intensity at "spectrum_wavelength_reference" \\
Note SSDM: "Bandlist" equivalent = "band_peak_intensity_relative"
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Spectrum bands attribution} \\
\hline spectrum_band_primary_constitue varchar(255) nt_uid [*] & \[
\begin{gathered}
\mathrm{S} 1 \mathrm{i} \\
{\left[\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Spectr \\
Const \\
Solid \\
Miner \\
Liquid \\
L10
\end{tabular} & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & -- & \begin{tabular}{l}
Link to the existing UID of the constituent producing the band. \\
Note SSDM: "Bandlist" equivalent = "bandlist_constituent_uid" \\
Format: see "constituent_uid" \\
Notes: \\
- the constituent can be a custom "constituent" or a "basic constituent" made of a fundamental solid, mineral, or liquid phase \\
- this 'constituent' information can be useful when there is more than one constituent in the sample. It allows to tell which constituent is at the origin of the band, possibly completed by 'species' information when relevant. \\
- for fundamental solids it could be mostly an isotopic substituted variant. \\
- minerals are with terrestrial natural abundance \\
for complex solids: do not use this KW but describe functional groups using "spectrum_band_primary_species"
\end{tabular} \\
\hline spectrum_band_primary_specie_u varchar(255) id [*] & \[
\begin{gathered}
\mathrm{S} 1 \mathrm{i} \\
{\left[\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & Spectr
Atom
Chem
F
Molec
L10 & \[
\begin{gathered}
\text { V } \\
{[\text { Ver] }}
\end{gathered}
\] & -- & \begin{tabular}{l}
Link to the existing UID of the species producing the band \\
Note SSDM: "Bandlist" equivalent = \\
"bandlist_constituent_primary_specie_uid" \\
Definition: \\
- For molecular and ionic solids this species can be a molecular species of the constituent. It cannot be an atomic species (as in monoatomic covalent network) as it cannot vibrate. \\
- for minerals the species can be a molecule ( \(\mathrm{H} 2 \mathrm{O}, \ldots\) ), or an anionic radical, ... \\
- for complex solids it can be a functional group.
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- for molecular species (molecule, molecular ion, or radical) and atomic species (atom, ions) it should be mostly an isotopic species.
- It is possible to put the uid of the natural terrestrial isotopic mix when the precise isotopic species is unknown.
- functional groups are with terrestrial natural abundance
- for minerals the functional group could be an 'anionic radical'
\begin{tabular}{llccc}
\begin{tabular}{llll} 
spectrum_band_transition_chemic & List [L12] & [O] & \\
al_bonds
\end{tabular} & & & \\
spectrum_band_transition_chemic & varchar(255) & U & Spectr & V \\
al_bond_uid [*] & & {\([\mathrm{m}]\)} & Chem & [Ver] \\
& & & B & \\
& & & Molec & \\
& & L10 & \\
& & & L12 &
\end{tabular}
£: bonds or part of the species producing this band
-- Link to the existing UID of the bond, part of the primary molecule, or whole molecule subjected to the transition producing this band

Note: the UID starts with either 'BOND_', 'MOLECPART_', or 'MOLEC_' depending on the number of bonds involved and size of the molecule, see below.
Note SSDM: "Bandlist" equivalent = "band_transition_chemical_bond_uid"
Note:
- mostly for fundamental and overtone vibration bands (a single chemical bond).
- also for simple combinations of vibration bands but limit the list to 2 chemical bonds.
- above 2 bonds involved prefers "chemical_bonds" of the type 'molecule part' or take a "molecule" if the transition concerns all bonds of the molecule.
not for electronic transitions in molecules or minerals


\(+j T x+k T y+1 R x+p R y[\ldots]\) for \(a v_{1}+b v_{2}{ }^{\mathrm{dl}}{ }_{2}+\ldots+v_{\mathrm{n}}{ }^{\mathrm{ml}}{ }_{\mathrm{n}}+\mathrm{eJ}+\mathrm{fK}+\mathrm{gKa}+\mathrm{hKc}+\mathrm{iL}+\) \(j \mathrm{~T}_{\mathrm{x}}+\mathrm{kT}_{\mathrm{y}}+\mathrm{lR}_{\mathrm{x}}+\mathrm{pR} \mathrm{R}_{\mathrm{y}}\) where \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \ldots, \mathrm{p}\) are integers
Note:
- put 'unknown' if transition is fully unknown. If part is unknown, something like ' + ?' or + ? J', ... can be added
- Hot bands (lower state with at least one quantum number \(>0\) ) are expressed with the ' \({ }^{-}\)' sign for their lower state
- LaTeX: cf. http://www.cheat-sheets.org/saved-copy/latexsheet.pdf
- Ex: ' \(\left(2 \nu_{1}-v_{1}\right)+3 v_{2}-\mathrm{T}_{\mathrm{x}}\) ' for \(\mathrm{v}_{1}: 1 \rightarrow 2 ; v_{2}: 0 \rightarrow 3\) and \(\mathrm{T}_{\mathrm{x}}: 1 \rightarrow 0\)

Enum: \{stretching, stretching sym., stretching asym., bending, bending in-p, bending out-p, bending sym., bending asym., bending sym. in-p (scissoring) , in-p (rocking), bending sym. out-p (wagging), bending asym. out-p (twisting, deformation, deformion sym, deformation asym, streting
- For fundamental modes see "molecule_vibration_mode"
- For combination/overtone modes see
"band_assignment_transition_vibration_mode_type"
Notes:
- definitions at: http://en.wikipedia.org/wiki/Vibrational_spectroscopy
the 'antisym.' modes have been depreciated and replaced by 'asym.' modes

Note SSDM: "Bandlist" equivalent = "band_vibration_mode"
Mode of rotation of the molecule producing this band
Enum: \{free rotation, hindered rotation, libration ..., unknown\}

Note SSDM: "Bandlist" equivalent = "band_rotation_mode"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spectrum_band_phonon_mode & enum(text) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr L10 & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Mode of external vibrations of the molecular solid producing this band \\
Enum: \(\{\) LO, TO, LA, TA1, TA2, unknown \(\}\) \\
Definitions: see "band_transition_phonon_mode" \\
Note SSDM: "Bandlist equivalent" = "band phonon_mode"
\end{tabular} \\
\hline spectrum_band_label & varchar(255) & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr L10 & \[
\begin{gathered}
\mathrm{V} \\
{[\mathrm{Ver}]}
\end{gathered}
\] & & \begin{tabular}{l}
Information on the spectrum band that need to appear on the spectrum (e.g. chemical formula with isotopes + vibration mode) \\
Note SSDM: "Bandlist" equivalent = ?
\end{tabular} \\
\hline spectrum_band_comments & blob & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m}]}
\end{gathered}
\] & Spectr L10 & V [Ver] & -- & \begin{tabular}{l}
Comments on the spectrum band \\
Note SSDM: Bandlist equivalent = 'band_parameters_comments' + 'band_transition_comments'
\end{tabular} \\
\hline
\end{tabular}

\section*{15. Spectrum Files}

\subsection*{15.1 Spectrum files}

The spectra themselves are stored in the data base. They are described by spectral points, with its wavenumber \(\left(\mathrm{cm}^{-1}\right)\) and the corresponding intensity value(s) which depends on the type of spectrum. For each value there is also a quality flag (mostly 6 quality levels from ' 0 ' \(=\) "no valid data" to ' 5 ' \(=\) "excellent data") and a numerical error bar, eventually asymmetric for optical constants (minimum and maximum values). Each spectrum is linked with a small png image of the whole valid spectrum at full scale, used for fast display ("spectrum_image_filename").

The simple spectrum files of the following types ("spectrum_type") are defined by wavelength values and an associated single value of intensities:
- 'level 0': raw
- 'level 1': transmission, ATR transmission, bidirectional reflectance, radiance factor, thermal emission, thermal radiance, scattering intensity, Raman scattering intensity, fluorescence emission
- 'level 2': absorbance, normalized absorbance, optical depth, ATR absorbance, corrected ATR absorbance, bidirectional reflectance distribution function, reflectance factor, normalized reflectance, thermal emittance, differential scattering cross section, normalized Raman scattering intensity, normalized fluorescence emission
- 'level 3': absorption coefficient, dielectric loss tangent, magnetic loss tangent, albedo, anisotropy factor, normalized differential scattering cross section, Raman scattering coefficient
- 'level 4': thermal emissivity, scattering efficiency factor parameters, single scattering albedo, Raman scattering efficiency, fluorescence emission efficiency

The complex spectrum files (complex admittance, complex impedance (level 1), relative complex permittivity, relative complex permeability, complex reflectance ratio (level 2), and 'optical constants' (level 4)) are defined by wavelength values and two associated values of intensity: the 'real part' and 'imaginary part'. Errors are best defined by minimum and maximum values for ' \(k\) ' and ' \(n\) '. They will have thus a specific file format with 3 columns.

The 'polarization parameters' files (level 2) ) are defined by wavelength values and two alternative sets of four parameters: either with the raw 'Stokes parameters' (I, Q, U, V), or with the 'normalized Stokes parameters (polarization contrast, degree of linear polarization, polarization position angle, degree of circular polarization). They will have thus a specific file format with 5 columns.

The 'scattering parameters' files (level 3) are defined by wavelength values and two alternative sets of three parameters: either with the 'scattering cross section parameters (scattering cross section, absorption cross section, extinction cross section), or with the scattering efficiency factor parameters (scattering efficiency factor, absorption efficiency factor, extinction efficiency factor) with 4 columns.

The 'radiative transfer model parameters' files (level 4) are defined by wavelength values and two or more associated values of intensity, depending on the model used and its number of parameters: for exemple, the 'single scattering albedo \(w\) ' and the 'single scattering phase function parameters': ' b , c 1, c2' (Henyey-Greenstein). They will have thus a specific file format with an adaptable number of columns (or set to the maximum case). Error need to be given for each spectral parameter. They will have thus a specific file format with a variable number of columns.

A few products from spectra, such as the spectral directional emittance (or emissivity) distribution function (SDEDF) or the spectral bidirectional reflectance distribution function (SBRDF) (level 3), are complex spectral products as they are expressed as a function of wavelength, and emergence angle (SDEDF) or incidence, emergence and azimuth angles (SBRDF) and thus they need either specific file formats or to be extracted "on the fly" from a set of 'bi-directional reflectance' spectra. The current distribution function file thus mostly lists the directional and bidirectional geometry and the associated directional or bidirectional files.

The directional emittance (or emissivity) distribution function (DEDF) or the bidirectional reflectance distribution function (BRDF) (level 3) can be derived from the SDEDF and SBRDF respectively by extracting the values at a specific wavelength. They can also be stored in specific files.

\subsection*{15.2 Intensity Spectrum file}

\section*{Root of the table: spectrum [-xml]}

Data type: in 'Experiment and spectra'
When "spectrum_files_parameter_type" = ‘simple spectrum'
"spectrum_type" =
- ‘level 0’: raw
- 'level 1': transmission, ATR transmission, bidirectional reflectance, radiance factor, thermal emission, thermal radiance, scattering intensity, Raman scattering intensity, fluorescence emission
- 'level 2’: absorbance, normalized absorbance, optical depth, ATR absorbance, corrected ATR absorbance, bidirectional reflectance distribution function, reflectance factor, normalized reflectance, thermal emittance, differential scattering cross section, normalized Raman scattering intensity, normalized fluorescence emission
- 'level 3': absorption coefficient, dielectric loss tangent, magnetic loss tangent, albedo, anisotropy factor, normalized differential scattering cross section, Raman scattering coefficient
- 'level 4': thermal emissivity, scattering efficiency factor parameters, single scattering albedo, Raman scattering efficiency, fluorescence emission efficiency
AND
"parameters_instrument_angle_observation_mode" = 'fixed angles'
These spectrum files (level 1 to 4) are defined by spectral position values and one (or more) associated value of intensities, plus an error (different formats)
\begin{tabular}{|c|c|c|c|c|}
\hline Key-word & Type & Level & Unit & Description \\
\hline spectrum_file_index & \(\operatorname{int}(10)\) & \[
\begin{gathered}
\text { B } \\
{\left[!!_g\right]}
\end{gathered}
\] & -- & Automatic random but unique number given to new spectrum file \\
\hline spectrum_position & float & \[
\begin{gathered}
\mathrm{S} \\
{[!!\mathrm{m}]}
\end{gathered}
\] & var. & \begin{tabular}{l}
Wavenumber/wavelength/frequency of the spectral point \\
Unit: in unit defined by "parameters_instrument_spectral_unit" \\
- Converted and stored in ' \(\mathrm{cm}-1\) ' unit in the database but provided to user in the unit specified in "parameters instrument spectral unit"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline spectrum_intensity & float & \[
\stackrel{\mathrm{U}}{\left[!!_\mathrm{m}\right]}
\] & var. & \begin{tabular}{l}
Intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- stored in the database and provided to user in "experiment_intensity _unit"
\end{tabular} \\
\hline spectrum_intensity_mean & float & \[
\stackrel{\mathrm{U}}{\left[!!_\mathrm{m}\right]}
\] & var. & \begin{tabular}{l}
Mean value of the intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- stored in the database and provided to user in "experiment_intensity _unit"
\end{tabular} \\
\hline spectrum_intensity_median & float & \[
\begin{gathered}
\mathrm{U} \\
{\left[!!_\mathrm{m}\right]}
\end{gathered}
\] & var. & \begin{tabular}{l}
Median value of the intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- stored in the database and provided to user in "experiment_intensity _unit"
\end{tabular} \\
\hline spectrum_intensity_min & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{c} / \mathrm{m}]}
\end{gathered}
\] & var. & \begin{tabular}{l}
Minimum value of intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline & & & & Note: generaly calculated from the 'error' ('+ \& -' or ' \(+/-\) ' ) data "intensity_min" = "intensity" - "intensity_error_minus" \\
\hline spectrum_intensity_max & float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{c} / \mathrm{m}]}
\end{gathered}
\] & var. & \begin{tabular}{l}
Maximum value of intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline & & & & Note: generaly calculated from the 'error' ( \({ }^{\prime}+\&-\) ' or ' \(+/-\) ' \()\) data "intensity_max" = "intensity" + "intensity_error_plus" \\
\hline spectrum_intensity_error & float & U & var. & \begin{tabular}{l}
Symetric error on the value of intensity \\
Units: in unit defined by "experiment_intensity_unit"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & [m/c] & & \\
\hline \multirow[t]{2}{*}{spectrum_intensity_error_stdev} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m} / \mathrm{c}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{var.} & \begin{tabular}{l}
Standard deviation of the value of intensity \\
Units: in unit defined by "experiment_intensity_unit"
\end{tabular} \\
\hline & & & & Note: generally used together with "spectrum_intensity_mean" or "spectrum_intensity_mean" \\
\hline \multirow[t]{2}{*}{spectrum_intensity_error_minus} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m} / \mathrm{c}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{var.} & Negative error on the value of intensity \\
\hline & & & & Units: in unit defined by "experiment_intensity_unit" calculated and stored in the database and provided to user in "experiment_intensity_unit" \\
\hline \multirow[t]{3}{*}{spectrum_intensity_error_plus} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m} / \mathrm{c}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{var.} & Positive error on the value of intensity \\
\hline & & & & Units: in unit defined by "experiment_intensity_unit" calculated and stored in the database and provided to user in "experiment_intensity_unit" \\
\hline & & & & Note: this error is frequently given in the data file as a symmetric ( \(+/-\) ) error \\
\hline \multirow[t]{4}{*}{spectrum_intensity_quality} & \multirow[t]{4}{*}{\(\operatorname{int}(1)\)} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{S} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{4}{*}{--} & Quality flag on the value of intensity \\
\hline & & & & Note: Mostly 6 quality levels from ' 0 ': "no valid data" to ' 5 ': "excellent data \\
\hline & & & & Need to be normalized for each type of spectrum \\
\hline & & & & Note: The value ' 0 ' is for flagging any data outside the validity range \\
\hline
\end{tabular}

\subsection*{15.3 Complex Spectrum file}

Root of the table: spectrum_complex [-xml]
Data type: in 'Experiment and spectra'
When "spectrum_files_parameter_type" = 'complex spectrum'
"spectrum_type" \(=\{\) optical constants, complex admittance, complex impedance, relative complex permittivity, relative complex permeability, complex reflectance ratio \(\}\)

The 'complex spectrum' files are defined by spectral position values and two associated values of intensities: the 'real part' and 'imaginary part'
\begin{tabular}{lccll} 
& Type & Level & Unit & Description \\
\hline spectrum_complex_file_index [-xml] & int(10) & \begin{tabular}{c} 
B \\
{\(\left[!!_\mathrm{g}\right]\)}
\end{tabular} & -- & Automatic random but unique number given to new spectrum file
\end{tabular}
spectrum_complex_intensity_imaginary_m
in
spectrum_complex_intensity_imaginary_m ax
spectrum_complex_intensity_real_error_m
inus
spectrum_complex_intensity_real_error_pl
us
spectrum_complex_intensity_imaginary_er
ror_minus
spectrum_complex_intensity_imaginary_er
ror plus
ror_minus
ror_plus
float
float
float

Maximum value of 'real index'
Note: frequently calculated from the 'error' (‘+\&-' or ' \(+/-\) ') data, or directly provided in the data file.
\(\rightarrow \quad\) "intensity_real_max" = "intensity_real" + "intensity_real_error_plus"
Minimum value of 'imaginary index'
Note: frequently calculated from the 'error’ ('+\& -' or '+/-') data, or directly provided in the data file.
\(\rightarrow \quad\) "intensity_imaginary_min" = "intensity_imaginary" - "intensity_imag
Maximum value of 'imaginary index'
Note: frequently calculated from the 'error’ ('+\& -' or '+/-') data, or directly provided in the data file.
\(\rightarrow\) "intensity_imaginary_max" = "intensity_imaginary" + "intensity_ima

\section*{Negative error on the value of 'real index'}

Note: this error can be given in the data file as a symmetric (+/-) error. It may need to be calculated from "intensity_real_min"

Positive error on the value of 'real index'
Note: this error can be given in the data file as a symmetric (+/-) error. It may need to be calculated from "intensity_real_max"

Negative error on the value of 'imaginary index'
Note: this error can be given in the data file as a symmetric (+/-) error It may need to be calculated from "intensity_imaginary_min"

Positive error on the value of 'imaginary index'
Note: this error can be given in the data file as a symmetric (+/-) error. It may need to be calculated from "intensity_imaginary_max"
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{spectrum_complex_intensity_real_quality} & \multirow[t]{2}{*}{\(\operatorname{int}(1)\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{--} & Quality flag on the value of 'real index' \\
\hline & & & & Note: Mostly 6 quality levels from ' 0 ': "no valid data" to ' 5 ': "excellent data Need to be normalized for real values \\
\hline \multirow[t]{3}{*}{spectrum_complex_intensity_imaginary_q uality} & \multirow[t]{3}{*}{\(\operatorname{int}(1)\)} & \multirow{3}{*}{\[
\begin{gathered}
\mathrm{S} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & Quality flag on the value of 'imaginary index' \\
\hline & & & & Note: Mostly 6 quality levels from ' 0 ': "no valid data" to ' 5 ': "excellent data \\
\hline & & & & Need to be normalized for imaginary values \\
\hline
\end{tabular}

\subsection*{15.4 Multi-Angles Spectra file}

\section*{Root of the table: spectrum_multiangle [-xml]}

Data type: in 'Experiment and spectra'
When "spectrum_files_parameter_type" \(=\) \{photometric data, spectra of multiangle dataset, photometric data of multispectral dataset, spectro-photometric data
"spectrum_type" =
- 'level 0 ': raw
- 'level 1': transmission, bidirectional reflectance, radiance factor, thermal emission, thermal radiance, scattering intensity, Raman scattering intensity, fluorescence emission
- 'level 2': absorbance, normalized absorbance, optical depth, bidirectional reflectance distribution function, reflectance factor, normalized reflectance, thermal emittance, differential scattering cross section, normalized Raman scattering intensity, normalized fluorescence emission
- 'level 3': albedo, anisotropy factor, normalized differential scattering cross section, Raman scattering coefficient

AND
"parameters_instrument_angle_observation_mode" = \{one variable angle, two variable angles, three variable angles, fixed phase angle, mono-angular function, bi-angular function, tri-angular function, fixed phase angle function, other geometry set \}
\begin{tabular}{llcll} 
Key-word & Type & Level & Unit & Description \\
\hline spectrum_multiangle_file_index \([-\mathrm{xml}]\) & \(\operatorname{int}(10)\) & \begin{tabular}{l}
B \\
{\(\left[!!_\mathrm{g}\right]\)}
\end{tabular} & -- & Automatic random but unique number given to new brdf table \\
spectrum_multiangle_angle_incidence & float & S & deg & \begin{tabular}{l} 
Incidence angle of illumination relative to the normal of the sample surface \\
Constraint: not for "spectrum_type" \(=\{\) DEDF, MDEDF, SDEDF,
\end{tabular} \\
hemispherical-directional reflectance, directional thermal emissivity, \\
scattering \(\}\)
\end{tabular}
spectrum_multiangle_angle_emergence float \begin{tabular}{c} 
S \\
{\(\left[!!\mathrm{o} _\mathrm{m}\right]\)}
\end{tabular}\(\quad \mathrm{deg} \quad\)\begin{tabular}{c} 
Emergence angle of observation in the principal (illumination) plane \\
relative to the normal of the sample surface
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline spectrum_multiangle_angle_azimuth & float & \[
\begin{gathered}
\mathrm{S} \\
{\left[!!\mathrm{o} _\mathrm{m}\right]}
\end{gathered}
\] & deg & Azimuth angle of observation relative to the plane perpendicular to the surface and containing the incidence beam \\
\hline & & & & \begin{tabular}{l}
Constraint: not for "spectrum_type" \(=\{\) hemispherical-directional reflectanc directional-hemispherical albedo\} \\
- stored in the database and provided to user in 'deg' unit \\
Note: generally not for "spectrum_type" = \{DEDF, MDEDF, SDEDF, specular reflectance, complex reflectance ratio, directional thermal emissivity, scattering\}
\end{tabular} \\
\hline \multirow[t]{3}{*}{spectrum_multiangle_angle_phase} & \multirow[t]{3}{*}{float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} \\
{\left[!!\mathrm{o} _\mathrm{c} / \mathrm{m}\right]}
\end{gathered}
\]} & \multirow[t]{3}{*}{deg} & Phase angle of observation relative to the plane containing the incidence beam and the obersvation direction \\
\hline & & & & \begin{tabular}{l}
Constraint: not for "spectrum_type" = \{DEDF, MDEDF, SDEDF , hemispherical-directional reflectance, directional-hemispherical albedo, directional thermal emissivity \(\}\) \\
- calculated and stored in the database and provided to user in 'deg' unit
\end{tabular} \\
\hline & & & & \[
\begin{aligned}
& \boldsymbol{\rightarrow} \text { "angle_phase" }=\operatorname{arcos}[\cos (\text { angle_incidence }) * \cos (\text { angle_emergence }) \\
& +\sin (\text { angle_incidence }) * \sin (\text { angle_emergence }) * \cos (\text { angle_azimuth })]
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{spectrum_multiangle_intensity} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[!!\mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{var.} & Intensity with unit depending on the type of product \\
\hline & & & & Units: in unit defined by "experiment_intensity_unit" stored in the database and provided to user in "experiment_intensity _unit" \\
\hline \multirow[t]{2}{*}{spectrum_multiangle_intensity_min} & \multirow[t]{2}{*}{float} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{c} / \mathrm{m}]}
\end{gathered}
\]} & \multirow[t]{2}{*}{var.} & Minimum value of intensity \\
\hline & & & & \begin{tabular}{l}
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline spectrum_multiangle_intensity_max float & \[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{c} / \mathrm{m}]}
\end{gathered}
\] & var. & \begin{tabular}{l}
Maximum value of intensity \\
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline & & & Note: generaly calculated from the 'error' (' \(+\&-\) ' or ' \(+/-\) ' \()\) data \(\rightarrow\) "intensity_max" = "intensity" + "intensity_error_plus" \\
\hline \multirow[t]{3}{*}{spectrum_multiangle_intensity_error_minu float s} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m} / \mathrm{c}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{var.} & Negative error on the value of intensity \\
\hline & & & \begin{tabular}{l}
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline & & & Note: this error is frequently given in the data file as a symmetric (+/-) error \\
\hline \multirow[t]{3}{*}{spectrum_multiangle_intensity_error_plus float} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{U} \\
{[\mathrm{~m} / \mathrm{c}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{var.} & Positive error on the value of intensity \\
\hline & & & \begin{tabular}{l}
Units: in unit defined by "experiment_intensity_unit" \\
- calculated and stored in the database and provided to user in "experiment_intensity_unit"
\end{tabular} \\
\hline & & & Note: this error is frequently given in the data file as a symmetric (+/-) error \\
\hline \multirow[t]{3}{*}{spectrum_multiangle_intensity_quality int(1)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{S} \\
{[\mathrm{~m}]}
\end{gathered}
\]} & \multirow[t]{3}{*}{--} & Quality flag on the value of intensity \\
\hline & & & Note: Mostly 6 quality levels from ' 0 ': "no valid data" to ' 5 ': "excellent data \\
\hline & & & Note: The value ' 0 ' is for flagging any data outside the validity range \\
\hline
\end{tabular}

Note: generaly calculated from the 'error' (' \(+\&-\) ' or ' \(+/-\) ' ) data
\(\rightarrow\) "intensity_min" = "intensity" - "intensity_error_minus"

Units: in unit defined by "experiment_intensity_unit" culated and stored in the "experiment_intensity_unit"

Note: generaly calculated from the 'error' (' \(+\&-\) ' or \({ }^{\text {' }+/- \text { ' }) \text { data }}\)
\(\rightarrow\) "intensity_max" = "intensity" + "intensity_error_plus"

Units: in unit defined by "experiment_intensity_unit"
calculated and stored in the database and provided to user in "experiment_intensity_unit"

Note: this error is frequently given in the data file as a symmetric (+/-) error

Units: in unit defined by "experiment_intensity_unit"
calculated and stored in the database and provided to user in "experiment_intensity_unit"

Note: this error is frequently given in the data file as a symmetric (+/-) error

Note: Mostly 6 quality levels from ' 0 ': "no valid data" to ' 5 ': "excellent data Note: The value ' 0 ' is for flagging any data outside the validity range

\section*{16. Enumeration Parameters Table}

\subsection*{16.1 Description}

The OpenEnum table contains the keywords described by an open list of attributes, with all the valid values of the attributes and in a few case a code that replace complex or long attribute labels for filling the xml .

\subsection*{16.2 OpenEnum Parameters Table}

Root of the table: openenum
Data type: 'openenum'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key-word & Type & Level & Table & Exp & Unit & Description \\
\hline \multicolumn{7}{|l|}{Openenum import and indexes} \\
\hline \multirow[t]{2}{*}{openenum_import_mode} & enum(text) & \[
\begin{gathered}
\mathrm{P} \\
{\left[!!_\mathrm{m}\right]}
\end{gathered}
\] & OpEnu & (V) & -- & \begin{tabular}{l}
Mode of import of the "openenum" \\
Enum: \{first import, draft, no change, correction\}
\end{tabular} \\
\hline & & & & & & Definitions: see "spectrum_import_mode" \\
\hline openenum_index [ \(\left.{ }^{* *}\right][-\mathrm{xml}]\) & int(10) & \[
\begin{gathered}
\mathrm{B} \\
{\left[!!_\mathrm{g}\right]}
\end{gathered}
\] & OpEnu & - & -- & Automatic random but unique number (internal) given to new openenum list \\
\hline openenum_keyword & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & OpEnu & & -- & \begin{tabular}{l}
Full name of the keyword, including the table name root \\
Ex: 'mineral_dana_group'
\end{tabular} \\
\hline openenum_table [-xml] & enum(text) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & OpEnu & & -- & \begin{tabular}{l}
Table to which the keyword belongs \\
Enum: \{database, laboratory, experimentalist, access group, journal, publication, atom, chemical bond, chemical function, molecule, mineral solid, liquid, meteorite object meteorite, object micrometeorite, object idp, matter fluid, matter solid, matter carbonaceous, matter extraterrestrial, sample, layer, material, constituent, processing, instrument, experiment, spectrum, bandlist, band, state, band parameter, vibration mode parameter\} \\
\(\rightarrow\) calculated from "openenum_keyword" \\
Ex: 'mineral' for 'mineral_dana_group' keyword
\end{tabular} \\
\hline openenum_column [-xml] & \(\operatorname{varchar}(255)\) & \[
\begin{gathered}
\mathrm{S} 0 \\
{[!!\mathrm{m}]}
\end{gathered}
\] & OpEnu & & -- & \begin{tabular}{l}
Keyword of the table \\
\(\rightarrow\) calculated from "openenum_keyword"
\end{tabular} \\
\hline
\end{tabular}

\section*{Openenum attribute values}

\(£\) : List of the attribute values of the OpenEnum
-- Flag used to fix the attribute value (cannot be modified)
BoolEnum: \{yes, no\} or \{true, false\}
Note xml: placed as an attribute of the 'value' block.
Note:
- tell that this attribute value is directly used in SSHADE code for some 'mandatory condition' during import.
- it cannot be removed or renamed otherwise the code will not work properly.
- To avoid its removal or renaming, it is replaced by using "openenum_value_replace_code"
-- Previous code (fixed) to be replaced by a new one
Note xml: placed as an attribute of the 'value' block.
Note xml: will work only when the special flag 'Ignore fixed OpenEnum values' is activated in the import page (only for SSHADE managers)

Note:
- used to change a fixed attribute used in 'Conditions'
- allow to tell that the value defined by "openenиm_value_code" replaces the one already in SSHADE without removing \(\overline{\mathrm{it}}\), to avoid loosing its role in some "mandatory conditions"
-- Code of the attribute of the keyword
Note: it is the code that need to be filled in the xml file
Ex: 'clathrate network ', 'compact porous coarse grained', ‘02.08.09', ‘09.EA’
-- Label of the attribute of the keyword
Constraint: only some keywords have a couple of label/code, when the attribute description is too long or complex (with non basic ascii characters) the code is replaced by a short value, generally a number or string of numbers.

Note: this label is used only for complex 'text' frequently associated with some code (like in various classifications). It is replaced by a simple numerical code to simplify xml filling.
Ex: 'Single nets of tetrahedra with 4-, 5-, (6-), and 8-membered rings' with "code" = '09.EA'

\section*{References}```

